Factors That Drive Actual Purchasing of Groceries through E-Commerce Platforms during COVID-19 in Indonesia
Abstract
:1. Introduction
2. Literature Review
2.1. Technology Acceptance Model (TAM)
2.2. Perceived Ease of Use
2.3. Perceived Usefulness
2.4. Attitude towards Online Grocery Shopping
2.5. Intention toward Online Grocery Shopping
2.6. Actual Behavior
2.7. Price
2.8. Reference Group
2.9. Health Risk
2.10. Framework of the Study
3. Research Methodology
4. Results and Discussion
4.1. Profile of the Respondents
4.2. Reliability and Validity
4.3. Structural Model
5. Conclusions
5.1. Theoretical Implications
5.2. Practical Implications
5.3. Limitations and Future Suggestions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The Jakarta Post. Bali Runs out of Oxygen as President Jokowi Ponders Lifting COVID-19 Curbs. Available online: https://www.thejakartapost.com/news/2021/07/25/bali-runs-out-of-oxygen-as-president-jokowi-ponders-lifting-covid-19-curbs.html (accessed on 25 July 2021).
- Available online: https://covid19.go.id/p/regulasi (accessed on 25 July 2021).
- Sudaryanto, S.; Subagio, A.; Meliana, M. Does COVID-19 affect online experience towards repurchase intention? An empirical study in Indonesia. J. Asian Financ. Econ. Bus. 2021, 8, 1013–1023. [Google Scholar] [CrossRef]
- Populix. Changes in People’s Behavior during the Pandemic. 2020. Available online: https:///www.info.populix.co/all-reports/COVID-19% (accessed on 22 May 2021).
- Tran, V.D. The Relationship among Product Risk, Perceived Satisfaction and Purchase Intentions for Online Shopping. J. Asian Financ. Econ. Bus. 2020, 7, 221–231. [Google Scholar] [CrossRef]
- Won, J.; Kim, B.-Y. The Effect of Consumer Motivations on Purchase Intention of Online Fashion—Sharing Platform. J. Asian Financ. Econ. Bus. 2020, 7, 197–207. [Google Scholar] [CrossRef]
- Alagoz, S.M.; Hekimoglu, H. A Study on Tam: Analysis of Customer Attitudes in Online Food Ordering System. Procedia-Soc. Behav. Sci. 2012, 62, 1138–1143. [Google Scholar] [CrossRef] [Green Version]
- Hartono, E.; Holsapple, C.W.; Kim, K.-Y.; Na, K.-S.; Simpson, J.T. Measuring perceived security in B2C electronic commerce website usage: A respecification and validation. Decis. Support Syst. 2014, 62, 11–21. [Google Scholar] [CrossRef]
- Irawan, W.A.; Yusufianto, A.; Agustina, D.; Dean, R. Laporan Survei Internet APJII. 2020. Available online: https://apjii.or.id/survei (accessed on 17 June 2021).
- Okezone. Pertumbuhan E-Commerce Tahun ini Meningkat Tajam di Indonesia. 2020. Available online: https://techno.okezone.com/read/2020/11/04/16/2304173/pertumbuhan-e-commerce-tahun-ini-meningkat-tajam-di-indonesia (accessed on 6 July 2021).
- Nie, B.M.; Zhao, F.; Yu, J. The impact of the financial crisis on consumer behavior and the implication of retail revolution. In Marketing Science Innovations and Economic Development: Proceedings of 2010 Summit International Marketing Science and Management Technology Conference; Orient Academic Forum: Sydney, Australia, 2010; pp. 487–493. [Google Scholar]
- Roggeveen, A.L.; Sethuraman, R. How the COVID-19 Pandemic May Change the World of Retailing. J. Retail. 2020, 96, 169–171. [Google Scholar] [CrossRef]
- Sharma, V.; Sonwalker, J. Does consumers buying behavior change during economic crisis? Int. J. Econ. Bus. Adm. 2013, 1, 33–48. [Google Scholar] [CrossRef] [Green Version]
- Frank, D.-A.; Peschel, A.O. Sweetening the Deal: The Ingredients that Drive Consumer Adoption of Online Grocery Shopping. J. Food Prod. Mark. 2020, 26, 535–544. [Google Scholar] [CrossRef]
- Li, J.; Hallsworth, A.G.; Coca-Stefaniak, J.A. Changing Grocery Shopping Behaviours among Chinese Consumers at the Outset of The COVID-19 Outbreak. Tijdschr. Econ. Soc. Geogr. 2020, 111, 574–583. [Google Scholar] [CrossRef]
- Martinelli, E.; De Canio, F.; Nardin, G. Consumers’ Channel Switching Behaviour from Off-line to On-line: The Role of the Fear of COVID-19. In National Brand and Private Label Marketing Conference; Springer: Cham, Switzerland, 2021; pp. 33–40. [Google Scholar] [CrossRef]
- Dang, A.K.; Tran, B.X.; Nguyen, C.T.; Le, H.T.; Do, H.T.; Nguyen, H.D.; Nguyen, L.H.; Nguyen, T.H.; Mai, H.T.; Tran, T.D.; et al. Consumer Preference and Attitude Regarding Online Food Products in Hanoi, Vietnam. Int. J. Environ. Res. Public Health 2018, 15, 981. [Google Scholar] [CrossRef] [Green Version]
- Changchit, C.; Cutshall, R.; Lonkani, R.; Pholwan, K.; Pongwiritthon, R. Determinants of Online Shopping Influencing Thai Consumer’s Buying Choices. J. Internet Commer. 2018, 18, 1–23. [Google Scholar] [CrossRef]
- Singh, R.; Söderlund, M. Extending the experience construct: An examination of online grocery shopping. Eur. J. Mark. 2020, 54, 2419–2446. [Google Scholar] [CrossRef]
- Andersen, P. The Effect of Math Anxiety on Consumer Price Perception and Purchase Decision. Ph.D. Thesis, The University of Texas, Austin, TX, USA, 2015. [Google Scholar]
- Natarajan, T.; Balasubramanian, S.A.; Kasilingam, D.L. Understanding the intention to use mobile shopping applications and its influence on price sensitivity. J. Retail. Consum. Serv. 2017, 37, 8–22. [Google Scholar] [CrossRef]
- Kizgin, H.; Jamal, A.; Dey, B.L.; Rana, N.P. The Impact of Social Media on Consumers’ Acculturation and Purchase Intentions. Inf. Syst. Front. 2018, 20, 503–514. [Google Scholar] [CrossRef] [Green Version]
- Osei-Frimpong, K.; Donkor, G.; Owusu-Frimpong, N. The Impact of Celebrity Endorsement on Consumer Purchase Intention: An Emerging Market Perspective. J. Mark. Theory Pract. 2019, 27, 103–121. [Google Scholar] [CrossRef]
- Fihartini, Y.; Helmi, A.; Hassan, M.; Oesman, Y.M. Perceived health risk, online retail ethics, and consumer behaviour within online shopping during the COVID-19 pandemic. Innov. Mark. 2021, 17, 17–29. [Google Scholar] [CrossRef]
- Lim, Y.J.; Osman, A.; Salahuddin, S.N.; Romle, A.R.; Abdullah, S. Factors Influencing Online Shopping Behavior: The Mediating Role of Purchase Intention. Procedia Econ. Financ. 2016, 35, 401–410. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Cai, Y.; Liu, D. Online shopping among Chinese consumers: An exploratory investigation of demographics and value orientation. Int. J. Consum. Stud. 2011, 35, 458–469. [Google Scholar] [CrossRef]
- Ozen, H.; Engizek, N. Shopping online without thinking: Being emotional or rational? Asia Pac. J. Mark. Logist. 2014, 26, 78–93. [Google Scholar] [CrossRef]
- Lester, D.H.; Forman, A.M.; Loyd, D. Internet Shopping and Buying Behavior of College Students. Serv. Mark. Q. 2005, 27, 123–138. [Google Scholar] [CrossRef]
- Abbad, M.; Abbad, R.; Saleh, M. Limitations of e-commerce in developing countries: Jordan case. Educ. Bus. Soc. Contemp. Middle East. Issues 2011, 4, 280–291. [Google Scholar] [CrossRef]
- Delafrooz, N.; Paim, L.H.; Khatibi, A. A research modelling to understand online shopping intention. Aust. J. Basic Appl. Sci. 2011, 5, 70–77. [Google Scholar]
- Choi, J.; Park, J. Multichannel retailing in Korea: Effects of online shopping orientations and information seeking patterns on channel choice behavior. Int. J. Retail Distrib. Manag. 2006, 34, 577–596. [Google Scholar] [CrossRef]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Manag. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef] [Green Version]
- Aziz, N.N.A.; Wahid, N.A. Factors Influencing Online Purchase Intention among University Students. Int. J. Acad. Res. Bus. Soc. Sci. 2018, 8, 4413. [Google Scholar] [CrossRef]
- Ha, N.T.; Nguyen, T.L.H.; Nguyen, T.P.L.; Nguyen, T.D. The effect of trust on consumers’ online purchase intention: An integration of TAM and TPB. Manag. Sci. Lett. 2019, 9, 1451–1460. [Google Scholar] [CrossRef]
- Ha, N.T. The impact of perceived risk on consumers’ online shopping intention: An integration of TAM and TPB. Manag. Sci. Lett. 2020, 10, 2029–2036. [Google Scholar] [CrossRef]
- Lin, H.-F. Predicting consumer intentions to shop online: An empirical test of competing theories. Electron. Commer. Res. Appl. 2007, 6, 433–442. [Google Scholar] [CrossRef]
- Lohse, G.L.; Bellman, S.; Johnson, E.J. Consumer buying behavior on the Internet: Findings from panel data. J. Interact. Mark. 2000, 14, 15–29. [Google Scholar] [CrossRef] [Green Version]
- Nguyen-Viet, H.; Tuyet-Hanh, T.T.; Unger, F.; Dang-Xuan, S.; Grace, D. Food safety in Vietnam: Where we are at and what we can learn from international experiences. Infect. Dis. Poverty 2017, 6, 39. [Google Scholar] [CrossRef] [Green Version]
- Gefen, D.; Karahanna, E.; Straub, D.W. Trust and TAM in Online Shopping: An Integrated Model. MIS Q. 2003, 27, 51–90. [Google Scholar] [CrossRef]
- Gefen, D.; Straub, D.W. The relative importance of perceived ease of use in is adoption: A study of e-commerce adoption. J. Assoc. Inf. Syst. 2000, 1, 8. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.B. An empirical study on consumer first purchase intention in online shopping: Integrating initial trust and TAM. Electron. Commer. Res. 2012, 12, 125–150. [Google Scholar] [CrossRef]
- Bauerová, R.; Klepek, M. Technology Acceptance as a Determinant of Online Grocery Shopping Adoption. Acta Univ. Agric. Silvic. Mendel. Brun. 2018, 66, 737–746. [Google Scholar] [CrossRef] [Green Version]
- Celik, H.E.; Yilmaz, V. Extending the technology acceptance model for adoption of e-shopping by consumers in Turkey. J. Electron. Commer. Res. 2011, 12, 152–164. [Google Scholar]
- Lim, W.M.; Ting, D.H. E-shopping: An Analysis of the Technology Acceptance Model. Mod. Appl. Sci. 2012, 6, 49. [Google Scholar] [CrossRef] [Green Version]
- Sondakh, J.J. Behavioral intention to use e-tax service system: An application of technology acceptance model. Eur. Res. Stud. J. 2017, 20, 48–64. [Google Scholar]
- Kurnia, S.; Chien, J. The acceptance of the online grocery shopping. In Proceedings of the 16th Bled Electronic Commerce Conference, Bled, Slovenia, 9–11 June 2003. [Google Scholar]
- Ajzen, I. The Theory of Planned Behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Riza, A.F.; Hafizi, M.R. Customers attitude toward Islamic mobile banking in Indonesia: Implementation of TAM. Asian J. Islam. Manag. 2020, 1, 75–84. [Google Scholar] [CrossRef]
- Teo, T. Is there an attitude problem? Reconsidering the role of attitude in the TAM. Br. J. Educ. Technol. 2009, 40, 1139–1141. [Google Scholar] [CrossRef]
- Yang, H.-D.; Yoo, Y. It’s all about attitude: Revisiting the technology acceptance model. Decis. Support Syst. 2004, 38, 19–31. [Google Scholar] [CrossRef]
- Kim, Y.G.; Woo, E. Consumer acceptance of a quick response (QR) code for the food traceability system: Application of an extended technology acceptance model (TAM). Food Res. Int. 2016, 85, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Chang, M.K.; Cheung, W.; Lai, V.S. Literature derived reference models for the adoption of online shopping. Inf. Manag. 2005, 42, 543–559. [Google Scholar] [CrossRef]
- Monsuwé, T.P.Y.; Dellaert, B.G.C.; de Ruyter, K. What drives consumers to shop online? A literature review. Int. J. Serv. Ind. Manag. 2004, 15, 102–121. [Google Scholar] [CrossRef] [Green Version]
- Quevedo-Silva, F.; Freire, O.; Lima-Filho, D.D.O.; Brandão, M.M.; Isabella, G.; Moreira, L.B. Intentions to purchase food through the internet: Developing and testing a model. Br. Food J. 2016, 118, 572–587. [Google Scholar] [CrossRef]
- Loketkrawee, P.; Bhatiasevi, V. Elucidating the Behavior of Consumers toward Online Grocery Shopping: The Role of Shopping Orientation. J. Internet Commer. 2018, 17, 418–445. [Google Scholar] [CrossRef]
- Ha, N.T.; Nguyen, T.L.H.; Pham, T.V.; Nguyen, T.H.T. Factors influencing online shopping intention: An empirical study in Vietnam. J. Asian Financ. Econ. Bus. 2021, 8, 1257–1266. [Google Scholar] [CrossRef]
- Montano, D.E.; Kasprzyk, D. Theory of reasoned action, theory of planned behavior, and the integrated behavioral model. Health Behav. Theory Res. Pract. 2015, 70, 231. [Google Scholar]
- Pavlou, P.A. Integrating trust and risk with the consumer acceptance of electronic commerce: Technology Acceptance Model. Int. J. Electron. Commer. 2003, 7, 69–103. [Google Scholar]
- Nguyen, T.N.; Lobo, A.; Greenland, S. Pro-environmental purchase behaviour: The role of consumers’ biospheric values. J. Retail. Consum. Serv. 2016, 33, 98–108. [Google Scholar] [CrossRef]
- Beuckels, E.; Hudders, L. An experimental study to investigate the impact of image interactivity on the perception of luxury in an online shopping context. J. Retail. Consum. Serv. 2016, 33, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.-L.; Ho, C.-T. Exploring Signaling Roles of Service Providers’ Reputation and Competence in Influencing Perceptions of Service Quality and Outsourcing Intentions. J. Organ. End User Comput. 2019, 31, 86–109. [Google Scholar] [CrossRef] [Green Version]
- Sundström, M.; Hjelm-Lidholm, S.; Radon, A. Clicking the boredom away—Exploring impulse fashion buying behavior online. J. Retail. Consum. Serv. 2019, 47, 150–156. [Google Scholar] [CrossRef]
- He, D.; Lu, Y.; Zhou, D. Empirical study of consumers’ purchase intentions in C2C electronic commerce. Tsinghua Sci. Technol. 2008, 13, 287–292. [Google Scholar] [CrossRef]
- Roy, R.; Rabbanee, F.; Sharma, P. Antecedents, outcomes, and mediating role of internal reference prices in pay-what-you-want (PWYW) pricing. Mark. Intell. Plan. 2016, 34, 117–136. [Google Scholar] [CrossRef]
- Sharma, P. Country of origin effects in developed and emerging markets: Exploring the contrasting roles of materialism and value consciousness. J. Int. Bus. Stud. 2011, 42, 285–306. [Google Scholar] [CrossRef]
- Rakesh, S.; Khare, A. Impact of promotions and value consciousness in online shopping behaviour in India. J. Database Mark. Cust. Strat. Manag. 2012, 19, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Turban, E.; King, D.; Lee, J.; Viehland, D. Electronic Commerce: A Managerial Perspective; Prentice Hall: Hoboken, NJ, USA, 2002. [Google Scholar]
- Firdausy, C.M.; Idawati, R. Effects of Service Quality, Price and Promotion on Customers’ Purchase Decision of Traveloka Online Airline Tickets in Jakarta, Indonesia. Int. J. Manag. Sci. Bus. Adm. 2017, 3, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Fitri, R.A.; Wulandari, R. Online purchase intention factors in Indonesian millenial. Int. Rev. Manag. Mark. 2020, 10, 122–127. [Google Scholar] [CrossRef]
- Armstrong, G. Marketing: An Introduction; Pearson Education: London, UK, 2009. [Google Scholar]
- Eastlick, M.A.; Lotz, S. Cognitive and institutional predictors of initial trust toward an online retailer. Int. J. Retail Distrib. Manag. 2011, 39, 234–255. [Google Scholar] [CrossRef]
- Li, Y.; Huang, J. Applying theory of perceived risk and technology acceptance model in the online shopping channel. Eng. Technol. 2009, 53, 919–925. [Google Scholar]
- Setiadi, E.M.; Kolip, U. Pengantar Sosiologi Politik; Kencana: Malang, Indonesia, 2013. [Google Scholar]
- Hsu, C.-L.; Lin, J.C.-C. Effect of perceived value and social influences on mobile app stickiness and in-app purchase intention. Technol. Forecast. Soc. Chang. 2016, 108, 42–53. [Google Scholar] [CrossRef]
- Kondiparhy, A.; Rajpal, K.; Sun, Y.; Zhang, J. What drives the purchase intention for phablet: The roles of product. ASBBS Proc. 2015, 22, 250–260. [Google Scholar]
- Eryadi, H.T.; Yulianna, E. Pengaruh perceived value dan social influence terhadap purchase intention smartphone 4g pada pelanggan Bandung Electronic Center. eProceedings Manag. 2016, 3, 86–92. [Google Scholar]
- Bonera, M. The propensity of e-commerce usage: The influencing variables. Manag. Res. Rev. 2011, 34, 821–837. [Google Scholar] [CrossRef]
- Shin, H.; Kang, J. Reducing perceived health risk to attract hotel customers in the COVID-19 pandemic era: Focused on technology innovation for social distancing and cleanliness. Int. J. Hosp. Manag. 2020, 91, 102664. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Baharun, R.; Salleh, N.Z.M. Antecedents, consequences, and reducers of perceived risk in social media: A systematic literature review and directions for further research. Psychol. Mark. 2020, 37, 74–86. [Google Scholar] [CrossRef]
- Lo, A.Y. The role of social norms in climate adaptation: Mediating risk perception and flood insurance purchase. Glob. Environ. Chang. 2013, 23, 1249–1257. [Google Scholar] [CrossRef]
- Lobb, A.; Mazzocchi, M.; Traill, W. Modelling risk perception and trust in food safety information within the theory of planned behaviour. Food Qual. Prefer. 2007, 18, 384–395. [Google Scholar] [CrossRef]
- Brewer, N.T.; Fazekas, K.I. Predictors of HPV vaccine acceptability: A theory-informed, systematic review. Prev. Med. 2007, 45, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Chapman, V.L.; Skinner, C.S. The health belief model. In Health Behaviour and Health Education: Theory, Research, and Practice; Glanz, K., Rimer, B.K., Viswanath, K., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 45–65. [Google Scholar]
- Salem, M.A.; Nor, K.M. The effect of COVID-19 on consumer behavior in Saudi Arabia: Switching from brick and mortar to E-commerce. Int. J. Sci. Technol. Res. 2020, 9, 15–28. [Google Scholar]
- Conehealth. COVID-19 Information. 2020. Available online: https://www.conehealth.com/covid-19-information/ (accessed on 3 August 2021).
- Rundmo, T. Perceived risk, health and consumer behaviour. J. Risk Res. 1999, 2, 187–200. [Google Scholar] [CrossRef]
- Naami, A.; Rahimi, Z.; Ghandvar, P. The effect of perceived value, perceived risk, and price on customers buying intention (Case study: Employees of Presov electronic company). Int. Rev. Manag. Mark. J. 2017, 7, 164–170. [Google Scholar]
- Noviarni, E. Analisis adopsi layanan internet banking oleh nasabah perbankan di pekanbaru (Technology Acceptance Model) Eni Noviarni. J. Al-Iqtishad 2017, 10, 26–39. [Google Scholar] [CrossRef] [Green Version]
- Yahyapour, N. Determining Factors Affecting Intention to Adopt Banking Recommender System, Case of Iran. Master’s Thesis, Lulea University of Technology, Division of Industrial Marketing and E-Commerce, Lulea, Sweden, 2008. Available online: https://www.diva-portal.org/smash/get/diva2:1022238 (accessed on 22 May 2021).
- Fatmawati, E. Technology acceptance model (TAM) untuk menganalisis penerimaan terhadap sistem informasi di perpustakaan iqra. J. Ilmu Perpust. Inf. 2015, 9, 1–13. [Google Scholar]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); SAGE Publications: New York, NY, USA, 2013. [Google Scholar]
- Barclay, D.; Higgings, C.; Thompson, R. The partial least squares (PLS) approach to casual modeling: Personal computer adoption and use as an illustration. Technol. Stud. 1995, 2, 285–309. [Google Scholar]
- Park, S.Y. An analysis of the technology acceptance model in understanding university students’ behavioral intention to use e-learning. J. Educ. Technol. Soc. 2009, 12, 150–162. [Google Scholar]
- Moon, J.-W.; Kim, Y.-G. Extending the TAM for a World-Wide-Web context. Inf. Manag. 2001, 38, 217–230. [Google Scholar] [CrossRef]
- Chin, S.L.; Goh, Y.N. Consumer purchase intention toward online grocery shopping: View from Malaysia. Glob. Bus. Manag. Res. 2017, 9, 221–238. [Google Scholar]
- Goldsmith, R.E.; Kim, D.; Flynn, L.R.; Kim, W.-M. Price Sensitivity and Innovativeness for Fashion Among Korean Consumers. J. Soc. Psychol. 2005, 145, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Ha, N.M.; Tam, H.L. Attitudes and Purchase Intention Towards Counterfeiting Luxurious Fashion Products in Vietnam. Int. J. Econ. Financ. 2015, 7, 207. [Google Scholar] [CrossRef]
- Sreeram, A.; Kesharwani, A.; Desai, S. Factors affecting satisfaction and loyalty in online grocery shopping: An integrated model. J. Indian Bus. Res. 2017, 9, 107–132. [Google Scholar] [CrossRef]
- Hansen, J.M.; Saridakis, G.; Benson, V. Risk, trust, and the interaction of perceived ease of use and behavioral control in predicting consumers’ use of social media for transactions. Comput. Hum. Behav. 2018, 80, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Van der Heijden, H. User Acceptance of Hedonic Information Systems. MIS Q. 2004, 28, 695. [Google Scholar] [CrossRef]
- Verhoef, P.C.; Langerak, F. Possible determinants of consumers’ adoption of electronic grocery shopping in the Netherlands. J. Retail. Consum. Serv. 2001, 8, 275–285. [Google Scholar] [CrossRef]
- Yang, H.-H.; Su, C.-H. Learner Behaviour in a MOOC Practice-oriented Course: In Empirical Study Integrating TAM and TPB. Int. Rev. Res. Open Distrib. Learn. 2017, 18, 35–63. [Google Scholar] [CrossRef] [Green Version]
- Wan, C.; Cheung, R.; Shen, G.Q. Recycling attitude and behaviour in university campus: A case study in Hong Kong. Facilities 2012, 30, 630–646. [Google Scholar] [CrossRef]
- Wee, C.S.; Ariff, M.S.B.M.; Zakuan, N.; Tajudin, M.N.M.; Ismail, K.; Ishak, N. Consumers’ perception, purchase intention and actual purchase behavior of organic food products. Rev. Integr. Bus. Econ. Res. 2014, 3, 378. [Google Scholar]
- Anderson, J.C.; Gerbing, D.W. Structural equation modeling in practice: A review and recommended two-step approach. Psychol. Bull. 1988, 103, 411. [Google Scholar] [CrossRef]
- Nunally, J.C. Psychometric Theory; McGraw-Hill: New York, NY, USA, 1967. [Google Scholar]
- Nunally, J.C.; Bernstein, I.H. Psychometric Theory, 3rd ed.; McGraw-Hill: New York, NY, USA, 1994. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a Silver Bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Driediger, F.; Bhatiasevi, V. Online grocery shopping in Thailand: Consumer acceptance and usage behavior. J. Retail. Consum. Serv. 2019, 48, 224–237. [Google Scholar] [CrossRef]
- Nguyen, T.T.H.; Nguyen, N.; Nguyen, T.B.L.; Phan, T.T.H.; Bui, L.P.; Moon, H.C. Investigating Consumer Attitude and Intention towards Online Food Purchasing in an Emerging Economy: An Extended TAM Approach. Foods 2019, 8, 576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shukla, A.; Sharma, S.K. Evaluating Consumers’ Adoption of Mobile Technology for Grocery Shopping: An Application of Technology Acceptance Model. Vis. J. Bus. Perspect. 2018, 22, 185–198. [Google Scholar] [CrossRef]
- Çelik, H. Influence of social norms, perceived playfulness and online shopping anxiety on customers’ adoption of online retail shopping: An empirical study in the Turkish context. Int. J. Retail Distrib. Manag. 2011, 39, 390–413. [Google Scholar] [CrossRef]
- Ha, S.; Stoel, L. Consumer e-shopping acceptance: Antecedents in a technology acceptance model. J. Bus. Res. 2009, 62, 565–571. [Google Scholar] [CrossRef]
- Gong, W.; Stump, R.L.; Maddox, L.M. Factors influencing consumers’ online shopping in China. J. Asia Bus. Stud. 2013, 7, 214–230. [Google Scholar] [CrossRef]
- Yu, J.; Ha, I.; Choi, M.; Rho, J.J. Extending the TAM for a t-commerce. Inf. Manag. 2005, 42, 965–976. [Google Scholar] [CrossRef]
- Crespo, Á.H.; Del Bosque, I.R.; Sánchez, M.M.G.D.L.S. The influence of perceived risk on Internet shopping behavior: A multidimensional perspective. J. Risk Res. 2009, 12, 259–277. [Google Scholar] [CrossRef]
- Johar, M.G.M.; Awalluddin, J.A.A. The role of technology acceptance model in explaining effect on e-commerce application system. Int. J. Manag. Inf. Technol. 2011, 3, 1–14. [Google Scholar] [CrossRef]
- Lin, J.C.-C.; Lu, H. Towards an understanding of the behavioural intention to use a web site. Int. J. Inf. Manag. 2000, 20, 197–208. [Google Scholar] [CrossRef]
- Bigné-Alcañiz, E.; Ruiz-Mafé, C.; Aldás-Manzano, J.; Sanz-Blas, S. Influence of online shopping information dependency and innovativeness on internet shopping adoption. Online Inf. Rev. 2008, 32, 648–667. [Google Scholar] [CrossRef]
- Klopping, I.M.; McKinney, E. Extending the technology acceptance model and the task-technology fit model to consumer e-commerce. Inf. Technol. Learn. Perform. J. 2004, 22, 35–48. [Google Scholar]
- Chiang, K.-P.; Dholakia, R.R. Factors Driving Consumer Intention to Shop Online: An Empirical Investigation. J. Consum. Psychol. 2003, 13, 177–183. [Google Scholar] [CrossRef]
- Chopdar, P.K.; Sivakumar, V.J. Understanding continuance usage of mobile shopping applications in India: The role of espoused cultural values and perceived risk. Behav. Inf. Technol. 2019, 38, 42–64. [Google Scholar] [CrossRef]
- Ventre, I.; Kolbe, D. The Impact of Perceived Usefulness of Online Reviews, Trust and Perceived Risk on Online Purchase Intention in Emerging Markets: A Mexican Perspective. J. Int. Consum. Mark. 2020, 32, 287–299. [Google Scholar] [CrossRef]
- Kim, E.Y.; Liao, Q.; Yu, E.S.; Kim, J.H.; Yoon, S.W.; Lam, W.W.T.; Fielding, R. Middle East respiratory syndrome in South Korea during 2015: Risk-related perceptions and quarantine attitudes. Am. J. Infect. Control 2016, 44, 1414–1416. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Cho, S.-I. Middle East respiratory syndrome risk perception among students at a university in South Korea, 2015. Am. J. Infect. Control 2017, 45, e53–e60. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, N.; Stenius, M. Online grocery shoppers due to the COVID-19 pandemic-An analysis of demographic and household characteristics. Procedia Comput. Sci. 2022, 196, 93–100. [Google Scholar] [CrossRef]
- Honey-Rosés, J.; Anguelovski, I.; Chireh, V.K.; Daher, C.; van den Bosch, C.K.; Litt, J.S.; Mawani, V.; McCall, M.K.; Orellana, A.; Oscilowicz, E.; et al. The impact of COVID-19 on public space: An early review of the emerging questions–design, perceptions and inequities. Cities Health 2020, 1–17. [Google Scholar] [CrossRef]
Scale | Source |
---|---|
Usefulness | [32,42,52] |
| |
Ease of use | [36,42,94] |
| |
Attitude | [36,42,95] |
| |
Price | [96,97,98,99] |
| |
Reference group | [98] |
| |
Health risk | [100] |
| |
Intention to purchase | [42,101,102,103] |
| |
Actual behavior | [104,105] |
|
Respondents | Number (%) |
---|---|
Gender | |
Male | 87 (29) |
Female | 213 (71) |
Age | |
18–29 | 41 (13.7) |
30–39 | 77 (25.7) |
40–49 | 120 (40) |
>50 | 62 (20.7) |
Education | |
High school or below | 9 (3) |
Diploma | 40 (13.3) |
Bachelor’s | 180 (60) |
Master’s/Ph.D. | 71 (23.7) |
Level of Income | |
<3.5 million rupiah | 41 (13.7) |
3.6–10 million rupiah | 102 (34) |
10–20 million rupiah | 80 (26.7) |
>20 million rupiah | 77 (25.7) |
Occupation | |
Employee | 166 (55.3) |
Self-employed | 60 (20) |
Student | 7 (2.3) |
Housewife | 56 (18.7) |
Retired | 11 (3.7) |
Construct | Mean | SD | Item | Loading | Cronbach’s Alpha | Composite Reliability | (AVE) |
---|---|---|---|---|---|---|---|
Actual behavior | 3.82 | 1.03 | Act-1 | 0.92 | 0.89 | 0.93 | 0.81 |
Act-2 | 0.92 | ||||||
Act-3 | 0.86 | ||||||
Attitude | 4.08 | 0.84 | Att-1 | 0.88 | 0.91 | 0.94 | 0.78 |
Att-2 | 0.90 | ||||||
Att-3 | 0.88 | ||||||
Att-4 | 0.89 | ||||||
Ease of use | 4.25 | 0.89 | EOU-1 | 0.92 | 0.89 | 0.93 | 0.76 |
EOU-2 | 0.91 | ||||||
EOU-3 | 0.86 | ||||||
EOU-4 | 0.79 | ||||||
Health risk | 4.24 | 0.93 | HR-1 | 0.79 | 0.82 | 0.88 | 0.65 |
HR-2 | 0.79 | ||||||
HR-3 | 0.81 | ||||||
HR-4 | 0.82 | ||||||
Intention | 3.90 | 0.96 | Int-1 | 0.92 | 0.92 | 0.95 | 0.86 |
Int-2 | 0.93 | ||||||
Int-3 | 0.92 | ||||||
Price | 3.59 | 0.98 | Pri-1 | 0.80 | 0.73 | 0.85 | 0.65 |
Pri-2 | 0.78 | ||||||
Pri-4 | 0.84 | ||||||
Reference | 3.63 | 0.98 | Ref-1 | 0.86 | 0.89 | 0.92 | 0.75 |
Ref-2 | 0.88 | ||||||
Ref-3 | 0.89 | ||||||
Ref-4 | 0.84 | ||||||
Usefulness | 4.05 | 0.91 | Use-1 | 0.82 | 0.82 | 0.88 | 0.65 |
Use-2 | 0.84 | ||||||
Use-4 | 0.78 | ||||||
Use-5 | 0.79 |
Actual | Attitude | Ease of Use | Health | Intention | Price | Reference | Usefulness | |
---|---|---|---|---|---|---|---|---|
Actual | 0.90 | |||||||
Attitude | 0.76 | 0.89 | ||||||
Ease of Use | 0.47 | 0.59 | 0.87 | |||||
Health | 0.54 | 0.61 | 0.47 | 0.80 | ||||
Intention | 0.84 | 0.83 | 0.53 | 0.59 | 0.93 | |||
Price | 0.55 | 0.62 | 0.44 | 0.44 | 0.56 | 0.81 | ||
Reference | 0.65 | 0.63 | 0.46 | 0.43 | 0.63 | 0.54 | 0.87 | |
Usefulness | 0.59 | 0.68 | 0.60 | 0.57 | 0.69 | 0.56 | 0.51 | 0.81 |
Construct | R2 | Adjusted R2 | p-Value | Q2 |
---|---|---|---|---|
Actual behavior | 0.70 | 0.70 | 0.00 | 0.57 |
Attitude | 0.52 | 0.51 | 0.00 | 0.40 |
Intention | 0.74 | 0.74 | 0.00 | 0.62 |
Usefulness | 0.36 | 0.36 | 0.00 | 0.23 |
Hypothesis | Relationship | ß-Value | T-Statistics | p-Value | |
---|---|---|---|---|---|
H1 | EOU → Use | 0.60 | 12.33 | 0.00 | Supported |
H2 | Use → Att | 0.52 | 9.71 | 0.00 | Supported |
H3 | EOU → Att | 0.28 | 4.77 | 0.00 | Supported |
H4 | Use → Int | 0.18 | 3.34 | 0.00 | Supported |
H5 | Att → Int | 0.57 | 10.11 | 0.00 | Supported |
H6 | Int → Act | 0.84 | 38.92 | 0.00 | Supported |
H7 | Price → Int | −0.01 | 0.15 | 0.88 | Rejected |
H8 | Ref → Int | 0.15 | 3.09 | 0.00 | Supported |
H9 | Health → Int | 0.08 | 1.61 | 0.11 | Rejected |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warganegara, D.L.; Babolian Hendijani, R. Factors That Drive Actual Purchasing of Groceries through E-Commerce Platforms during COVID-19 in Indonesia. Sustainability 2022, 14, 3235. https://doi.org/10.3390/su14063235
Warganegara DL, Babolian Hendijani R. Factors That Drive Actual Purchasing of Groceries through E-Commerce Platforms during COVID-19 in Indonesia. Sustainability. 2022; 14(6):3235. https://doi.org/10.3390/su14063235
Chicago/Turabian StyleWarganegara, Dezie Leonarda, and Roozbeh Babolian Hendijani. 2022. "Factors That Drive Actual Purchasing of Groceries through E-Commerce Platforms during COVID-19 in Indonesia" Sustainability 14, no. 6: 3235. https://doi.org/10.3390/su14063235
APA StyleWarganegara, D. L., & Babolian Hendijani, R. (2022). Factors That Drive Actual Purchasing of Groceries through E-Commerce Platforms during COVID-19 in Indonesia. Sustainability, 14(6), 3235. https://doi.org/10.3390/su14063235