The Effect of Off-Farm Employment on Agricultural Production Efficiency: Micro Evidence in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. APE and OE Measures
2.2.1. Data Envelopment Analysis Model
2.2.2. Data Description
2.3. Empirical Strategy
2.3.1. Benchmark Regression Model Setting and Variable Selection
2.3.2. Threshold Effect Regression Model Setting and Variable Selection
3. Results and Discussions
3.1. Baseline Model Regression Results
3.2. Endogenous Discussion and IV Regression Correction
3.3. Threshold Effect Model Results and Discussion
4. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Bureau of Statistics of China. Available online: http://www.stats.gov.cn/tjsj/zxfb./202004/t20200430_1742724.html (accessed on 30 April 2020).
- Fuller, A.M. From part-time farming to pluriactivity: A decade of change in rural Europe. J. Rural. Stud. 1990, 6, 361–373. [Google Scholar] [CrossRef]
- Shafi, M. Measurement of agricultural efficiency in Uttar Pradesh. Econ. Geogr. 1960, 36, 296–305. [Google Scholar] [CrossRef]
- RL, M.; Mishra, A.K. Agricultural production efficiency of Indian states: Evidence from data envelopment analysis. Int. J. Financ. Econ. 2020. [Google Scholar] [CrossRef]
- Wang, Z.C.; Yang, W.G. Self-employment or wage-employment? On the occupational choice of return migration in rural China. China Agric. Econ. Rev. 2013, 5, 231–247. [Google Scholar] [CrossRef]
- Gindling, T.H.; Newhouse, D. Self-employment in the developing world. World Dev. 2014, 56, 313–331. [Google Scholar] [CrossRef] [Green Version]
- Carletto, C.; Savastano, S.; Zezza, A. Fact or artifact: The impact of measurement errors on the farm size–productivity relationship. J. Dev. Econ. 2013, 103, 254–261. [Google Scholar] [CrossRef]
- Rahman, S.; Anik, A.R. Productivity and efficiency impact of climate change and agroecology on Bangladesh agriculture. Land Use Policy 2020, 94, 104507. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, B.; Wang, Y.; Zhou, Y. Will land transfer always increase technical efficiency in China?—A land cost perspective. Land Use Policy 2019, 82, 414–421. [Google Scholar] [CrossRef]
- Zhou, Y.; Shi, X.; Heerink, N.; Ma, X. The effect of land tenure governance on technical efficiency: Evidence from three provinces in eastern China. Appl. Econ. 2019, 51, 2337–2354. [Google Scholar] [CrossRef]
- Zewdie, M.C.; Moretti, M.; Tenessa, D.B.; Ayele, Z.A.; Nyssen, J.; Tsegaye, E.A.; Minale, A.S.; Van Passel, S. Agricultural technical efficiency of smallholder farmers in Ethiopia: A stochastic frontier approach. Land 2021, 10, 246. [Google Scholar] [CrossRef]
- Tian, Q.; Yu, Y.; Xiang, Z.; Li, C. Agricultural technical education, interpersonal trust, and pesticide use by vegetable farmers in China. J. Agric. Educ. Ext. 2021, 27, 211–227. [Google Scholar] [CrossRef]
- Zheng, H.; Ma, W.; Wang, F.; Li, G. Does internet use improve technical efficiency of banana production in China? Evidence from a selectivity-corrected analysis. Food Policy 2021, 102, 102044. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, W.; Zheng, F. Effects of industrial air pollution on the technical efficiency of agricultural production: Evidence from China. Environ. Impact Assess. Rev. 2020, 83, 106407. [Google Scholar] [CrossRef]
- Wang, X.; Huang, J.; Rozelle, S. Off-farm employment and agricultural specialization in China. China Econ. Rev. 2017, 42, 155–165. [Google Scholar] [CrossRef]
- Caulfield, M.E.; Hammond, J.; Fonte, S.J.; Florido, M.A.; Fuentes, W.; Meza, K.; Navarette, I.; Vanek, S.J.; Van Wijk, M. Unpicking the Inter-relationships Between Off-Farm Livelihood Diversification, Household Characteristics, and Farm Management in the Rural Andes. Front. Sustain. Food Syst. 2021, 5. [Google Scholar] [CrossRef]
- Taylor, J.E.; Lopez-Feldman, A. Does migration make rural households more productive? Evidence from Mexico. J. Dev. Stud. 2010, 46, 68–90. [Google Scholar]
- Goodwin, B.K.; Mishra, A.K. Farming efficiency and the determinants of multiple job holding by farm operators. Am. J. Agric. Econ. 2004, 86, 722–729. [Google Scholar] [CrossRef]
- Rajkhowa, P.; Kubik, Z. Revisiting the relationship between farm mechanization and labour requirement in India. Indian Econ. Rev. 2021, 56, 487–513. [Google Scholar] [CrossRef]
- Zhang, L.; Su, W.; Eriksson, T.; Liu, C. How off-farm employment affects technical efficiency of China’s farms: The case of Jiangsu. China World Econ. 2016, 24, 37–51. [Google Scholar] [CrossRef]
- Godo, Y. Development Economics: From the Poverty to the Wealth of Nations; OUP Oxford: New York, NY, USA, 2005. [Google Scholar]
- Wang, C.; Rada, N.; Qin, L.; Pan, S. Impacts of migration on household production choices: Evidence from China. J. Dev. Stud. 2014, 50, 413–425. [Google Scholar] [CrossRef]
- Huang, X.; Lu, Q.; Wang, L.; Cui, M.; Yang, F. Does aging and off-farm employment hinder farmers’ adoption behavior of soil and water conservation technology in the Loess Plateau? Int. J. Clim. Change Strateg. Manag. 2020, 12, 92–107. [Google Scholar] [CrossRef]
- Yang, J.; Wang, H.; Jin, S.; Chen, K.; Riedinger, J.; Peng, C. Migration, local off-farm employment, and agricultural production efficiency: Evidence from China. J. Product. Anal. 2016, 45, 247–259. [Google Scholar] [CrossRef] [Green Version]
- Parker, S.C. The Economics of Self-Employment and Entrepreneurship; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Reinhard, S.; Lovell, C.K.; Thijssen, G.J. Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA. Eur. J. Oper. Res. 2000, 121, 287–303. [Google Scholar] [CrossRef]
- Minviel, J.J.; Latruffe, L. Effect of public subsidies on farm technical efficiency: A meta-analysis of empirical results. Appl. Econ. 2017, 49, 213–226. [Google Scholar] [CrossRef] [Green Version]
- Toma, P.; Miglietta, P.P.; Zurlini, G.; Valente, D.; Petrosillo, I. A non-parametric bootstrap-data envelopment analysis approach for environmental policy planning and management of agricultural efficiency in EU countries. Ecol. Indic. 2017, 83, 132–143. [Google Scholar] [CrossRef]
- Linh, T.T.; Nanseki, T.; Chomei, Y. Productive efficiency of crop farms in Viet Nam: A DEA with a smooth bootstrap application. J. Agric. Sci. 2015, 7, 37. [Google Scholar] [CrossRef]
- Hansen, B.E. Sample splitting and threshold estimation. Econometrica 2000, 68, 575–603. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Cramer, G.L.; Wailes, E.J. Production efficiency of Chinese agriculture: Evidence from rural household survey data. Agric. Econ. 1996, 15, 17–28. [Google Scholar] [CrossRef]
- Xiaoping, S.; Heerink, N.; Futian, Q. Choices between different off-farm employment sub-categories: An empirical analysis for Jiangxi Province, China. China Econ. Rev. 2007, 18, 438–455. [Google Scholar]
- Stock, J.H.; Yogo, M.; Andrews, D.W.; Stock, J.H. Identification and Inference for Econometric Models: Essays in Honor of Thomas Rothenberg; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Seok, J.H.; Moon, H.; Kim, G.; Reed, M.R. Is aging the important factor for sustainable agricultural development in Korea? Evidence from the relationship between aging and farm technical efficiency. Sustainability 2018, 10, 2137. [Google Scholar] [CrossRef] [Green Version]
- Do, H.; Kompas, T. Economic efficiency versus social equity: The productivity challenge for rice production in a ‘greying’rural Vietnam. World Dev. 2021, 148, 105658. [Google Scholar]
- Chen, R.; Ye, C.; Cai, Y.; Xing, X.; Chen, Q. The impact of rural out-migration on land use transition in China: Past, present and trend. Land Use Policy 2014, 40, 101–110. [Google Scholar] [CrossRef]
- Xie, H.; Lu, H. Impact of land fragmentation and non-agricultural labor supply on circulation of agricultural land management rights. Land Use Policy 2017, 68, 355–364. [Google Scholar] [CrossRef]
APE | Average Degree of OE | Average Degree of SOE | Average Degree of WOE |
---|---|---|---|
0–20% | 46.0% | 7.4% | 38.6% |
20–40% | 41.4% | 5.6% | 35.8% |
40–60% | 41.2% | 4.0% | 37.2% |
60–80% | 37.2% | 3.7% | 33.5% |
Above 80% | 36.2% | 2.7% | 33.5% |
Variable Name | Variable Code | Variable Definition | Mean Value | Standard Deviation |
---|---|---|---|---|
Agricultural Production Efficiency | APE | Continuous Variable | 0.473 | 0.209 |
Degree of overall off-farm employment | OE | Continuous Variable | 0.405 | 0.366 |
Degree of self-employed off-farm employment | SOE | Continuous Variable | 0.044 | 0.169 |
Degree of employed off-farm employment | MOE | Continuous Variable | 0.361 | 0.359 |
Age | AGE | Continuous Variable, Year | 53.569 | 12.408 |
Gender | GEN | Female = 0 Male = 1 | 0.607 | 0.489 |
Education level | EDU | Literate/semi-illiterate = 1 Primary school = 2 Junior high school = 3 High school/technical secondary school/technical school/vocational school = 4 Junior college = 5 Undergraduate = 6 Master = 7 Doctor = 8 | 2.443 | 1.034 |
Net household income | FNI | Continuous Variable, 10,000 yuan | 4.453 | 4.639 |
Per capital household assets | PCA | Continuous Variable, 10,000 yuan | 7.851 | 11.558 |
Total value of household agricultural machinery | AM | Continuous Variable, 10,000 yuan | 0.344 | 1.230 |
Family affection expenditure | FE | Continuous Variable, 10,000 yuan | 0.329 | 0.412 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
VARIABLES | APE | APE | APE | APE | APE |
OE | −0.0444 ** | −0.0424 ** | −0.0551 *** | ||
(0.0181) | (0.0184) | (0.0190) | |||
SOE | −0.0664 | ||||
(0.0413) | |||||
WOE | −0.0446 ** | ||||
(0.0199) | |||||
AGE | 0.000353 | 0.000585 | 0.000695 | 0.000670 | |
(0.000591) | (0.000595) | (0.000595) | (0.000594) | ||
GEN | −0.00632 | −0.00333 | 0.000926 | −0.00258 | |
(0.0143) | (0.0142) | (0.0141) | (0.0142) | ||
EDU | −0.0137 * | −0.0149 ** | −0.0134 * | −0.0154 ** | |
(0.00699) | (0.00700) | (0.00704) | (0.00703) | ||
FNI | 0.00353 ** | 0.00186 | 0.00352 ** | ||
(0.00163) | (0.00159) | (0.00167) | |||
PCA | −0.0000608 | 0.000209 | −0.000239 | ||
(0.000585) | (0.000609) | (0.000591) | |||
AM | −0.00649 | −0.00464 | −0.00630 | ||
(0.00568) | (0.00567) | (0.00570) | |||
FE | 0.0488 *** | 0.0533 *** | 0.0478 *** | ||
(0.0169) | (0.0170) | (0.0170) | |||
Constant | 0.473 *** | 0.445 *** | 0.465 *** | ||
(0.0429) | (0.0417) | (0.0429) | |||
LR chi2 | 5.99 ** | 12.33 ** | 29.29 *** | 23.51 *** | 25.96 *** |
Pseudo R2 | −0.0208 | −0.0427 | −0.1015 | −0.0814 | −0.0899 |
DWH test significance | 0.0188 | 0.0095 | 0.0088 | ||
First stage F value | 36.0989 *** | 34.5998 *** | 11.5301 *** |
(6) | (7) | (8) | |
---|---|---|---|
VARIABLES | APE | APE | APE |
OE | −0.288 *** | ||
(0.108) | |||
SOE | −0.639 *** | ||
(0.244) | |||
WOE | −0.526 ** | ||
(0.233) | |||
Controls | Controlled | Controlled | Controlled |
Constant | 0.608 *** | 0.473 *** | 0.719 *** |
(0.0768) | (0.0471) | (0.133) | |
Wald chi2 | 25.62 *** | 24.59 *** | 18.46 ** |
Single Threshold | F Value | Critical Value-1% | Citical Value-5% | Critical Value-10% | |
---|---|---|---|---|---|
OE | 0.542 | 4.149 * | 7.782 | 4.682 | 3.230 |
SOE | 0.640 | 2.416 * | 6.361 | 3.310 | 2.317 |
WOE | 0.945 | 9.368 *** | 7.100 | 5.082 | 3.220 |
(9) | (10) | (11) | ||||
---|---|---|---|---|---|---|
OE-APE | OE-APE | SOE-APE | SOE-APE | WOE-APE | WOE-APE | |
Threshold | <0.542 | >0.542 | <0.64 | >0.64 | <0.945 | >0.945 |
Coefficient | −1.178 * | −1.263 | −3.428 * | −0.225 | −0.569 ** | 33.78 |
(0.714) | (1.132) | (2.054) | (1.409) | (0.238) | (166.9) | |
Controls | Controlled | Controlled | Controlled | Controlled | Controlled | Controlled |
Constant | 0.778 *** | 1.439 | 0.459 *** | 0.934 | 0.745 *** | −33.21 |
(0.212) | (0.894) | (0.0711) | (1.105) | (0.138) | (167.4) | |
Wald chi2 | 3.07 * | 1.56 | 4.83 ** | 0.02 | 6.00 ** | 0.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, M.; Liu, J.; Shi, H.; Guo, T. The Effect of Off-Farm Employment on Agricultural Production Efficiency: Micro Evidence in China. Sustainability 2022, 14, 3385. https://doi.org/10.3390/su14063385
Chang M, Liu J, Shi H, Guo T. The Effect of Off-Farm Employment on Agricultural Production Efficiency: Micro Evidence in China. Sustainability. 2022; 14(6):3385. https://doi.org/10.3390/su14063385
Chicago/Turabian StyleChang, Ming, Jing Liu, Hongxu Shi, and Tianfeng Guo. 2022. "The Effect of Off-Farm Employment on Agricultural Production Efficiency: Micro Evidence in China" Sustainability 14, no. 6: 3385. https://doi.org/10.3390/su14063385
APA StyleChang, M., Liu, J., Shi, H., & Guo, T. (2022). The Effect of Off-Farm Employment on Agricultural Production Efficiency: Micro Evidence in China. Sustainability, 14(6), 3385. https://doi.org/10.3390/su14063385