National Culture and Financial Inclusion: Evidence from Belt and Road Economies
Abstract
:1. Introduction
2. Literature Review and Hypothesis Development
2.1. Theoretical Literature Review
2.1.1. Emancipation Theory of Trust
2.1.2. Institutional Theory
2.2. Empirical Literature Review about National Culture and FI
3. Materials and Methods
3.1. Sample
3.2. Variables
3.2.1. National Culture
3.2.2. Financial Inclusion
3.2.3. Control Variables
3.3. Model Specification
Two-Stage Least Square (2SLS)
4. Empirical Results and Discussion
4.1. Descriptive Statistics
4.2. The Relation between FI and Culture-Baseline Results
4.3. The Relation between FI and Culture-2SLS Results
4.4. Robustness Testing
4.4.1. Additional Controls
4.4.2. Alternative Estimation Technique-GMM
4.4.3. Alternative Measure of Culture-Social Trust
4.5. Analysis of Heterogeneity across B&R Countries
5. Conclusions and Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variables | Description | Data Sources |
---|---|---|
Financial Inclusion (FI) | Financial development index proposed by Svirydzenka (2016a) | IMF, WB |
Individualism (IND) | Individualism is described as a desire for an interconnected social structure in which individuals are expected to look after themselves and their immediate families. The mean score for each country from the survey questions is used to create an index with a value between 0 and 100. Higher scores indicate a greater aptitude in that dimension. The method used to calculate Hofstede’s culture scores is consistent across all of his cultural dimensions. | Hofstede Insights |
Uncertainty avoidance (UAV) | The uncertainty-avoidance dimension measures how uneasy individuals of a society are with ambiguity and uncertainty. | Hofstede Insights |
Power distance (PDI) | This dimension denotes the extent to which less powerful members of a society anticipate and accept unequal distribution of power. | Hofstede Insights |
Masculinity (MAS) | The masculine aspect of this dimension reflects society’s inclination for accomplishment, velour, aggressiveness, and material incentives for succeeding. | Hofstede Insights |
Institutional quality (IQ) | IQ is quantified using the International Country Risk Guide’s (ICRG) index, which is calculated using the “Corruption”, “Law and Order”, and “Bureaucracy Quality” variables from the Quality of Government database. | Quality of Government |
Population ages (15–64) | Percentage of the population between the ages of 15–64 years. | World Bank (WB) |
Female (%of total population) | Percentage of Female population of a country | World Bank (WB) |
Globalization (GL) | The globalization index ranges between 0 and 100. A higher score means higher globalization and vice versa. | KOF Globalization Index (2019) [75] |
Gross Capital Information (GCF) | Gross capital formation (previously gross domestic investment) is the sum of expenditures on new fixed assets and changes in the quantity of stocks in the economy. | World Development Indicators (WDI) |
Economic growth (LGDP) | GDP per capita (constant 2010 US$) | World Development Indicators (WDI) |
House Consumption (HUC) | Percentage of Income consumed | World Development Indicators (WDI) |
Financial Literacy (FL) | The percentage of individuals who have correctly answered 03 out of 4 financial literacy-related questions | S&P Survey [76] Financial literacy |
Religion Muslim | Percentage of Population following religion Islam | Quality of Government |
Religion Catholic | Percentage of Population following religion Catholic | Quality of Government |
Foreign remittances (REMIT) | Personal remittances received (% of GDP) | World Development Indicators (WDI |
Component | Eigenvalue | Difference | Proportion | Cumulative |
---|---|---|---|---|
Comp1 | 2.332 | 1.070 | 0.466 | 0.466 |
Comp2 | 1.262 | 0.602 | 0.253 | 0.719 |
Comp3 | 0.661 | 0.245 | 0.132 | 0.851 |
Comp4 | 0.415 | 0.086 | 0.083 | 0.934 |
Comp5 | 0.329 | 0.066 | 1.000 |
FI | |
---|---|
IND_TK | 0.048 *** (0.015) |
UAV_TK | −0.082 *** (0.013) |
PDI_TK | −0.032 ** (0.012) |
MAS_TK | 0.204 *** (0.034) |
Controls | Yes |
Region Effect | Yes |
Year Effect | Yes |
R-squared | 0.634 |
F-stat | 17.424 |
Adj. R2 | 0.597 |
FI | |
---|---|
D_IND | 0.369 *** (0.094) |
D_UAV | −0.376 *** (0.085) |
D_PDI | −0.465 *** (0.095) |
D_MAS | 0.432 *** (0.094) |
Controls | Yes |
Region Effect | Yes |
Year Effect | Yes |
R-squared | 0.424 |
F-stat | 42.048 |
Adj. R2 | 0.414 |
First Stage | Endogeneity | ||||||
---|---|---|---|---|---|---|---|
Adjusted | Partial | Robust | |||||
Variable | R-sq. | R-sq. | R-sq. | F-Statistics | Prob > F | Robust Score chi2 | Robust Regression |
IND | 0.3836 | 0.3675 | 0.0077 | 9.63657 | 0.0034 | 12.4186 (p = 0.0004) | 12.2463 (p = 0.0005) |
UAV | 0.5199 | 0.5074 | 0.1074 | 128.508 | 0.0000 | 15.251 (p = 0.0001) | 15.3362 (p = 0.0001) |
MAS | 0.3727 | 0.3563 | 0.0527 | 59.3636 | 0.0000 | 11.15 (p = 0.0008) | 11.296 (p = 0.0008) |
PDI | 0.2481 | 0.2264 | 0.0222 | 12.9309 | 0.0003 | 7.44575 (p = 0.0064) | 7.21023 (p = 0.0074) |
References
- Demirguc-Kunt, A.; Klapper, L.; Singer, D. Financial Inclusion and Inclusive Growth: A Review of Recent Empirical Evidence. Available online: https://openknowledge.worldbank.org/handle/10986/26479 (accessed on 2 December 2021).
- Célerier, C.; Matray, A. Bank-Branch Supply, Financial Inclusion, and Wealth Accumulation. Rev. Financ. Stud. 2019, 32, 4767–4809. [Google Scholar] [CrossRef]
- Majeed, A.; Jiang, P.; Ahmad, M.; Khan, M.A.; Olah, J. The Impact of Foreign Direct Investment on Financial Development: New Evidence from Panel Cointegration and Causality Analysis. J. Compet. 2021, 13, 95–112. [Google Scholar] [CrossRef]
- Sarma, M. Index of Financial Inclusion. Working Paper. 2008. Available online: https://www.econstor.eu/handle/10419/176233 (accessed on 2 December 2021).
- Guiso, L.; Sapienza, P.; Zingales, L. Does Culture Affect Economic Outcomes? J. Econ. Perspect. 2006, 20, 23–48. [Google Scholar] [CrossRef] [Green Version]
- Milgrom, P.R.; North, D.C.; Weingast, B.R. The role of institutions in the revival of trade: The law merchant, private judges, and the champagne fairs. Econ. Politics 1990, 2, 1–23. [Google Scholar] [CrossRef]
- Heine, S.J. Cultural Psychology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Markus, H.R.; Kitayama, S. Culture and the self: Implications for cognition, emotion, and motivation. Psychol. Rev. 1991, 98, 224. [Google Scholar] [CrossRef]
- Yamagishi, T.; Cook, K.S.; Watabe, M. Uncertainty, Trust, and Commitment Formation in the United States and Japan. Am. J. Sociol. 1998, 104, 165–194. [Google Scholar] [CrossRef]
- Ashraf, B.N.; Zheng, C.; Arshad, S. Effects of national culture on bank risk-taking behavior. Res. Int. Bus. Financ. 2016, 37, 309–326. [Google Scholar] [CrossRef]
- Hofstede, G. Culture’s Recent Consequences: Using Dimension Scores in Theory and Research. Int. J. Cross Cult. Manag. 2001, 1, 11–17. [Google Scholar] [CrossRef]
- Berggren, N.; Bjørnskov, C. Is the importance of religion in daily life related to social trust? Cross-country and cross-state comparisons. J. Econ. Behav. Organ. 2011, 80, 459–480. [Google Scholar] [CrossRef]
- Uddin, A.; Chowdhury, M.A.F.; Islam, N. Determinants Of Financial Inclusion In Bangladesh: Dynamic Gmm & Quantile Regression Approach. J. Dev. Areas 2017, 51, 221–237. [Google Scholar]
- Tuesta, D.; Sorensen, G.; Haring, A.; Camara, N. Financial Inclusion and Its Determinants: The Case of Argentina. Madrid BBVA Research. 2015. Available online: https://www.findevgateway.org/sites/default/files/publications/files/financial_inclusion_and_its_determinants_the_case_of_argentina.pdf (accessed on 12 December 2021).
- Chui, A.; Lloyd, A.E.; Kwok, C.C.Y. The Determination of Capital Structure: Is National Culture a Missing Piece to the Puzzle? J. Int. Bus. Stud. 2002, 33, 99–127. [Google Scholar] [CrossRef]
- Zheng, X.; El Ghoul, S.; Guedhami, O.; Kwok, C.C. National culture and corporate debt maturity. J. Bank. Financ. 2012, 36, 468–488. [Google Scholar] [CrossRef]
- Han, S.; Kang, T.; Salter, S.; Yoo, Y.K. A cross-country study on the effects of national culture on earnings management. J. Int. Bus. Stud. 2008, 41, 123–141. [Google Scholar] [CrossRef]
- Shao, L.; Kwok, C.C.; Guedhami, O. National culture and dividend policy. J. Int. Bus. Stud. 2009, 41, 1391–1414. [Google Scholar] [CrossRef]
- Ahern, K.R.; Daminelli, D.; Fracassi, C. Lost in translation? The effect of cultural values on mergers around the world. J. Financ. Econ. 2015, 117, 165–189. [Google Scholar] [CrossRef]
- Shao, L.; Kwok, C.C.Y.; Zhang, R. National culture and corporate investment. J. Int. Bus. Stud. 2010, 44, 745–763. [Google Scholar] [CrossRef]
- Li, K.; Griffin, D.; Yue, H.; Zhao, L. How does culture influence corporate risk-taking? J. Corp. Financ. 2013, 23, 1–22. [Google Scholar] [CrossRef]
- Tosi, H.L.; Greckhamer, T. Culture and CEO Compensation. Organ. Sci. 2004, 15, 657–670. [Google Scholar] [CrossRef]
- Ang, J.B. Culture, legal origins, and financial development. Econ. Inq. 2019, 57, 1016–1037. [Google Scholar] [CrossRef]
- Khan, M.A.; Gu, L.; Meyer, N. The effects of national culture on financial sector development: Evidence from emerging and developing economies. Borsa Istanb. Rev. 2021, 22, 103–112. [Google Scholar] [CrossRef]
- Zuo, S.; Zhu, M.; Xu, Z.; Oláh, J.; Lakner, Z. The Dynamic Impact of Natural Resource Rents, Financial Development, and Technological Innovations on Environmental Quality: Empirical Evidence from BRI Economies. Int. J. Environ. Res. Public Health 2021, 19, 130. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, J.; Luo, L.; Khan, M.A. The Spillover Effects of Institutional Quality and Economic Openness on Economic Growth for the Belt and Road Initiative (BRI) countries. Spat. Stat. 2021, 47, 100566. [Google Scholar] [CrossRef]
- Yamagishi, T.; Yamagishi, M. Trust and commitment in the United States and Japan. Motiv. Emot. 1994, 18, 129–166. [Google Scholar] [CrossRef]
- Fukuyama, F. Trust: The Social Virtues and the Creation of Prosperity; Simon and Schuster: New York, NY, USA, 1996. [Google Scholar]
- La Porta, R.; Lopez-de-Silanes, F.; Shleifer, A.; Vishny, R.W. Trust in Large Organizations; National Bureau of Economic Research: Cambridge, MA, USA, 1996. [Google Scholar]
- Xu, X. Trust and financial inclusion: A cross-country study. Finance Res. Lett. 2020, 35, 101310. [Google Scholar] [CrossRef]
- North, D.C. Institutions, Institutional Change and Economic Performance; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Roland, G. Understanding institutional change: Fast-moving and slow-moving institutions. Stud. Comp. Int. Dev. 2004, 38, 109–131. [Google Scholar] [CrossRef] [Green Version]
- Gorodnichenko, Y.; Roland, G. Culture, Institutions, and the Wealth of Nations. Rev. Econ. Stat. 2015, 99, 402–416. [Google Scholar] [CrossRef]
- Licht, A.N.; Goldschmidt, C.; Schwartz, S.H. Culture rules: The foundations of the rule of law and other norms of governance. J. Comp. Econ. 2007, 35, 659–688. [Google Scholar] [CrossRef] [Green Version]
- Hofstede, G.; Bond, M.H. The Confucius connection: From cultural roots to economic growth. Organ. Dyn. 1988, 16, 5–21. [Google Scholar] [CrossRef]
- Kelley, L.; Whatley, A.; Worthley, R. Assessing the Effects of Culture on Managerial Attitudes: A Three-Culture Test. J. Int. Bus. Stud. 1987, 18, 17–31. [Google Scholar] [CrossRef]
- Newman, K.L.; Nollen, S.D. Culture and Congruence: The Fit Between Management Practices and National Culture. J. Int. Bus. Stud. 1996, 27, 753–779. [Google Scholar] [CrossRef]
- Morosini, P.; Shane, S.; Singh, H. National Cultural Distance and Cross-Border Acquisition Performance. J. Int. Bus. Stud. 1998, 29, 137–158. [Google Scholar] [CrossRef]
- Tabellini, G. Institutions and culture. J. Eur. Econ. Assoc. 2008, 6, 255–294. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liang, X.; Sun, H. Individualism–collectivism, private benefits of control, and earnings management: A cross-culture comparison. J. Bus. Ethics 2013, 114, 655–664. [Google Scholar] [CrossRef]
- Nash, R.; Patel, A. Instrumental variables analysis and the role of national culture in corporate finance. Financ. Manag. 2019, 48, 385–416. [Google Scholar] [CrossRef]
- Cheon, Y.-H.; Lee, K.-H. Maxing out globally: Individualism, investor attention, and the cross section of expected stock returns. Manag. Sci. 2018, 64, 5807–5831. [Google Scholar] [CrossRef]
- An, Z.; Chen, Z.; Li, D.; Xing, L. Individualism and stock price crash risk. J. Int. Bus. Stud. 2018, 49, 1208–1236. [Google Scholar] [CrossRef]
- Chen, Y.; Podolski, E.J.; Veeraraghavan, M. National culture and corporate innovation. Pac. Basin Financ. J. 2017, 43, 173–187. [Google Scholar] [CrossRef]
- Kyriacou, A.P. Individualism–collectivism, governance and economic development. Eur. J. Political Econ. 2016, 42, 91–104. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.; Niu, G.; Zhou, Y. Individualism and financial inclusion. J. Econ. Behav. Organ. 2021, 183, 268–288. [Google Scholar] [CrossRef]
- Gellner, E. Trust, cohesion, and the social order. Trust. Mak. Break. Coop. Relat. 2000, 9, 142–157. [Google Scholar]
- Hofstede, G.; De Hilal, A.V.G.; Malvezzi, S.; Tanure, B.; Vinken, H. Comparing Regional Cultures within a Country: Lessons From Brazil. J. Cross Cult. Psychol. 2010, 41, 336–352. [Google Scholar] [CrossRef]
- Levine, R.; Lin, C.; Xie, W. The African slave trade and modern household finance. Econ. J. 2020, 130, 1817–1841. [Google Scholar] [CrossRef]
- Triandis, H.C.; Bontempo, R.; Villareal, M.J.; Asai, M.; Lucca, N. Individualism and collectivism: Cross-cultural perspectives on self-ingroup relationships. J. Pers. Soc. Psychol. 1988, 54, 323–338. [Google Scholar] [CrossRef]
- Aggarwal, R.; Goodell, J.W. Cross-national differences in access to finance: Influence of culture and institutional environments. Res. Int. Bus. Financ. 2014, 31, 193–211. [Google Scholar] [CrossRef]
- Mihet, R. Effects of culture on firm risk-taking: A cross-country and cross-industry analysis. J. Cult. Econ. 2013, 37, 109–151. [Google Scholar] [CrossRef] [Green Version]
- Powell, M.; Ansic, D. Gender differences in risk behaviour in financial decision-making: An experimental analysis. J. Econ. Psychol. 1997, 18, 605–628. [Google Scholar] [CrossRef]
- Haq, M.; Hu, D.; Faff, R.; Pathan, S. New evidence on national culture and bank capital structure. Pac. Basin Financ. J. 2018, 50, 41–64. [Google Scholar] [CrossRef] [Green Version]
- Ye, D.; Pan, S.; Lian, Y.; Ng, Y.-K. Culture and savings: Why do Asians save more? Singap. Econ. Rev. 2021, 66, 621–651. [Google Scholar] [CrossRef]
- Tang, L.; Koveos, P.E. A framework to update Hofstede’s cultural value indices: Economic dynamics and institutional stability. J. Int. Bus. Stud. 2008, 39, 1045–1063. [Google Scholar] [CrossRef]
- Sarma, M. Index of Financial Inclusion–A Measure of Financial Sector Inclusiveness; Centre for International Trade and Development, School of International Studies Working Paper; Jawaharlal Nehru University: Delhi, India, 2012. [Google Scholar]
- Popova, Y. Economic Basis of Digital Banking Services Produced by FinTech Company in Smart City. J. Tour. Serv. 2021, 12, 86–104. [Google Scholar] [CrossRef]
- Sarma, M. Measuring financial inclusion. Econ. Bull. 2015, 35, 604–611. [Google Scholar]
- Tram, T.X.H.; Lai, T.D.; Nguyen, T.T.H. Constructing a composite financial inclusion index for developing economies. Q. Rev. Econ. Financ. 2021, in press. [Google Scholar] [CrossRef]
- Nkoa, B.E.O.; Song, J.S. Does institutional quality affect financial inclusion in Africa? A panel data analysis. Econ. Syst. 2020, 44, 100836. [Google Scholar] [CrossRef]
- Khan, M.A.; Abdulahi, M.E.; Liaqat, I.; Shah, S.S.H. Institutional quality and financial development: The United States perspective. J. Multinatl. Financ. Manag. 2019, 49, 67–80. [Google Scholar] [CrossRef]
- Adeabah, D.; Andoh, C.; Asongu, S.; Gemegah, A. Reputational Risks in Banks: A Review of Research Themes, Frameworks, Methods, and Future Research Directions. European Xtramile Centre of African Studies WP/21/028. 2021. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3844453 (accessed on 2 December 2021).
- El Ghoul, S.; Zheng, X. Trade credit provision and national culture. J. Corp. Financ. 2016, 41, 475–501. [Google Scholar] [CrossRef]
- Liaqat, I.; Khan, M.A.; Popp, J.; Oláh, J. Industry, Firm, and Country Level Dynamics of Capital Structure: A Case of Pakistani Firms. J. Risk Financ. Manag. 2021, 14, 428. [Google Scholar] [CrossRef]
- Halaskova, M.; Halaskova, R.; Gavurova, B.; Kubak, M. Fiscal Decentralisation of Services: The Case of the Local Public Sector in European Countries. J. Tour. Serv. 2021, 12, 26–43. [Google Scholar] [CrossRef]
- Sucháček, J.; Koutský, J.; del Río, L.C.; Seďa, P. Econometric Analysis of Integration of Selected New EU Member CEE Stock Markets with Global Stock Market and Eurozone: Impact of Global Financial Crisis. Amfiteatru Econ. 2021, 23, 824–842. [Google Scholar]
- Davis, L.S.; Abdurazokzoda, F. Language, culture and institutions: Evidence from a new linguistic dataset. J. Comp. Econ. 2016, 44, 541–561. [Google Scholar] [CrossRef]
- Kashima, E.S.; Kashima, Y. Culture and language: The case of cultural dimensionsand personal pronoun use. J. Cross Cult. Psychol. 1998, 29, 461–486. [Google Scholar] [CrossRef]
- Lachebeb, Z.; Ismail, N.W.; Ahmad, M.N.; Slesman, L. The Nonlinear Impact of Political Institutional Quality on Financial Inclusion. Inst. Econ. 2021, 13, 1–25. [Google Scholar] [CrossRef]
- Law, S.H.; Kutan, A.M.; Naseem, N.A.M. The role of institutions in finance curse: Evidence from international data. J. Comp. Econ. 2018, 46, 174–191. [Google Scholar] [CrossRef]
- Mukherjee, D.; Dutta, N. Do Political Institutions and Culture Jointly Matter for Financial Development? A Cross-Country Panel Investigation. Glob. Econ. J. 2013, 13, 203–232. [Google Scholar] [CrossRef]
- Geng, Z.; He, G. Digital financial inclusion and sustainable employment: Evidence from countries along the belt and road. Borsa Istanb. Rev. 2021, 21, 307–316. [Google Scholar] [CrossRef]
- Carroll, C.D.; Samwick, A.A. How Important Is Precautionary Saving? Rev. Econ. Stat. 1998, 80, 410–419. [Google Scholar] [CrossRef]
- Gygli, S.; Haelg, F.; Potrafke, N.; Sturm, J.E. The KOF globalisation index–revisited. Rev. Int. Organ. 2019, 14, 543–574. [Google Scholar] [CrossRef] [Green Version]
- Klapper, L.; Lusardi, A.; Van Oudheusden, P. Financial Literacy around the World; World Bank: Washington, DC, USA, 2015. [Google Scholar]
Albania, Algeria, Angola, Armenia, Austria, Azerbaijan, Bangladesh, Bhutan, Bolivia, Bosnia, Bulgaria, Burundi, Cape Verde, Chile, China, Colombia, Costa Rica, Croatia, Czech Republic, Dominican Republic, Ecuador, Egypt, El Salvador, Estonia, Fiji, Georgia, Ghana, Greece, Guinea, Hungry, Indonesia, Iran, Italy, Jamaica, Kazakhstan, Kenya, Korea Republic, Kuwait, Lebanon, Latvia, Libya, Lithuania, Malaysia, Mali, Moldova, Montenegro, Morocco, Mozambique, Myanmar, Namibia, Nepal, Newland, Nigeria, North Macedonia, Pakistan, Panama, Philippines, Peru, Poland, Portugal, Qatar, Romania, Russia, Saudi Arabia, Serbia, Sierra Leone, Singapore, Slovak Republic, Slovenia, South Africa, Sri Lanka, Suriname, Thailand, Tanzania, Trinidad and Tobago, Tunisia, Turkey, Ukraine, Uruguay, Venezuela, Zambia. |
Variable | Obs. | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
FI | 1377 | 0.2343 | 1.487 | −7.298 | 3.603 |
IND | 1376 | 29.603 | 15.927 | 6 | 80 |
UAV | 1376 | 68.584 | 21.16 | 8 | 100 |
PDI | 1376 | 72.225 | 17.515 | 11 | 100 |
MAS | 1376 | 45.992 | 16.404 | 9 | 100 |
IQ | 1377 | 50.777 | 16.030 | 19.42 | 100 |
Population ages (15–64) | 1377 | 65.061 | 6.298 | 49.42 | 86.38 |
Female (% of population) | 1377 | 50.319 | 3.197 | 23.29 | 54.56 |
GL | 1377 | 63.162 | 12.881 | 25.62 | 88.71 |
GCF | 1281 | 25.489 | 8.098 | 7.51 | 69.48 |
LGDP | 1357 | 8.554 | 1.193 | 4.855 | 11.351 |
HUC | 1357 | 62.494 | 15.916 | 12.78 | 113.71 |
FL | 1377 | 34.253 | 11.009 | 14 | 63 |
REM | 1372 | 4.082 | 5.6 | 0 | 33.88 |
RM | 1377 | 12.826 | 14.266 | 0.3 | 33.2 |
RC | 1377 | 65.295 | 14.955 | 49.3 | 81 |
(IND) | (UAV) | (PDI) | (MAS) | |
---|---|---|---|---|
FI | FI | FI | FI | |
IND | 0.007 *** (0.002) | |||
UAV | −0.005 *** (0.001) | |||
PDI | −0.01 *** (0.002) | |||
MAS | 0.004 ** (0.002) | |||
IQ | 0.019 *** (0.002) | 0.018 *** (0.002) | 0.019 *** (0.002) | 0.019 ***(.002) |
Population ages (15–64) | 0.051 *** (0.006) | 0.054 *** (0.006) | 0.049 *** (0.006) | 0.043 *** (0.006) |
Female (% of population) | 1.36 × 10−9 *** (3.68 × 10−10) | 9.4 × 1010 ** (3.76 × 10−10) | 1.98 × 10−9 *** (0.000) | 1.26 × 10−9 *** (0.000) |
GL | 0.066 *** (0.003) | 0.07 *** (0.003) | 0.069 *** (0.003) | 0.071 *** (0.003) |
GCF | 0.021 *** (0.003) | 0.021 *** (0.003) | 0.02 *** (0.003) | 0.021 *** (0.003) |
GDP | −8.50 × 10−6 *** (2.87 × 10−6) | 8.80 × 106 *** (2.87 × 10−6) | 1.98 × 10−9 *** | 0.00 ** (3.82 × 10−10) |
HUC | −0.007 *** (0.002) | −0.007 *** (0.002) | −0.008 *** (0.002) | −0.007 *** (0.002) |
FL | −0.029 *** (0.003) | −0.028 *** (0.003) | −0.024 *** (0.003) | −0.026 *** (0.003) |
REM | 0.004 (0.005) | 0.001 (0.006) | 0.011 ** (0.005) | 0.005 (0.005) |
RM | −0.008 *** (0.001) | −0.007 *** (0.001) | −0.006 *** (0.001) | −0.009 *** (0.001) |
RC | −0.005 *** (0.001) | −0.004 *** (0.001) | −0.004 *** (0.001) | −0.006 *** (0.001) |
cons | −7.233 *** (0.365) | −7.125 *** (0.362) | −6.795 *** (0.361) | −7.174 *** (0.366) |
Observations | 1257 | 1257 | 1257 | 1257 |
R-squared | 0.647 | 0.647 | 0.653 | 0.645 |
F-stat | 190.027 | 190.209 | 195.49 | 188.125 |
Adj. R2 | 0.644 | 0.644 | 0.65 | 0.641 |
(IND) | (UAV) | (MAS) | (PDI) | |
---|---|---|---|---|
FI | FI | FI | FI | |
IND | 0.089 ** (0.035) | |||
UAV | −0.019 *** (0.005) | |||
MAS | 0.029 *** (0.008) | |||
PDI | −0.033 *** (0.01) | |||
IQ | 0.02 *** (0.004) | 0.021 *** (0.003) | 0.033 *** (0.004) | 0.026 *** (0.003) |
Age (15–64) | 0.084 *** (0.012) | 0.083 *** (0.008) | 0.039 *** (0.011) | 0.063 *** (0.008) |
Female (% of population) | 0.155 *** (0.032) | −0.368 *** (0.105) | 0.504 (0.791) | 0.205 *** (0.062) |
GL | 0.036 *** (0.012) | 0.062 *** (0.004) | 0.075 *** (0.005) | 0.058 *** (0.005) |
GCF | 0.008 (0.007) | 0.013 *** (0.004) | 0.009 * (0.005) | 0.011 *** (0.004) |
GDP | 0.00277 *** (0.0) | 0.0116 *** (0.00) | 1.83 × 106 (0.001) | 1.17 × 106 (0.001) |
HUC | 0.001 (0.004) | −0.008 *** (0.002) | −0.007 *** (0.002) | −0.01 *** (0.002) |
FL | −0.049 *** (0.011) | −0.035 *** (0.004) | −0.026 *** (0.003) | −0.012 ** (0.006) |
REM | −0.007 (0.01) | −0.011 (0.007) | 0.013 ** (0.006) | 0.029 *** (0.009) |
RM | 0.004 (0.006) | −0.006 *** (0.001) | −0.014 *** (0.001) | −0.001 (0.003) |
RC | 0.012 * (0.007) | −0.003 * (0.001) | −0.011 *** (0.002) | 0.001 (0.002) |
Region effect | Yes | Yes | Yes | Yes |
Year effect | Yes | Yes | Yes | Yes |
cons | 11.283 *** (1.05) | −7.878 *** (0.56) | −9.768 *** (0.731) | −8.098 *** (0.694) |
Observations | 1257 | 1257 | 1257 | 1139 |
R-squared | 0.518 | 0.642 | 0.618 | 0.615 |
Adj. R2 | 0.167 | 0.633 | 0.608 | 0.604 |
(IND) | (UAV) | (MAS) | (PDI) | |
---|---|---|---|---|
FI | FI | FI | FI | |
IND | 0.105 *** (0.019) | |||
UAV | −0.119 *** (0.027) | |||
MAS | 0.157 *** (0.031) | |||
PDI | −0.038 *** (0.012) | |||
IQ | 0.032 *** (0.007) | 0.057 *** (0.013) | −0.06 (0.149) | 0.027 *** (0.005) |
GL | 0.017 (0.011) | 0.054 *** (0.016) | 0.125 (0.173) | 0.001 (0.01) |
Population Ages (15–64) | 0.052 *** (0.018) | 0.114 *** (0.029) | −0.161 (0.337) | 0.051 *** (0.013) |
Female (% of population) | 0.176 *** (0.052) | −0.368 *** (0.105) | 0.504 (0.791) | 0.205 *** (0.062) |
GCF | 0.063 (0.208) | 2.251 *** (0.596) | 1.789 (3.202) (1.631) | −0.04 (0.145) |
HUC | 0.77 *** (0.267) | 2.247 *** (0.547) | −0.919 (1.631) | −0.422 ** (0.205) |
GDP | −0.532 *** (0.191) | −0.434 ** (0.221) | 1.462 (2.052) | 0.579 *** (0.135) |
FL | −2.698 *** (0.37) | 2.241 *** (0.413) | 1.611 (4.342) | 1.138 *** (0.145) |
REM | −0.003 (0.043) | −0.288 *** (0.074) | 0.084 (0.244) | −0.001 (0.032) |
RM | −0.082 * (0.047) | −0.194 *** (0.057) | −0.881 (1.109) | −0.144 *** (0.036) |
RC | 0.064 (0.063) | −0.22 *** (0.069) | −0.547 (0.625) | −0.047 (0.052) |
Communist/S | 0.331 ** (0.154) | 1.986 *** (0.451) | 0.501 (0.675) | −0.215 (0.15) |
Eng. Comm. | 0.418 ** (0.203) | 1.936 *** (0.433) | −1.277 (2.79) | 0.553 *** (0.147) |
French/Come. | −1.891 *** (0.396) | −1.73 *** (0.523) | 7.997 (17.31) | −1.56 *** (0.347) |
Region effect | Yes | Yes | Yes | Yes |
Year effect | Yes | Yes | Yes | Yes |
cons | −10.38 ** (1.057) | −5.878 *** (0.56) | −9.768 *** (0.731) | −8.09 *** (0.694) |
Observations | 1257 | 1257 | 1257 | 1139 |
R-squared | 0.538 | 0.652 | 0.581 | 0.615 |
Adj. R2 | 0.517 | 0.633 | 0.558 | 0.604 |
(IND) | (UAV) | (MAS) | (PDI) | |
---|---|---|---|---|
FI | FI | FI | FI | |
IND | 0.089 ** (0.035) | |||
UAV | −0.019 *** (0.005) | |||
MAS | 0.029 *** (0.008) | |||
PDI | −0.033 *** (0.01) | |||
IQ | 0.02 *** (0.004) | 0.021 *** (0.003) | 0.033 *** (0.004) | 0.026 *** (0.003) |
Female (% of total population) | 0.0 *** (0.014) | 0.0 (0.004) | 0.001 *** (0.005) | 0.02 *** (0.001) |
GL | 0.036 *** | 0.062 *** | 0.075 *** | 0.058 *** |
GCF | 0.008 (0.007) | 0.013 *** (0.004) | 0.009 * (0.005) | 0.011 *** (0.004) |
GDP | 0.00277 *** (0.0) | 0.0116 *** (0.00) | 1.83 × 106 (0.001) | 1.17 × 106 (0.001) |
HUC | 0.001 (0.004) | −0.008 *** (0.002) | −0.007 *** (0.002) | −0.01 *** (0.002) |
FL | −0.049 *** (0.011) | −0.035 *** (0.004) | −0.026 *** (0.003) | −0.012 ** (0.006) |
REM | −0.007 (0.01) | −0.011 (0.007) | 0.013 ** (0.006) | 0.029 *** (0.009) |
RM | 0.004 (0.006) | −0.006 *** (0.001) | −0.014 *** (0.002) | −0.001 (0.003) |
RC | 0.012 * (0.007) | −0.003 * (0.001) | −0.011 *** (0.002) | 0.001 (0.002) |
Region effect | Yes | Yes | Yes | Yes |
Year effect | Yes | Yes | Yes | Yes |
cons | −11.283 *** (1.057) | −7.878 *** (0.56) | −9.768 *** (0.731) | −8.098 *** (0.694) |
Observations | 1257 | 1257 | 1257 | 1139 |
R-squared | 0.188 | 0.642 | 0.618 | 0.615 |
Adj. R2 | 0.167 | 0.633 | 0.608 | 0.604 |
FI | |
---|---|
TRUST | 0.283 *** (0.094) |
IQ | 0.022 ** (0.011) |
Population Ages (15–64) | 0.163 *** (0.043) |
Female (% of total population) | 0.08 *** (0.031) |
GL | 0.049 *** (0.016) |
GCF | 0.008 (0.013) |
GDP | 0.013 *** (0.01) |
HUC | 0.004 (0.008) |
FL | −0.061 *** (0.018) |
REM | −0.039 (0.032) |
RM | 0.013 (0.009) |
RC | 0.027 * (0.014) |
cons | −26.74 *** (6.553) |
Observations | 1201 |
R-squared | 0.24 |
Adj. R2 | 0.22 |
(IND) | (UAV) | (MAS) | (PDI) | |
---|---|---|---|---|
FI | FI | FI | FI | |
IND | 0.002 (0.009) | |||
UAV | −0.059 (0.049) | |||
(0.049) | ||||
MAS | 0.007 ** (0.003) | |||
PDI | 0.061 *** (0.019) | |||
IQ | 0.03 *** (0.005) | 0.042 *** (0.013) | 0.034 *** (0.005) | 0.046 *** (0.011) |
Population ages (15–64) | 0.093 *** (0.014) | 0.072 ** (0.029) | 0.077 *** (0.015) | 0.031 (0.032) |
Female (% of total population) | 0.001 *** (0.014) | 0.0 (0.004) | 0.001 *** (0.005) | 0.02 *** (0.001) |
GL | −0.046 *** (0.017) | −0.141 * (0.081) | −0.052 *** (0.013) | −0.151 *** (0.042) |
GCF | −0.031 ** *(0.01) | −0.029 * (0.015) | −0.031 *** (0.008) | −0.041 ** (0.017) |
GDP | 0.00361 *** (0.0) | 0.0125 *** (0.00) | 1.83 × 106 (0.001) | 1.17 × 106 (0.001) |
HUC | 0.005 (0.004) | −0.016 (0.019) | 0.008 *** (0.003) | −0.001 (0.006) |
FL | −0.022 *** (0.007) | −0.099 (0.066) | −0.021 *** (0.005) | −0.078 *** (0.021) |
REM | −0.181 *** (0.045) | −0.451 * (0.238) | −0.16 *** (0.032) | −0.081 (0.07) |
RM | −0.013 *** (0.003) | −0.018 *** (0.006) | −0.015 *** (0.002) | −0.054 *** (0.013) |
RC | 0.004 (0.004) | −0.002 (0.006) | 0.002 (0.003) | −0.008 (0.006) |
Region effect | Yes | Yes | Yes | Yes |
Year effect | Yes | Yes | Yes | Yes |
_cons | −2.49 * (1.312) | 14.324 (13.93) | −1.63 (1.006) | 9.343 ** (4.086) |
Observations | 335 | 335 | 335 | 335 |
R-squared | 0.591 | 0.451 | 0.618 | 0.543 |
Adj R2 | 0.549 | 0.423 | 0.579 | 0.512 |
(IND) | (UAV) | (MAS) | (PDI) | |
---|---|---|---|---|
FI | FI | FI | FI | |
IND | −0.044 *** (0.009) | |||
UAV | −0.068 *** (0.014) | |||
MAS | 0.051 *** (0.007) | |||
PDI | −0.051 * (0.03) | |||
IQ | 0.032 *** (0.003) | 0.007 (0.008) | 0.049 *** (0.004) | 0.053 *** (0.01) |
Population ages (15–64) | 0.054 *** (0.014) | 0.192 *** (0.034) | 0.044 *** (0.015) | 0.015 (0.034) |
Female (% of total population) | 0.001 *** (0.013) | 0.02 (0.004) | 0.001 *** (0.005) | 0.02 *** (0.001) |
GL | 0.069 *** (0.007) | −0.021 (0.019) | 0.071 *** (0.008) | 0.069 *** (0.008) |
GCF | 0.037 *** (0.006) | 0.045 *** (0.01) | −0.003 (0.008) | 0.036 *** (0.008) |
GDP | 0.00231 *** (0.02) | 0.0125 *** (0.00) | 1.68 × 106 (0.001) | 1.07 × 106 (0.001) |
HUC | −0.006 ** (0.003) | −0.001 (0.004) | −0.006 ** (0.003) | −0.04 *** (0.015) |
FL | 0.016 *** (0.006) | −0.032 *** (0.011) | 0.013 ** (0.006) | 0.033 * (0.017) |
REM | 0.008 (0.008) | −0.114 *** (0.025) | −0.005 (0.009) | 0.064 (0.046) |
RM | −0.029 *** (0.003) | 0.004 (0.006) | −0.033 *** (0.003) | −0.013 * (0.007) |
RC | −0.029 *** (0.003) | 0.023 ** (0.01) | −0.032 *** (0.003) | −0.031 *** (0.004) |
Regional Effect | Yes | Yes | Yes | Yes |
Year Effect | Yes | Yes | Yes | Yes |
cons | −9.77 *** (0.993) | −8.854 *** (1.5) | 13.982 *** (1.17) | 7.265 *** (2.092) |
Observations | 489 | 489 | 489 | 439 |
R-squared | 0.75 | 0.444 | 0.714 | 0.742 |
Adj. R2 | 0.732 | 0.405 | 0.694 | 0.721 |
(IND) | (UAV) | (MAS) | (PDI) | |
---|---|---|---|---|
FI | FI | FI | FI | |
IND | 0.189 ** (0.092) | |||
UAI | −0.005 (0.013) | |||
MAS | 0.01 (0.023) | |||
PDI | −0.099 *** (0.031) | |||
IQ | −0.028 (0.027) | 0.022 *** (0.005) | 0.022 *** (0.005) | 0.04 *** (0.009) |
Population ages (15–64) | 0.063 ** (0.031) | 0.019 (0.015) | 0.014 (0.009) | 0.093 *** (0.031) |
Female (% of total population) | 0.001 *** (0.013) | 0.02 (0.004) | 0.001 *** (0.005) | 0.02 *** (0.001) |
GL | −0.007 (0.021) | 0.029 *** (0.007) | 0.027 *** (0.006) | −0.024 (0.019) |
GCF | −0.006 (0.018) | 0.023 ** (0.009) | 0.026 *** (0.004) | −0.005 (0.012) |
GDP | 0.00231 *** (0.02) | 0.0125 *** (0.00) | 1.68 × 106 (0.001) | 1.07 × 106 (0.001) |
HUC | 0.026 (0.017) | −0.007 *** (0.002) | −0.007 *** (0.002) | −0.003 (0.004) |
FL | −0.037 ** (0.018) | −0.007 (0.005) | −0.008 (0.005) | 0.031 ** (0.014) |
REM | 0.068 *** (0.024) | 0.099 *** (0.009) | 0.103 *** (0.012) | 0.141 *** (0.018) |
RM | 0.004 (0.004) | 0.005 ** (0.002) | 0.006 (0.004) | 0.023 *** (0.006) |
RC | 0.029 ** (0.013) | 0.004 * (0.002) | 0.004 * (0.002) | 0.024 *** (0.007) |
Region Effect | Yes | Yes | Yes | Yes |
Year Effect | Yes | Yes | Yes | Yes |
cons | −11.402 *** (3.012) | −5.692 *** (0.541) | −6.443 *** (1.788) | −7.253 *** (1.14) |
Observations | 432 | 432 | 432 | 364 |
R-squared | 0.733 | 0.744 | 0.738 | 0.396 |
Adj. R2 | 0.710 | 0.726 | 0.72 | 0.346 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liaqat, I.; Gao, Y.; Rehman, F.U.; Lakner, Z.; Oláh, J. National Culture and Financial Inclusion: Evidence from Belt and Road Economies. Sustainability 2022, 14, 3405. https://doi.org/10.3390/su14063405
Liaqat I, Gao Y, Rehman FU, Lakner Z, Oláh J. National Culture and Financial Inclusion: Evidence from Belt and Road Economies. Sustainability. 2022; 14(6):3405. https://doi.org/10.3390/su14063405
Chicago/Turabian StyleLiaqat, Idrees, Yongqiang Gao, Faheem Ur Rehman, Zoltán Lakner, and Judit Oláh. 2022. "National Culture and Financial Inclusion: Evidence from Belt and Road Economies" Sustainability 14, no. 6: 3405. https://doi.org/10.3390/su14063405
APA StyleLiaqat, I., Gao, Y., Rehman, F. U., Lakner, Z., & Oláh, J. (2022). National Culture and Financial Inclusion: Evidence from Belt and Road Economies. Sustainability, 14(6), 3405. https://doi.org/10.3390/su14063405