The Effect of Distance Intervals on Walking Likelihood in Different Trip Purposes
Abstract
:1. Introduction
2. Research Background
2.1. Individual/Household Characteristics
2.2. Trip Characteristics and Built Environment (BE) Variables
3. Materials and Methods
4. Estimation Results and Discussion
4.1. Individual and Socio-Economic Characteristics
4.2. Trip and Environmental Characteristics
4.3. Analyzing Trip Distance and Age Groups More Deeply
4.4. Implications for Policy and Practice
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perchoux, C.; Brondeel, R.; Wasfi, R.; Klein, O.; Caruso, G.; Vallée, J.; Klein, S.; Thierry, B.; Dijst, M.; Chaix, B.; et al. Walking, trip purpose, and exposure to multiple environments: A case study of older adults in Luxembourg. J. Transp. Health 2019, 13, 170–184. [Google Scholar] [CrossRef]
- Mehdizadeh, M.; Mamdoohi, A.; Nordfjaern, T. Walking time to school, children’s active school travel and their related factors. J. Transp. Health 2017, 6, 313–326. [Google Scholar] [CrossRef]
- Macioszek, E. Changes in Values of Traffic Volume–Case Study Based on General Traffic Measurements in Opolskie Voi-vodeship (Poland). In Proceedings of the Directions of Development of Transport Networks and Traffic Engineering. Lecture Notes in Net-works and Systems, Katowice, Poland, 17–19 September 2018; Macioszek, E., Sierpiński, G., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 66–76. [Google Scholar]
- Macioszek, E. Roundabout entry capacity calculation–a case study based on roundabouts in Tokyo, Japan, and Tokyo sur-roundings. Sustainability 2020, 12, 1533. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, M.; Hosseinlou, M.H.; Jafarzadeh Fadaki, S. An investigation of Bus Rapid Transit System (BRT) based on economic and air pollution analysis (Tehran, Iran). Case Stud. Transp. Policy 2019, 8, 553–563. [Google Scholar] [CrossRef]
- Gao, J.; Chen, H.; Dave, K.; Chen, J.; Jia, D. Fuel economy and exhaust emissions of a diesel vehicle under real traffic condi-tions. Energy Sci. Eng. 2020, 8, 1781–1792. [Google Scholar] [CrossRef]
- World Health Organization. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease. Available online: https://apps.who.int/iris/handle/10665/250141 (accessed on 4 June 2021).
- World Health Organization. Obesity and Overweight. Available online: http://www.who.int/mediacentre/factsheets/fs311/en/ (accessed on 5 June 2021).
- Schäfer, C.; Mayr, B.; de Battre, F.L.P.; Reich, B.; Schmied, C.; Loidl, M.; Niederseer, D.; Niebauer, J. Health effects of active commuting to work: The available evidence before GISMO. Scand. J. Med. Sci. Sports 2020, 30, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, M.; Piccioni, C.; Sierpiński, G.; Farzin, I. Analysis of Crash Severity of Texas Two Lane Rural Roads Using Solar Altitude Angle Based Lighting Condition. Sustainability 2022, 14, 1692. [Google Scholar] [CrossRef]
- Blečić, I.; Congiu, T.; Fancello, G.; Trunfio, G.A. Planning and Design Support Tools for Walkability: A Guide for Urban Analysts. Sustainability 2020, 12, 4405. [Google Scholar] [CrossRef]
- Mehdizadeh, M.; Nordfjaern, T.; Mamdoohi, A. The role of socio-economic, built environment and psychological factors in parental mode choice for their children in an Iranian setting. Transportation 2016, 45, 523–543. [Google Scholar] [CrossRef]
- Hatamzadeh, Y.; Habibian, M.; Khodaii, A. Walking behavior across genders in school trips, a case study of Rasht, Iran. J. Transp. Health 2017, 5, 42–54. [Google Scholar] [CrossRef]
- Park, H.; Noland, R.B.; Lachapelle, U. Active school trips: Associations with caregiver walking frequency. Transp. Policy 2013, 29, 23–28. [Google Scholar] [CrossRef]
- Copperman, R.B.; Bhat, C.R. An analysis of the determinants of children’s weekend physical activity participation. Transportation 2006, 34, 67–87. [Google Scholar] [CrossRef]
- Larrañaga, A.M.; Rizzi, L.I.; Arellana, J.; Strambi, O.; Cybis, H.B.B. The influence of built environment and travel attitudes on walking: A case study of Porto Alegre, Brazil. Int. J. Sustain. Transp. 2014, 10, 332–342. [Google Scholar] [CrossRef]
- Paydar, M.; Fard, A.K.; Khaghani, M.M. Walking toward metro stations: The contribution of distance, attitudes, and perceived built environment. Sustainability 2020, 12, 10291. [Google Scholar] [CrossRef]
- Tsunoda, K.; Soma, Y.; Kitano, N.; Jindo, T.; Fujii, K.; Okura, T. Acceptable Walking and Cycling Distances and their Corre-lates among Older Japanese Adults. J. Popul. Ageing 2021, 14, 183–200. [Google Scholar] [CrossRef]
- Piccioni, C.; Valtorta, M.; Musso, A. Investigating effectiveness of on-street parking pricing schemes in urban areas: An em-pirical study in Rome. Transp. Policy 2019, 80, 136–147. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, A.W.; Schimek, P. Extent and correlates of walking in the USA. Transp. Res. Part D Transp. Environ. 2007, 12, 548–563. [Google Scholar] [CrossRef]
- Hatamzadeh, Y.; Habibian, M.; Khodaii, A. Walking mode choice across genders for purposes of work and shopping: A case study of an Iranian city. Int. J. Sustain. Transp. 2019, 14, 389–402. [Google Scholar] [CrossRef]
- Pucher, J.; Dijkstra, L. Promoting Safe Walking and Cycling to Improve Public Health: Lessons from The Netherlands and Germany. Am. J. Public Health 2003, 93, 1509–1516. [Google Scholar] [CrossRef]
- Teshome, M. Logit Model of Work Trip Mode Choice for Bole Sub-City Residents. Ph.D. Thesis, University School of Graduate Studies Faculty of Technology, Addis Ababa, Ethiopia, 2007. [Google Scholar]
- Rodriguez, D.A.; Joo, J. The relationship between non-motorized mode choice and the local physical environment. Transp. Res. Part D Transp. Environ. 2004, 9, 151–173. [Google Scholar] [CrossRef]
- Mehdizadeh, M.; Mamdoohi, A.R. Active school travel: Homogeneity or heterogeneity? That is the question. Transp. Plan. Technol. 2020, 43, 443–462. [Google Scholar] [CrossRef]
- Mehdizadeh, M.; Nordfjaern, T.; Mamdoohi, A. Environmental norms and sustainable transport mode choice on children’s school travels: The norm-activation theory. Int. J. Sustain. Transp. 2019, 14, 137–149. [Google Scholar] [CrossRef]
- Zavareh, M.F.; Abolhasannejad, V.; Mamdoohi, A.; Nordfjærn, T. Barriers to children’s walking to school in Iranian and Chinese samples. Transp. Res. Part F Traffic Psychol. Behav. 2020, 73, 399–414. [Google Scholar] [CrossRef]
- Ton, D.; Duives, D.C.; Cats, O.; Hoogendoorn-Lanser, S.; Hoogendoorn, S.P. Cycling or walking? Determinants of mode choice in the Netherlands. Transp. Res. Part A Policy Pract. 2018, 123, 7–23. [Google Scholar] [CrossRef]
- Tian, G.; Ewing, R. A walk trip generation model for Portland, OR. Transp. Res. Part D Transp. Environ. 2017, 52, 340–353. [Google Scholar] [CrossRef]
- Khan, M.; Kockelman, K.M.; Xiong, X. Models for anticipating non-motorized travel choices, and the role of the built en-vironment. Transp. Policy 2014, 35, 117–126. [Google Scholar] [CrossRef]
- Sehatzadeh, B.; Noland, R.B.; Weiner, M.D. Walking frequency, cars, dogs, and the built environment. Transp. Res. Part A Policy Pract. 2011, 45, 741–754. [Google Scholar] [CrossRef]
- Kaplan, S.; Nielsen, T.A.S.; Prato, C.G. Walking, cycling and the urban form: A Heckman selection model of active travel mode and distance by young adolescents. Transp. Res. Part D Transp. Environ. 2016, 44, 55–65. [Google Scholar] [CrossRef] [Green Version]
- McMillan, T.E. The relative influence of urban form on a child’s travel mode to school. Transp. Res. Part A Policy Pract. 2007, 41, 69–79. [Google Scholar] [CrossRef]
- Hatamzadeh, Y.; Habibian, M.; Khodaii, A. Walking Behaviors by Trip Purposes. Transp. Res. Rec. J. Transp. Res. Board 2014, 2464, 118–125. [Google Scholar] [CrossRef]
- Bhat, C.R.; Guo, J.Y.; Sardesai, R. Non-Motorized Travel in the San Francisco Bay Area; University of Texas: Austin, TX, USA, 2005; pp. 17–27. [Google Scholar]
- Reid, E.; Cervero, R. Travel and the built environment: A meta-analysis. J. Am. Plan. Assoc. 2010, 76, 265–294. [Google Scholar]
- Besser, L.M.; Dannenberg, A.L. Walking to Public Transit: Steps to Help Meet Physical Activity Recommendations. Am. J. Prev. Med. 2005, 29, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Piccioni, C. Accessibilità territoriale e dinamiche d’uso delle infrastrutture stradali: Un approccio alla pianificazione integrata/Territorial accessibility and dynamics in road infrastructures use: An integrated planning approach. Ing. Ferrov. 2011, 66, 621–641. [Google Scholar]
- Frank, L.D.; Pivo, G. Impacts of mixed use and density on utilization of three modes of travel: Single-occupant vehicle, transit, and walking. Transp. Res. Rec. 1994, 1466, 44–52. [Google Scholar]
- Ewing, R.; Tian, G.; Goates, J.P.; Zhang, M.; Greenwald, M.J.; Joyce, A.; Kircher, J.C.; Greene, W.H. Varying influences of the built environment on household travel in 15 diverse regions of the United States. Urban Stud. 2014, 52, 2330–2348. [Google Scholar] [CrossRef]
- Krizek, K.J. Neighborhood services, trip purpose, and tour-based travel. Transportation 2003, 30, 387–410. [Google Scholar] [CrossRef]
- Hensher, D.A.; Rose, J.M.; Rose, J.M.; Greene, W.H. Applied Choice Analysis: A Primer; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Macioszek, E. The comparison of models for follow-up headway at roundabouts. In Recent Advances in Traffic Engineering for Transport Networks and Systems. Lecture Notes in Networks and Systems 21; Macioszek, E., Sierpiński, G., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 16–26. [Google Scholar]
- Macioszek, E. The application of HCM 2010 in the determination of capacity of traffic lanes at turbo roundabout entries. Transp. Probl. 2017, 11, 77–89. [Google Scholar] [CrossRef] [Green Version]
- Omrani, H.; Mamdoohi, A.R.; Farzin, I. Taste variation of the elderly mode choice. Int. J. Transp. Eng. 2021, 8, 341–362. [Google Scholar] [CrossRef]
- Greenwald, M.J. SACSIM Modeling-Elasticity Results: Draft; Fehr & Peers Associates: Walnut Creek, CA, USA, 2009. [Google Scholar]
- De Dios Ortúzar, J.; Willumsen, L.G. Modelling Transport; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Abbasi, M.; Hosseinlou, M.H.; Sarreshtehdari, A.; Mandzuka, S. Evaluation of Transit Signal Priority for Bus Rapid Transit in Heterogeneous Traffic Flow. Teh. Vjesn. 2021, 28, 2080–2087. [Google Scholar] [CrossRef]
- Karami, A.; Hosseinlou, M.H.; Abbasi, M.H.; Figuerira, M. Priority Order for Improvement of Intersections using Pedestrian Crash Prediction Model. Int. J. Transp. Eng. 2020, 7, 297–313. [Google Scholar] [CrossRef]
Variables | Values | Total | Mandatory Trips | Discretionary Trips | |||
---|---|---|---|---|---|---|---|
Count | Frequency (%) | Count | Frequency (%) | Count | Frequency (%) | ||
Gender | Male | 8645 | 59 | 7041 | 70.4 | 1604 | 35.9 |
Female | 5818 | 41 | 2959 | 29.6 | 2859 | 64.1 | |
Sum | 14,463 | 100 | 10,000 | 100 | 4463 | 100 | |
Driving License Status | With License | 6160 | 42.6 | 4230 | 42.3 | 1930 | 43.2 |
Without License | 8303 | 57.4 | 5770 | 57.7 | 2533 | 56.8 | |
Sum | 14,463 | 100 | 10,000 | 100 | 4463 | 100 | |
Household Size | 1 | 171 | 1.1 | 85 | 0.9 | 86 | 1.9 |
2 | 834 | 5.8 | 438 | 4.4 | 396 | 8.9 | |
3 | 2858 | 19.8 | 1824 | 18.2 | 1034 | 23.2 | |
4 | 6725 | 46.5 | 4850 | 48.5 | 1875 | 42.0 | |
5+ | 3875 | 26.8 | 2803 | 28.0 | 1072 | 24.0 | |
Sum | 14,463 | 100 | 10,000 | 100 | 4463 | 100 | |
Age | <14 | 2243 | 15.5 | 2002 | 20.0 | 241 | 5.4 |
(15–24) | 3656 | 25.2 | 2988 | 29.9 | 668 | 15.0 | |
(25–44) | 5457 | 37.8 | 3272 | 32.7 | 2185 | 49.0 | |
(45–64) | 2680 | 18.5 | 1536 | 15.4 | 1144 | 25.6 | |
>65 | 427 | 3 | 202 | 2.0 | 225 | 5.0 | |
Sum | 14,463 | 100 | 10,000 | 100 | 4463 | 100 | |
Education Levels | Illiterate | 414 | 2.8 | 238 | 2.4 | 176 | 3.9 |
Up to high school diploma | 10,948 | 75.7 | 7406 | 74.1 | 3542 | 79.4 | |
Associate Degree and Bachelors | 2815 | 19.5 | 2124 | 21.2 | 691 | 15.5 | |
Masters and above | 286 | 2 | 232 | 2.3 | 54 | 1.2 | |
Sum | 14,463 | 100 | 10,000 | 100 | 4463 | 100 | |
Departure time | Peak | 8420 | 65.6 | 6875 | 81.5 | 1545 | 35.2 |
Afternoon | 3142 | 24.5 | 1226 | 14.5 | 1916 | 43.6 | |
Night | 1267 | 9.9 | 338 | 4 | 929 | 21.2 | |
Sum | 12,829 | 100 | 8439 | 100 | 4390 | 100 | |
Trip mode | Walking | 3618 | 25 | 2200 | 22 | 1418 | 31.7 |
Other | 10,845 | 75 | 7800 | 78 | 3045 | 68.3 | |
Sum | 14,463 | 100 | 10,000 | 69.1 | 4463 | 30.9 |
Travel Distance | Mandatory Trips | Discretionary Trips | ||
---|---|---|---|---|
Count | Frequency (%) | Count | Frequency (%) | |
Dis < 0.25 | 865 | 8.7 | 609 | 13.6 |
Dis (0.25–0.5) | 280 | 2.8 | 171 | 3.8 |
Dis (0.5–0.75) | 569 | 5.7 | 287 | 6.4 |
Dis (0.75–1) | 780 | 7.8 | 370 | 8.3 |
Dis (1–1.25) | 1584 | 15.8 | 662 | 14.8 |
Dis (1.25–1.5) | 1363 | 13.6 | 579 | 13.0 |
Dis > 1.5 | 4559 | 45.6 | 1785 | 40.0 |
Sum | 10,000 | 100 | 4463 | 100 |
Symbol | Variable Definition | Unit | Mandatory | Discretionary | ||
---|---|---|---|---|---|---|
Mean | S.D. | Mean | S.D. | |||
Dis < 0.25 | If travel distance is lower than 0.25 mile = 1; Otherwise = 0 | - | 0.09 | 0.28 | 0.14 | 0.34 |
Dis (0.25–0.5) | If travel distance is the range of 0.25 to 0.50 mile = 1; Otherwise = 0 | - | 0.03 | 0.16 | 0.04 | 0.19 |
Dis (0.5–0.75) | If travel distance is the range of 0.50 to 0.75 mile = 1; Otherwise = 0 | - | 0.06 | 0.23 | 0.06 | 0.25 |
Dis (0.75–1) | If travel distance is the range of 0.75 to 1.00 mile = 1; Otherwise = 0 | - | 0.08 | 0.27 | 0.08 | 0.28 |
Dis (1–1.25) | If travel distance is the range of 1.00 to 1.25 mile = 1; Otherwise = 0 | - | 0.16 | 0.37 | 0.15 | 0.36 |
Dis (1.25–1.5) | If travel distance is the range of 1.25 to 1.5 mile = 1; Otherwise = 0 | - | 0.14 | 0.34 | 0.13 | 0.34 |
Dis > 1.5 | If travel distance is higher than 1.5 mile = 1; Otherwise = 0 | - | 0.46 | 0.50 | 0.40 | 0.49 |
Cert | If the individual has a driving license = 1; Otherwise = 0 | - | 0.42 | 0.49 | 0.43 | 0.50 |
Female | If the individual is a female = 1; Otherwise = 0 | - | 0.30 | 0.46 | 0.64 | 0.48 |
Edu | Ordered education level of individuals | - | 4.88 | 2.15 | 4.45 | 2.19 |
Edu1 | If the individual is illiterate = 1; Otherwise = 0 | - | 0.02 | 0.15 | 0.04 | 0.19 |
Edu2 | If the individual has a diploma or lower degree = 1; Otherwise = 0 | - | 0.74 | 0.44 | 0.79 | 0.40 |
Edu3 | If the individual has an associate degree or bachelor’s degree = 1; Otherwise = 0 | - | 0.21 | 0.41 | 0.15 | 0.36 |
Edu4 | If the individual has masters or higher degree = 1; Otherwise = 0 | - | 0.02 | 0.15 | 0.01 | 0.11 |
HHS | household size | Person | 4.09 | 1.06 | 3.86 | 1.15 |
Hhs1 | If household size is one = 1; Otherwise = 0 | Person | 0.01 | 0.09 | 0.02 | 0.14 |
Hhs2 | If household size is two = 1; Otherwise = 0 | Person | 0.04 | 0.20 | 0.09 | 0.28 |
Hhs3 | If household size is three = 1; Otherwise = 0 | Person | 0.18 | 0.39 | 0.23 | 0.42 |
Hhs4 | If household size is four = 1; Otherwise = 0 | Person | 0.49 | 0.50 | 0.42 | 0.49 |
Hhs5+ | If household size is five or more = 1; Otherwise = 0 | Person | 0.28 | 0.45 | 0.24 | 0.43 |
Age | individual’s age | Year | 30.60 | 15.55 | 31.10 | 16.38 |
Age < 14 | The individual has an age lower than 14 = 1; Otherwise = 0 | - | 0.20 | 0.40 | 0.05 | 0.23 |
Age (15–24) | The individual has an age in the range of 15 to 24 = 1; Otherwise = 0 | - | 0.30 | 0.46 | 0.15 | 0.36 |
Age (25–44) | The individual has an age in the range of 25 to 44 = 1; Otherwise = 0 | - | 0.33 | 0.47 | 0.49 | 0.50 |
Age (45–64) | The individual has an age in the range of 45 to 64 = 1; Otherwise = 0 | - | 0.15 | 0.36 | 0.26 | 0.44 |
Age > 65 | The individual has an age higher than 65 = 1; Otherwise = 0 | - | 0.02 | 0.14 | 0.05 | 0.22 |
EMP | If the individual is an employee = 1; Otherwise = 0 | - | 0.13 | 0.34 | 0.07 | 0.26 |
Peak | If the departure time is within 6–8 a.m. or 5–7 p.m. = 1; Otherwise = 0 | - | 0.69 | 0.46 | 0.35 | 0.48 |
Afternoon | If the departure time is within 1–5 p.m. = 1; Otherwise = 0 | - | 0.12 | 0.33 | 0.43 | 0.50 |
Night | If the departure time is within 8 p.m.–5 a.m. = 1; Otherwise = 0 | - | 0.03 | 0.18 | 0.21 | 0.41 |
Ori-Den | Residential density at origin | 0.01 | 0.01 | 0.01 | 0.01 | |
Des-Den | Residential density at destination | 0.01 | 0.01 | 0.01 | 0.01 | |
Ori-Bal | Job-Population balance at origin | - | 0.79 | 0.04 | 0.79 | 0.04 |
Des-Bal | Job-Population balance at destination | - | 0.78 | 0.04 | 0.79 | 0.04 |
Int_den | Intersection density (4-legs) | 0.017 | 0.03 | 0.017 | 0.03 | |
Tran_WT | Walking time to transit station | Second | 483.99 | 238.35 | 479.79 | 264.29 |
Variables | Mandatory Trips | Discretionary Trips | ||||
---|---|---|---|---|---|---|
Coef. | T-Stat | M.E. | Coef. | T-Stat | M.E. | |
Constant | −2.16 *** | −3.59 | - | −3.22 *** | −3.14 | - |
Dis (0.25–0.5) | −0.29 ** | −1.90 | −0.0331 | −0.55 ** | −2.23 | −0.0710 |
Dis (0.5–0.75) | −1.13 *** | −8.09 | −0.1103 | −0.82 *** | −4.73 | −0.1023 |
Dis (0.75–1) | −1.14 *** | −10.10 | −0.1122 | −1.44 *** | −9.35 | −0.1680 |
Dis (1–1.25) | −2.03 *** | −19.28 | −0.1986 | −2.12 *** | −15.40 | −0.2511 |
Dis (1.25–1.5) | −2.64 *** | −21.28 | −0.2301 | −3.08 *** | −19.16 | −0.3320 |
Dis > 1.5 | −3.56 *** | −23.73 | −0.4187 | −3.58 *** | −25.90 | −0.5131 |
Cert | −0.94 *** | −10.59 | −0.1084 | −0.82 *** | −9.09 | −0.1144 |
Female | - | - | - | 0.27 *** | 2.94 | 0.0372 |
Edu | −0.05 *** | −2.65 | −0.0061 | - | - | - |
HHS | 0.09 *** | 3.05 | 0.0102 | 0.10 *** | 2.68 | 0.0132 |
Age | −0.28 *** | −6.67 | −0.0330 | 0.10 ** | 2.07 | 0.0136 |
Afternoon | - | - | - | −0.56 *** | −6.64 | −0.0792 |
Night | −0.60 *** | −3.04 | −0.0652 | - | - | - |
Peak | −0.21 *** | −3.25 | −0.0252 | 0.30 *** | 3.58 | 0.0429 |
Ori-Bal | - | - | - | 2.46 ** | 2.06 | 0.3408 |
Des-Bal | 4.95 *** | 6.87 | 0.5904 | 2.41 ** | 2.09 | 0.3339 |
Ori-Den | 0.002 *** | 4.49 | 0.0002 | - | - | - |
Des-Den | - | - | - | 0.001 ** | 2.09 | 0.0002 |
Tran-WT | −0.00017 ** | −2.48 | −0.00002 | - | - | - |
Int_den | 0.0079 ** | 2.37 | 0.005 | 0.0105 ** | 2.06 | 0.0135 |
EMP | −0.46 *** | −3.20 | −0.0513 | - | - | - |
Age < 14 * Dis > 1.5 | 0.64 *** | 3.56 | 0.0815 | - | - | - |
Age (15–24) * 0.5 < Dis < 0.75 | 0.54 *** | 2.62 | 0.0706 | −0.73 ** | −1.97 | −0.0929 |
Age (15–24) * Dis > 1.5 | 0.64 *** | 4.15 | 0.0795 | - | - | - |
Age (25–44) * 0.25 < Dis < 0.5 | - | - | - | 0.83 ** | 2.18 | 0.1265 |
Age (25–44) * 1.25 < Dis < 1.5 | −0.67 ** | −2.43 | −0.0718 | - | - | - |
Age (45–64) * 1.0 < Dis < 1.25 | 0.65 *** | 3.06 | 0.0849 | - | - | - |
Age > 65 * 0.5 < Dis < 0.75 | −1.88 * | −1.80 | −0.1560 | - | - | - |
Age > 65 * 0.75 < Dis < 1.0 | - | - | - | 1.01 ** | 1.99 | 0.1550 |
Model statistics | ||||||
Number of observations | 10,000 | 4463 | ||||
Log-likelihood at convergence | −3793.08 | −1949.84 | ||||
Restricted Log-likelihood (constant only) | −5269.08 | −2790.01 | ||||
Log-likelihood at zero | −6931.47 | −3093.52 | ||||
0.452 | 0.369 | |||||
0.280 | 0.301 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macioszek, E.; Karami, A.; Farzin, I.; Abbasi, M.; Mamdoohi, A.R.; Piccioni, C. The Effect of Distance Intervals on Walking Likelihood in Different Trip Purposes. Sustainability 2022, 14, 3406. https://doi.org/10.3390/su14063406
Macioszek E, Karami A, Farzin I, Abbasi M, Mamdoohi AR, Piccioni C. The Effect of Distance Intervals on Walking Likelihood in Different Trip Purposes. Sustainability. 2022; 14(6):3406. https://doi.org/10.3390/su14063406
Chicago/Turabian StyleMacioszek, Elżbieta, Ali Karami, Iman Farzin, Mohammadhossein Abbasi, Amir Reza Mamdoohi, and Cristiana Piccioni. 2022. "The Effect of Distance Intervals on Walking Likelihood in Different Trip Purposes" Sustainability 14, no. 6: 3406. https://doi.org/10.3390/su14063406
APA StyleMacioszek, E., Karami, A., Farzin, I., Abbasi, M., Mamdoohi, A. R., & Piccioni, C. (2022). The Effect of Distance Intervals on Walking Likelihood in Different Trip Purposes. Sustainability, 14(6), 3406. https://doi.org/10.3390/su14063406