Analyzing the Factors Enabling Green Lean Six Sigma Implementation in the Industry 4.0 Era
Abstract
:1. Introduction
2. Research Methodology
2.1. Systematic Review
2.1.1. Review Protocol Design
2.1.2. Article Selection
2.2. Analytical Method
2.2.1. Exploratory Survey Design
2.2.2. Factor Method Selection and Matrix Specification
2.2.3. Testing Reliability and Validity
3. Findings and Discussion on the Systematic Review: Theoretical Contribution
4. Findings and Discussion on the Analytic Method: Empirical Contribution
5. Conclusions, Implications and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Gholami, H.; Jamil, N.; Saman, M.Z.M.; Streimikiene, D.; Sharif, S.; Zakuan, N. The application of green lean Six Sigma. Bus. Strategy Environ. 2021, 30, 1913–1931. [Google Scholar] [CrossRef]
- US EPA. Manufacturing Sectors, United States Environmental Protection Agency. 2020. Available online: https://www.epa.gov/trinationalanalysis/manufacturing-sectors (accessed on 3 March 2022).
- Saad, M.H.; Nazzal, M.A.; Darras, B.M. A general framework for sustainability assessment of manufacturing processes. Ecol. Indic. 2019, 97, 211–224. [Google Scholar] [CrossRef]
- Garza-Reyes, J.A. Green lean and the need for Six Sigma. Int. J. Lean Six Sigma 2015, 6, 226–248. [Google Scholar] [CrossRef]
- Cherrafi, A.; Garza-Reyes, J.A.; Belhadi, A.; Kamble, S.S.; Elbaz, J. A Readiness Self-Assessment Model for Implementing Green Lean Initiatives. J. Clean. Prod. 2021, 309, 127401. [Google Scholar] [CrossRef]
- Rao, P. Greening production: A South-East Asian experience. Int. J. Oper. Prod. Manag. 2004, 24, 289–320. [Google Scholar] [CrossRef]
- Galeazzo, A.; Furlan, A.; Vinelli, A. Lean and green in action: Interdependencies and performance of pollution prevention projects. J. Clean. Prod. 2013, 85, 191–200. [Google Scholar] [CrossRef]
- US EPA. The Lean and Environment Toolkit, United States Environmental Protection Agency. 2007. Available online: http://www.epa.gov/lean/environment/toolkits/energy/index.html (accessed on 30 January 2021).
- Sartal, A.; Ozcelik, N.; Rodriguez, M. Bringing the circular economy closer to small and medium enterprises: Improving water circularity without damaging plant productivity. J. Clean. Prod. 2020, 256, 120363. [Google Scholar] [CrossRef]
- Gholami, H.; Jamil, N.; Zakuan, N.; Saman, M.Z.M.; Sharif, S.; Awang, S.R.; Sulaiman, Z. Social value stream mapping (Socio-VSM): Methodology to societal sustainability visualization and assessment in the manufacturing system. IEEE Access 2019, 7, 131638–131648. [Google Scholar] [CrossRef]
- Dues, C.M.; Tan, K.H.; Lim, M. Green as the new lean: How to use lean practices as a catalyst to greening your supply chain. J. Clean. Prod. 2013, 40, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Duarte, S.; Cruz-Machado, V. Modelling lean and green: A review from business models. Int. J. Lean Six Sigma 2013, 4, 228–250. [Google Scholar] [CrossRef]
- Pampanelli, A.B.; Found, P.; Bernardes, A.M. A Lean & Green Model for a production cell. J. Clean. Prod. 2014, 85, 19–30. [Google Scholar]
- Verrier, B.; Rose, B.; Caillaud, E.; Remita, H. Combining organizational performance with sustainable development issues: The green and lean project benchmarking repository. J. Clean. Prod. 2014, 85, 83–93. [Google Scholar] [CrossRef]
- Garza-Reyes, J.A.; Romero, J.T.; Govindan, K.; Cherrafi, A.; Ramanathan, U. A PDCA-based approach to Environmental Value Stream Mapping (E-VSM). J. Clean. Prod. 2018, 180, 335–348. [Google Scholar] [CrossRef]
- Sagnak, M.; Kazancoglu, Y. Integration of green lean approach with six sigma: An application for flue gas emissions. J. Clean. Prod. 2016, 127, 112–118. [Google Scholar] [CrossRef]
- Soti, A.; Shankar, R.; Kaushal, O.P. Modeling the enablers of Six Sigma using interpreting structural modeling. J. Model. Manag. 2010, 5, 124–141. [Google Scholar] [CrossRef]
- Jamil, N.; Gholami, H.; Saman, M.Z.M.; Streimikiene, D.; Sharif, S.; Zakuan, N. DMAIC-based approach to sustainable value stream mapping: Towards a sustainable manufacturing system. Econ. Res. Ekon. Istraživanja 2020, 33, 331–360. [Google Scholar] [CrossRef]
- Matthew, H.; Barth, B.; Sears, B. Leveraging Six Sigma discipline to drive improvement. Int. J. Six Sigma Compet. Advant. 2005, 1, 121–133. [Google Scholar]
- Linderman, K.; Schroeder, R.G.; Zaheer, S.; Choo, A.S. Six Sigma: A goal-theoretic perspective. J. Oper. Manag. 2003, 21, 193–203. [Google Scholar] [CrossRef]
- Banuelas, R.; Antony, J.; Brace, M. An application of Six Sigma to reduce waste. Qual. Reliab. Eng. Int. 2005, 21, 553–570. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, D.C.; Woodall, W.H. An overview of six sigma. Int. Stat. Rev. Rev. Int. Stat. 2008, 76, 329–346. [Google Scholar] [CrossRef]
- Cherrafi, A.; El Fezazi, S.; Govindan, K.; Garza-Reyes, J.A.; Mokhlis, A.; Benhida, K. A framework for the integration of Green and Lean Six Sigma for superior sustainability performance. Int. J. Prod. Res. 2017, 55, 4481–4515. [Google Scholar] [CrossRef]
- Caiado, R.; Nascimento, D.; Quelhas, O.; Tortorella, G.; Rangel, L. Towards sustainability through green, lean and six sigma integration at service industry: Review and framework. Technol. Econ. Dev. Econ. 2018, 24, 1659–1678. [Google Scholar] [CrossRef] [Green Version]
- Sony, M.; Naik, S. Green Lean Six Sigma implementation framework: A case of reducing graphite and dust pollution. Int. J. Sustain. Eng. 2019, 13, 184–193. [Google Scholar] [CrossRef]
- Kaswan, M.S.; Rathi, R. Investigating the enablers associated with implementation of Green Lean Six Sigma in manufacturing sector using Best Worst Method. Clean Technol. Environ. Policy 2020, 22, 865–876. [Google Scholar] [CrossRef]
- Ershadi, M.J.; Taghizadeh, O.Q.; Molana, S.M.H. Selection and performance estimation of Green Lean Six Sigma Projects: A hybrid approach of technology readiness level, data envelopment analysis, and ANFIS. Environ. Sci. Pollut. Res. 2021, 28, 29394–29411. [Google Scholar] [CrossRef]
- Ministry of Energy, Green Technology and Water Malaysia. Green Technology Master Plan Malaysia 2017–2030; Ministry of Energy, Green Technology and Water (KeTTHA): Putrajaya, Malaysia, 2017. [Google Scholar]
- Abu, F.; Gholami, H.; Saman, M.Z.M.; Zakuan, N.; Sharif, S.; Streimikiene, D. Pathways of lean manufacturing in wood and furniture industries: A bibliometric and systematic review. Eur. J. Wood Wood Prod. 2021, 79, 753–772. [Google Scholar] [CrossRef]
- Lee, J.K.Y.; Gholami, H.; Saman, M.Z.M.; Ngadiman, N.H.A.B.; Zakuan, N.; Mahmood, S.; Omain, S.Z. Sustainability-oriented Application of Value Stream Mapping: A review and classification. IEEE Access 2021, 9, 68414–68434. [Google Scholar] [CrossRef]
- Gholami, H.; Abu, F.; Lee, J.K.Y.; Karganroudi, S.S.; Sharif, S. Sustainable Manufacturing 4.0—Pathways and Practices. Sustainability 2021, 13, 13956. [Google Scholar] [CrossRef]
- Gholami, H.; Saman, M.Z.M.; Sharif, S.; Md Khudzari, J.; Zakuan, N.; Streimikiene, D.; Streimikis, J. A general framework for sustainability assessment of sheet metalworking processes. Sustainability 2020, 12, 4957. [Google Scholar] [CrossRef]
- Kitchenham, B. Procedures for Performing Systematic Reviews; Keele University: Keele, UK, 2004; Volume 33, pp. 1–26. [Google Scholar]
- Gholami, H.; Saman, M.Z.M.; Mardani, A.; Streimikiene, D.; Sharif, S.; Zakuan, N. Proposed analytic framework for student relationship management based on a systematic review of CRM systems literature. Sustainability 2018, 10, 1237. [Google Scholar] [CrossRef] [Green Version]
- Besseris, G.J. Applying the DOE toolkit on a Lean-and-Green Six Sigma maritime-operation improvement project. Int. J. Lean Six Sigma 2011, 2, 270–284. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis: A Global Perspective, 7th ed.; Pearson-Hall International: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Gholami, H.; Rezaei, G.; Saman, M.Z.M.; Sharif, S.; Zakuan, N. State-of-the-art Green HRM System. J. Clean. Prod. 2016, 124, 142–163. [Google Scholar] [CrossRef]
- Rezaei, G.; Gholami, H.; Shaharou, A.B.M.; Saman, M.Z.M.; Sadeghi, L.; Zakuan, N. Shared knowledge mediated correlation between cultural excellence and organisational performance. Total Qual. Manag. Bus. Excell. 2017, 28, 427–458. [Google Scholar] [CrossRef]
- Abu, F.; Gholami, H.; Saman, M.Z.M.; Zakuan, N.; Streimikiene, D.; Kyriakopoulos, G.L. An SEM approach for the barrier analysis in lean implementation in manufacturing industries. Sustainability 2021, 13, 1978. [Google Scholar] [CrossRef]
- Rezaei, G.; Gholami, H.; Shaharou, A.B.M.; Saman, M.Z.M.; Zakuan, N.; Najmi, M. Relationship among culture of excellence, organisational performance and knowledge sharing: Proposed conceptual framework. Int. J. Product. Qual. Manag. 2016, 19, 446–465. [Google Scholar] [CrossRef]
- Hashemi, A.; Gholami, H.; Venkatadri, U.; Karganroudi, S.S.; Khouri, S.; Wojciechowski, A.; Streimikiene, D. A New Direct Coefficient-Based Heuristic Algorithm for Set Covering Problems. Int. J. Fuzzy Syst. 2021, 1–17. [Google Scholar] [CrossRef]
- Sanders, A.; Elangeswaran, C.; Wulfsberg, J.P. Industry 4.0 implies lean manufacturing: Research activities in industry 4.0 function as enablers for lean manufacturing. J. Ind. Eng. Manag. 2016, 9, 811–833. [Google Scholar] [CrossRef] [Green Version]
- Kolberg, D.; Zühlke, D. Lean Automation enabled by Industry 4.0 Technologies. IFAC-PapersOnLine 2015, 48, 1870–1875. [Google Scholar] [CrossRef]
- Buer, S.-V.; Strandhagen, J.O.; Chan, F.T.S. The link between Industry 4.0 and lean manufacturing: Mapping current research and establishing a research agenda. Int. J. Prod. Res. 2018, 56, 2924–2940. [Google Scholar] [CrossRef] [Green Version]
- Mrugalska, B.; Wyrwicka, M.K. Towards lean production in industry 4.0. Proc. Eng. 2017, 182, 466–473. [Google Scholar] [CrossRef]
- Jabbour, A.B.L.d.S.; Jabbour, C.J.C.; Foropon, C.; Filho, M.G. When titans meet—Can industry 4.0 revolutionise the environmentally-sustainable manufacturing wave? The role of critical success factors. Technol. Forecast. Soc. Chang. 2018, 132, 18–25. [Google Scholar]
- Tsai, W.-H.; Lai, S.-Y. Green Production Planning and Control Model with ABC under Industry 4.0 for the Paper Industry. Sustainability 2018, 10, 2932. [Google Scholar] [CrossRef] [Green Version]
- Chiarini, A.; Kumar, M. Lean Six Sigma and Industry 4.0 integration for Operational Excellence: Evidence from Italian manufacturing companies. Prod. Plan. Control 2021, 32, 1084–1101. [Google Scholar] [CrossRef]
- Titmarsh, R.; Assad, F.; Harrison, R. Contributions of lean six sigma to sustainable manufacturing requirements: An Industry 4.0 perspective. Proc. Cirp 2020, 90, 589–593. [Google Scholar] [CrossRef]
- Sony, M. Design of cyber physical system architecture for industry 4.0 through lean six sigma: Conceptual foundations and research issues. Prod. Manuf. Res. 2020, 8, 158–181. [Google Scholar]
- Bhat, V.S.; Bhat, S.; Gijo, E.V. Simulation-based lean six sigma for Industry 4.0: An action research in the process industry. Int. J. Qual. Reliab. Manag. 2021, 38, 1215–1245. [Google Scholar]
- Da Silva, I.B.; Cabeça, M.G.; Barbosa, G.F.; Shiki, S.B. Lean Six Sigma for the automotive industry through the tools and aspects within metrics: A literature review. Int. J. Adv. Manuf. Technol. 2021, 119, 1357–1383. [Google Scholar] [CrossRef]
- Belhadi, A.; Kamble, S.S.; Zkik, K.; Cherrafi, A.; Touriki, F.E. The integrated effect of Big Data Analytics, Lean Six Sigma and Green Manufacturing on the environmental performance of manufacturing companies: The case of North Africa. J. Clean. Prod. 2020, 252, 119903. [Google Scholar]
- Pandey, H.; Garg, D.; Luthra, S. Identification and ranking of enablers of green lean Six Sigma implementation using AHP. Int. J. Product. Qual. Manag. 2018, 23, 187–217. [Google Scholar]
- Kumar, S.; Luthra, S.; Govindan, K.; Kumar, N.; Haleem, A. Barriers in green lean six sigma product development process: An ISM approach. Prod. Plan. Control 2016, 27, 604–620. [Google Scholar]
- Banawi, A.; Bilec, M.M. A framework to improve construction processes: Integrating Lean, Green and Six Sigma. Int. J. Constr. Manag. 2014, 14, 45–55. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, N.; Haleem, A. Conceptualisation of sustainable green lean six sigma: An empirical analysis. Int. J. Bus. Excell. 2015, 8, 210–250. [Google Scholar] [CrossRef]
- Chugani, N.; Kumar, V.; Garza-Reyes, J.A.; Rocha-Lona, L.; Upadhyay, A. Investigating the green impact of lean, six sigma and lean six sigma. Int. J. Lean Six Sigma 2017, 8, 7–32. [Google Scholar] [CrossRef] [Green Version]
- Kaswan, M.S.; Rathi, R. Analysis and modeling the enablers of green lean six sigma implementation using interpretive structural modeling. J. Clean. Prod. 2019, 231, 1182–1191. [Google Scholar] [CrossRef]
- Hussain, K.; He, Z.; Ahmad, N.; Iqbal, M. Green, lean, six sigma barriers at a glance: A case from the construction sector of Pakistan. Build. Environ. 2019, 161, 106225. [Google Scholar] [CrossRef]
- Gandhi, N.S.; Thanki, S.J.; Thakkar, J.J. Ranking of drivers for integrated lean-green manufacturing for Indian manufacturing SMEs. J. Clean. Prod. 2018, 171, 675–689. [Google Scholar] [CrossRef]
- Mishra, M.N. Identify critical success factors to implement integrated green and Lean Six Sigma. Int. J. Lean Six Sigma 2018. [Google Scholar] [CrossRef]
- Parmar, P.S.; Desai, T.N. Evaluating Sustainable Lean Six Sigma enablers using fuzzy DEMATEL: A case of an Indian manufacturing organization. J. Clean. Prod. 2020, 265, 121802. [Google Scholar] [CrossRef]
- Farrukh, A.; Mathrani, S.; Taskin, N. Investigating the Theoretical Constructs of a Green Lean Six Sigma Approach towards Environmental Sustainability: A Systematic Literature Review and Future Directions. Sustainability 2020, 12, 8247. [Google Scholar] [CrossRef]
- Singh, M.; Rathi, R.; Garza-Reyes, J.A. Analysis and prioritization of Lean Six Sigma enablers with environmental facets using best worst method: A case of Indian MSMEs. J. Clean. Prod. 2021, 279, 123592. [Google Scholar] [CrossRef]
- Letchumanan, L.T.; Yusof, N.M.; Gholami, H.; Ngadiman, N.H.A.B. Green Lean Six Sigma: A Review. J. Adv. Res. Technol. Innov. Manag. 2021, 1, 33–40. [Google Scholar]
- Hallowell, M.R.; Gambatese, J.A. Qualitative research: Application of the Delphi method to CEM research. J. Constr. Eng. Manag. 2010, 136, 99–107. [Google Scholar] [CrossRef]
Enablers a | References | Factors b | Communalities | Coding | ||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||||
Organizational readiness for GLSS implementation | [26,57,59,62,63,64,65] | 0.696 | 0.626 | E1 | ||||
Linking GLSS to organizational vision/mission statements | [26,27,54,57,59,61,62,63,64,65] | 0.673 | 0.735 | E2 | ||||
Top management commitment and support for adopting GLSS throughout all stages of the product development cycle | [26,27,54,57,59,61,62,63,64,65] | 0.657 | 0.669 | E3 | ||||
Culture and supportive ambiance | [26,54,57,59,61,62,63,64,65] | 0.640 | 0.708 | E4 | ||||
Project selection and management | [27,57,62,63,64,65] | 0.636 | 0.621 | E5 | ||||
Effective scheduling | [54,57,63,65] | 0.599 | 0.621 | E6 | ||||
Funds’ availability | [63,64,65,54,27,59,26,57] | 0.543 | 0.707 | E7 | ||||
Expedite resources and skills in the implementation process | [62,63,64] | 0.518 | 0.636 | E8 | ||||
Firm’s reputation | [61,63] | c | c | c | ||||
Market demands for environmentally-friendly products | [63,65] | c | c | c | ||||
Employee training and developmental programs | [63,64,65,61,54,57,27,59,26] | 0.731 | 0.704 | E9 | ||||
Employee involvement and empowerment | [27,54,61,62,63,64,65] | 0.658 | 0.584 | E10 | ||||
Teamwork | [26,27,57,59,64,65] | 0.654 | 0.655 | E11 | ||||
Reward and recognition of employees | [27,57,62,63,64,65] | 0.584 | 0.628 | E12 | ||||
Attracting and selecting employees | [27,57,62,65] | 0.528 | 0.593 | E13 | ||||
Knowledge management | [64] | c | c | c | ||||
Technological readiness for GLSS implementation | [27,64] | 0.799 | 0.670 | E14 | ||||
GLSS tools and techniques for effective data collection and measurement | [57,59,26,27,63,64,65] | 0.629 | 0.607 | E15 | ||||
Equipment up-gradation | [62,63,64,65,59,26,27] | 0.556 | 0.529 | E16 | ||||
Technology up-gradation (e.g., use of cleaner technologies) | [54,57,61,64] | 0.534 | 0.641 | E17 | ||||
Continuous improvement practices in environmentally-sustainable manufacturing processes | [54,63,64,65] | 0.786 | 0.722 | E18 | ||||
Material selection and modification | [54,57,63,65] | 0.636 | 0.599 | E19 | ||||
Use of environmentally-friendly packaging | [54,65] | 0.530 | 0.543 | E20 | ||||
Use of environmentally-friendly transportation | [54,57,63,65] | 0.525 | 0.530 | E21 | ||||
Environmentally-friendly product design practices | [54,63,64,65] | 0.505 | 0.514 | E22 | ||||
Supplier relationship management | [54,57,63,65] | 0.600 | 0.638 | E23 | ||||
Customer relationship management | [63,64,65,54,57,27] | 0.579 | 0.655 | E24 | ||||
Government rules and regulations | [57,63,64] | 0.572 | 0.621 | E25 | ||||
Environmental management System | [54,63,64] | 0.521 | 0.542 | E26 | ||||
Effective communication of GLSS schemes among departments | [57,63,65] | 0.501 | 0.518 | E27 |
Total Variance Explained a | Factors b | |||||
---|---|---|---|---|---|---|
1. SI | 2. HRM | 3. TT | 4. EP | 5. EN | ||
Initial Eigenvalues | Total | 13.274 | 1.602 | 1.321 | 1.264 | 1.195 |
Variance (%) | 44.246 | 5.339 | 4.403 | 4.213 | 3.983 | |
Cumulative (%) | 44.246 | 49.585 | 53.988 | 58.200 | 62.183 | |
Rotation Sums of Squared Loadings | Total | 5.182 | 4.077 | 3.239 | 3.093 | 3.063 |
Variance (%) | 17.274 | 13.592 | 10.795 | 10.312 | 10.210 | |
Cumulative (%) | 17.274 | 30.866 | 41.661 | 51.973 | 62.183 | |
Cronbach’s alpha (α) c | 0.906 | 0.844 | 0.769 | 0.798 | 0.782 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Letchumanan, L.T.; Gholami, H.; Yusof, N.M.; Ngadiman, N.H.A.B.; Salameh, A.A.; Štreimikienė, D.; Cavallaro, F. Analyzing the Factors Enabling Green Lean Six Sigma Implementation in the Industry 4.0 Era. Sustainability 2022, 14, 3450. https://doi.org/10.3390/su14063450
Letchumanan LT, Gholami H, Yusof NM, Ngadiman NHAB, Salameh AA, Štreimikienė D, Cavallaro F. Analyzing the Factors Enabling Green Lean Six Sigma Implementation in the Industry 4.0 Era. Sustainability. 2022; 14(6):3450. https://doi.org/10.3390/su14063450
Chicago/Turabian StyleLetchumanan, L. Thiruvarasu, Hamed Gholami, Noordin Mohd Yusof, Nor Hasrul Akhmal Bin Ngadiman, Anas A. Salameh, Dalia Štreimikienė, and Fausto Cavallaro. 2022. "Analyzing the Factors Enabling Green Lean Six Sigma Implementation in the Industry 4.0 Era" Sustainability 14, no. 6: 3450. https://doi.org/10.3390/su14063450
APA StyleLetchumanan, L. T., Gholami, H., Yusof, N. M., Ngadiman, N. H. A. B., Salameh, A. A., Štreimikienė, D., & Cavallaro, F. (2022). Analyzing the Factors Enabling Green Lean Six Sigma Implementation in the Industry 4.0 Era. Sustainability, 14(6), 3450. https://doi.org/10.3390/su14063450