Effects of Water-Retaining Agent Dosages on Slope-Protection Plants and Soil Nutrients on Rocky Slopes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Experimental Design
2.2.1. Soil Information
2.2.2. Experimental Shrub Species
2.2.3. Water Retention Agent Treatment
2.3. Measurements and Methods
2.3.1. Plant Growth Parameters
2.3.2. Nutrient Content in the Soil
2.3.3. Nutrient Content in Runoff Fluid
2.4. Statistical Analysis
3. Results
3.1. Effects of Water Retention Agent on Nutrients in the Soil
3.2. Effects of Water Retention Agent on Nutrients in the Runoff Fluid
3.3. Water Retention Agent on Plant Growth
4. Discussion
5. Conclusions
- (1)
- The use of a water-retaining agent can enhance the EN, EP, and EK contents of rocky slope soils to various degrees, and reduce the EN, EK, and EP contents in runoff fluids, thus achieving the purpose of reducing soil loss from rocky slopes and contributing to the function of soil nutrients under rocky slope conditions. However, its function did not increase indefinitely with increases in the water-retaining agent dosage.
- (2)
- The water-retaining agent at 40 g/m2 and 50 g/m2 increased the number of plants that survived in Year 2, increased the plant height and ground diameter, and improved the survival rate and growth of artificial vegetation on rocky slopes. These dosages also improved the coverage of artificial vegetation and the growth of the individual plants under rocky slope conditions. However, their functions did not increase indefinitely with increases in the water-retaining agent dosage.
- (3)
- Considering the economic and cost factors, together with performance factors (i.e., soil nutrient and runoff losses, plant preservation rate, and growth conditions), the water-retaining agent dosage of 40 g/m2 is reasonable under the present test conditions, since it performed relatively well in our study under rocky slope conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, T.; Liang, Y.; Ye, S.; He, Z. Superabsorbent hydrogels as carriers for the controlled-release of urea: Experiments and a mathematical model describing the release rate. Biosyst. Eng. 2009, 102, 44–50. [Google Scholar] [CrossRef]
- Huettermann, A.; Orikiriza, L.J.B.; Agaba, H. Application of Superabsorbent Polymers for Improving the Ecological Chemistry of Degraded or Polluted Lands. Clean-Soil Air Water 2009, 37, 517–526. [Google Scholar] [CrossRef]
- Thombare, N.; Mishra, S.; Siddiqui, M.; Jha, U.; Singh, D.; Mahajan, G.R. Design and development of guar gum based novel, superabsorbent and moisture retaining hydrogels for agricultural applications. Carbohydr. Polym. 2018, 185, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Sojka, R.; Entry, J.A.; Fuhrmann, J.J. The influence of high application rates of polyacrylamide on microbial metabolic potential in an agricultural soil. Appl. Soil Ecol. 2006, 32, 243–252. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, L.; Jiang, Z.; Li, C.; Hu, X.; Pang, L.; Li, S.; Sun, H. Runoff-driven nitrogen and phosphorus dynamics of substrate material for rocky slope eco-engineering. Ecol. Eng. 2013, 51, 123–132. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, J.; Zhao, T.; Huang, X.; Zhao, P. Ecological restoration of highway slope by covering with straw-mat and seeding with grass-legume mixture. Ecol. Eng. 2016, 90, 68–76. [Google Scholar] [CrossRef]
- Cai, X.Y.; Xu, W.N.; Xia, Z.Y.; Zhou, Z.J. The Sensitivity Analysis of Stability Factors of Rocky Slope with Ecological Restoration. Adv. Mater. Res. 2012, 361–363, 2003–2007. [Google Scholar] [CrossRef]
- Wang, Z.-Q.; Wu, L.-H.; Liu, T.-T. Revegetation of steep rocky slopes: Planting climbing vegetation species in artificially drilled holes. Ecol. Eng. 2009, 35, 1079–1084. [Google Scholar] [CrossRef]
- Gao, G.J.; Yuan, J.G.; Han, R.H.; Xin, G.R.; Yang, Z.Y. Characteristics of the optimum combination of synthetic soils by plant and soil properties used for rock slope restoration. Ecol. Eng. 2007, 30, 303–311. [Google Scholar] [CrossRef]
- Fabian, K.; Dimitri, M.; Jackline, K.; Jesse, O.; Teresia, M.; Sarah, O.; Martyn, W.; Colin, P. A low-cost integrated desalination and irrigation technique tested on dual-purpose sorghum in Turkana County, Kenya. J. Dryland Agric. 2021, 7, 96–113. [Google Scholar] [CrossRef]
- Sadeghi, S.H.; Hazbavi, Z.; Younesi, H.; Bahramifar, N. Trade-off between runoff and sediments from treated erosion plots and polyacrylamide and acrylamide residues. Catena 2016, 142, 213–220. [Google Scholar] [CrossRef]
- Jahan, M.; Nassiri Mahallati, M. Can Superabsorbent Polymers Improve Plants Production in Arid Regions? Adv. Polym. Technol. 2020, 2020, 7124394. [Google Scholar] [CrossRef]
- Egrinya Eneji, A.; Islam, R.; An, P.; Amalu, U.C. Nitrate retention and physiological adjustment of maize to soil amendment with superabsorbent polymers. J. Clean. Prod. 2013, 52, 474–480. [Google Scholar] [CrossRef]
- Verma, A.K.; Sindhu, S.S.; Singh, A.; Kumar, A.; Singh, A.; Chauhan, V.B.S. Conditioning effects of biodegradable superabsorbent polymer and vermi-products on media properties and growth of gerbera. Ecol. Eng. 2019, 132, 23–30. [Google Scholar] [CrossRef]
- Namvar, H.; Asgharzade, A.; Babaeian, M.; Hosseinzade, E. The effects of superabsorbent polymer on yield and yield component of two grape varieties. Int. J. Biosci. 2014, 4, 18–23. [Google Scholar]
- Hou, X.; Li, R.; He, W.; Dai, X.; Ma, K.; Liang, Y. Superabsorbent polymers influence soil physical properties and increase potato tuber yield in a dry-farming region. J. Soils Sediments 2017, 18, 816–826. [Google Scholar] [CrossRef]
- Yang, L.; Yang, Y.; Chen, Z.; Guo, C.; Li, S. Influence of super absorbent polymer on soil water retention, seed germination and plant survivals for rocky slopes eco-engineering. Ecol. Eng. 2014, 62, 27–32. [Google Scholar] [CrossRef]
- Su, A.Y.; Niu, S.Q.; Liu, Y.Z.; He, A.L.; Zhao, Q.; Pare, P.W.; Li, M.F.; Han, Q.Q.; Ali Khan, S.; Zhang, J.L. Synergistic Effects of Bacillus amyloliquefaciens (GB03) and Water Retaining Agent on Drought Tolerance of Perennial Ryegrass. Int. J. Mol. Sci. 2017, 18, 2651. [Google Scholar] [CrossRef] [Green Version]
- Pramthawee, P.; Jongpradist, P.; Sukkarak, R. Integration of creep into a modified hardening soil model for time-dependent analysis of a high rockfill dam. Comput. Geotech. 2017, 91, 104–116. [Google Scholar] [CrossRef]
- Liu, Q.; Su, L.-j.; Xiao, H.; Xu, W.-n.; Xia, Z.-y. Selection and Configuration of Plants in High-and Steep-Cutting Rock Slope Greening in a Subtropical Region: Case Study of the First-Phase Urban Expressway of Xiazhou Avenue in Yichang. J. Highw. Transp. Res. Dev. 2019, 13, 102–110. [Google Scholar] [CrossRef]
- Qi, Y.; Chen, T.; Pu, J.; Yang, F.; Shukla, M.K.; Chang, Q. Response of soil physical, chemical and microbial biomass properties to land use changes in fixed desertified land. Catena 2018, 160, 339–344. [Google Scholar] [CrossRef]
- Bray, R.H.; Kurtz, L.T. Determination of Total, Organic, and Available Forms of Phosphorus in Soils. Soil Sci. 1945, 59, 39–45. [Google Scholar] [CrossRef]
- Kundu, R.; Mondal, M.; Garai, S.; Poddar, R.; Banerjee, S. Efficacy of herbicides against broad-spectrum weed floras and their effect on non-target soil micro-organisms and productivity in sugarcane (Saccharum sp.). Curr. J. Appl. Sci. Technol. 2020, 39, 23–32. [Google Scholar]
- Xi, J.; Zhang, P. Application of Super Absorbent Polymer in the Research of Water-retaining and Slow-release Fertilizer. IOP Conf. Ser. Earth Environ. Sci. 2021, 651, 042066. [Google Scholar] [CrossRef]
- Yang, M.; Wu, J.; Graham, G.M.; Lin, J.; Huang, M. Hotspots, Frontiers, and Emerging Trends of Superabsorbent Polymer Research: A Comprehensive Review. Front. Chem. 2021, 9, 688127. [Google Scholar] [CrossRef] [PubMed]
- Bakass, M.; Mokhlisse, A.; Lallemant, M. Absorption and desorption of liquid water by a superabsorbent polymer: Effect of polymer in the drying of the soil and the quality of certain plants. J. Appl. Polym. Sci. 2002, 83, 234–243. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Camele, I. Applications of Absorbent Polymers for Sustainable Plant Protection and Crop Yield. Sustainability 2021, 13, 3253. [Google Scholar] [CrossRef]
- Li, L.; Zhang, H.; Zhou, X.; Chen, M.; Lu, L.; Cheng, X. Effects of super absorbent polymer on scouring resistance and water retention performance of soil for growing plants in ecological concrete. Ecol. Eng. 2019, 138, 237–247. [Google Scholar] [CrossRef]
- Zhou, C.; Huang, W.; Qiu, S.; Liu, Z. A quantitative study on the amount of water-retaining agent based on adhesive-modified red bed weathered soil. Bull. Eng. Geol. Environ. 2021, 80, 3139–3150. [Google Scholar] [CrossRef]
- Zhang, J.F.; Zhao, T.N.; Sun, B.P.; Song, S.S.; Guo, H.B.; Shen, H.J.; Wu, Y. Effects of biofertilizers and super absorbent polymers on plant growth and soil fertility in the arid mining area of Inner Mongolia, China. J. Mt. Sci. 2018, 15, 1920–1935. [Google Scholar] [CrossRef]
- Liao, R.; Ren, S.; Yang, P. Multi-Chemical Regulation Technology Applied to Dryland Maize (Zea mays L.) Production in Northern China. Trans. Asabe 2015, 58, 1535–1546. [Google Scholar]
- Rezashateri, M.; Khajeddin, S.J.; Abedi-Koupai, J.; Majidi, M.M.; Matinkhah, S.H. Growth characteristics of Artemisia sieberi influenced by super absorbent polymers in texturally different soils under water stress condition. Arch. Agron. Soil Sci. 2017, 63, 984–997. [Google Scholar] [CrossRef]
- Yu, J.; Shi, J.G.; Dang, P.F.; Mamedov, A.I.; Shainberg, I.; Levy, G.J. Soil and Polymer Properties Affecting Water Retention by Superabsorbent Polymers under Drying Conditions. Soil Sci. Soc. Am. J. 2012, 76, 1758–1767. [Google Scholar] [CrossRef]
- Saha, A.; Sekharan, S.; Manna, U. Superabsorbent hydrogel (SAH) as a soil amendment for drought management: A review. Soil Tillage Res. 2020, 204, 104736. [Google Scholar] [CrossRef]
- Bhardwaj, A.K.; Shainberg, I.; Goldstein, D.; Warrington, D.N.; Levy, G.J. Water Retention and Hydraulic Conductivity of Cross-Linked Polyacrylamides in Sandy Soils. Soil Sci. Soc. Am. J. 2007, 71, 406–412. [Google Scholar] [CrossRef]
- Qiao, D.; Liu, H.; Yu, L.; Bao, X.; Simon, G.P.; Petinakis, E.; Chen, L. Preparation and characterization of slow-release fertilizer encapsulated by starch-based superabsorbent polymer. Carbohydr. Polym. 2016, 147, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Durian, D.J. Effect of hydrogel particle additives on water-accessible pore structure of sandy soils: A custom pressure plate apparatus and capillary bundle model. Phys. Rev. E 2013, 87, 053013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuazo, V.c.H.D.; Pleguezuelo, C.R.o.R. Soil-Erosion and Runoff Prevention by Plant Covers: A Review. Agron. Sustain. Dev. 2008, 28, 65–86. [Google Scholar]
- Banedjschafie, S.; Durner, W. Water retention properties of a sandy soil with superabsorbent polymers as affected by aging and water quality. J. Plant Nutr. Soil Sci. 2015, 178, 798–806. [Google Scholar] [CrossRef]
- Ai, F.; Yin, X.; Hu, R.; Ma, H.; Liu, W. Research into the super-absorbent polymers on agricultural water. Agric. Water Manag. 2021, 245, 106513. [Google Scholar] [CrossRef]
- Igwe, P.U.; Ezeukwu, J.C.; Edoka, N.E.; Ejie, O.C.; Lfi, G.I. A Review of Vegetation Cover as a Natural Factor to Soil Erosion. Int. J. Rural. Dev. Environ. Health Res. 2017, 1, 21–28. [Google Scholar] [CrossRef]
- Nunes, A.N.; de Almeida, A.C.; Coelho, C.O.A. Impacts of land use and cover type on runoff and soil erosion in a marginal area of Portugal. Appl. Geogr. 2011, 31, 687–699. [Google Scholar] [CrossRef]
- Li, S.-C.; Sun, H.-L.; Yang, Z.-R.; He, L.; Cui, B.-S. Effect of straw fiber, polyacrylamide and super absorbent polymer ecological engineering on rock slope protection. Yanshilixue Yu Gongcheng Xuebao/Chin. J. Rock Mech. Eng. 2006, 25, 257–267. [Google Scholar]
Organic Matter (g/kg) | Extractable P (mg/kg) | Extractable K (mg/kg) | Extractable N (mg/kg) | Bulk Density (g/cm3) |
---|---|---|---|---|
24.16 | 71.22 | 120.66 | 153.28 | 1.33 |
Dosage of Water-Retaining Agent (g/m2) | Extractable N (mg/kg) | Extractable P (mg/kg) | Extractable K (mg/kg) | |||
---|---|---|---|---|---|---|
May 2020 | May 2021 | May 2020 | May 2021 | May 2020 | May 2021 | |
0 | 29.39 ± 1.26 e | 17.64 ± 0.77 e | 27.62 ± 1.03 d | 16.59 ± 0.64 d | 59.38 ± 1.11 d | 35.63 ± 0.67 d |
10 | 43.53 ± 1.55 d | 26.12 ± 0.93 d | 34.39 ± 0.73 c | 20.63 ± 0.44 c | 69.72 ± 1.78 c | 41.88 ± 1.16 c |
20 | 52.29 ± 0.85 c | 31.38 ± 0.51 c | 41.53 ± 1.12 b | 24.93 ± 0.68 b | 76.54 ± 2.03 b | 45.93 ± 1.21 b |
30 | 63.44 ± 1.11 b | 38.06 ± 0.66 b | 46.33 ± 0.44 a | 27.80 ± 0.28 a | 83.12 ± 1.14 a | 49.87 ± 0.68 a |
40 | 66.07 ± 1.29 a | 39.64 ± 0.78 a | 46.87 ± 0.59 a | 28.13 ± 0.37 a | 82.44 ± 1.15 a | 49.47 ± 0.70 a |
50 | 65.69 ± 0.99 a | 39.41 ± 0.59 a | 47.22 ± 0.95 a | 28.34 ± 0.56 a | 82.40 ± 0.83 a | 49.44 ± 0.50 a |
Dosage of Water-Retaining Agent (g/m2) | Total N in Runoff Fluid (g) | Total K in Runoff Fluid (g) | Total P in Runoff Fluid (g) | |||
---|---|---|---|---|---|---|
May 2020 | May 2021 | May 2020 | May 2021 | May 2020 | May 2021 | |
0 | 47.06 ± 1.30 a | 18.82 ± 0.52 a | 32.39 ± 1.58 a | 12.96 ± 0.63 a | 18.78 ± 1.00 a | 7.51 ± 0.40 a |
10 | 36.18 ± 2.31 b | 14.47 ± 0.93 b | 22.53 ± 0.60 b | 9.01 ± 0.24 b | 14.35 ± 0.43 b | 5.74 ± 0.17 b |
20 | 26.70 ± 0.67 c | 10.68 ± 0.27 c | 18.69 ± 0.69 c | 7.48 ± 0.28 c | 12.42 ± 0.58 c | 4.97 ± 0.23 c |
30 | 20.55 ± 0.67 d | 8.16 ± 0.18 d | 16.86 ± 0.58 d | 6.74 ± 0.23 d | 10.80 ± 0.72 d | 4.32 ± 0.29 d |
40 | 16.33 ± 0.79 e | 7.43 ± 0.13 de | 14.93 ± 0.64 e | 5.94 ± 0.21 e | 9.54 ± 0.38 e | 3.46 ± 0.16 e |
50 | 12.79 ± 1.04 f | 7.29 ± 0.17 e | 13.90 ± 0.27 e | 5.76 ± 0.13 e | 8.45 ± 0.32 e | 3.38 ± 0.12 e |
Dosage of Water-Retaining Agent (g/m2) | Number of Plant Individuals Per Unit Area | Plant Height (cm) | Plant Ground Diameter (cm) | |||
---|---|---|---|---|---|---|
May 2020 | May 2021 | May 2020 | May 2021 | May 2020 | May 2021 | |
0 | 32 ± 1.00 d | 20 ± 1.00 f | 96 ± 1.00 d | 106 ± 1.00 f | 1.3 ± 0.06 d | 2.1 ± 0.06 f |
10 | 37 ± 1.00 c | 25 ± 1.00 e | 104 ± 1.00 c | 113 ± 2.00 e | 1.7 ± 0.06 c | 2.5 ± 0.06 e |
20 | 42 ± 1.00 b | 30 ± 1.00 d | 113 ± 1.00 b | 121 ± 0.58 d | 1.8 ± 0.06 c | 2.6 ± 0.06 d |
30 | 47 ± 0.58 a | 35 ± 1.00 c | 118 ± 1.00 a | 127 ± 0.58 c | 2.0 ± 0.10 b | 2.8 ± 0.06 c |
40 | 46 ± 1.00 a | 39 ± 1.00 b | 118 ± 1.00 a | 133 ± 1.00 b | 2.2 ± 0.06 a | 3.2 ± 0.06 b |
50 | 45 ± 1.53 a | 41 ± 0.58 a | 119 ± 2.08 a | 139 ± 2.08 a | 2.2 ± 0.10 a | 3.5 ± 0.06 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xerdiman, D.; Zhou, H.; Li, S.; Sun, H.; Xin, K.; Sun, D.; Li, C. Effects of Water-Retaining Agent Dosages on Slope-Protection Plants and Soil Nutrients on Rocky Slopes. Sustainability 2022, 14, 3615. https://doi.org/10.3390/su14063615
Xerdiman D, Zhou H, Li S, Sun H, Xin K, Sun D, Li C. Effects of Water-Retaining Agent Dosages on Slope-Protection Plants and Soil Nutrients on Rocky Slopes. Sustainability. 2022; 14(6):3615. https://doi.org/10.3390/su14063615
Chicago/Turabian StyleXerdiman, Didar, Hongxin Zhou, Shaocai Li, Hailong Sun, Kewei Xin, Dayuan Sun, and Chaoyang Li. 2022. "Effects of Water-Retaining Agent Dosages on Slope-Protection Plants and Soil Nutrients on Rocky Slopes" Sustainability 14, no. 6: 3615. https://doi.org/10.3390/su14063615
APA StyleXerdiman, D., Zhou, H., Li, S., Sun, H., Xin, K., Sun, D., & Li, C. (2022). Effects of Water-Retaining Agent Dosages on Slope-Protection Plants and Soil Nutrients on Rocky Slopes. Sustainability, 14(6), 3615. https://doi.org/10.3390/su14063615