Determining Value Added Intellectual Capital (VAIC) Using the TOPSIS-CRITIC Method in Small and Medium-Sized Farms in Selected European Countries
Abstract
:1. Introduction
- (1)
- Identification of the variables generating VA (value added), VC (net asset value), HC (human capital) and SC (structural capital);
- (2)
- Determining synthetic measures of VA, VC, HC and SC;
- (3)
- Determination on the basis of the model used with the use of synthetic measures CEE (structural capital efficiency), HCE (human capital efficiency), SCE (structural capital efficiency) and VAIC;
- (4)
- To determine the relationship between the values obtained for objectives 2 and 3 and the area of the farm.
2. Literature Review
3. Research Methodology
- mini{xij}—the minimum value of function j;
- maxi {xik}—the maximum value of function j;
- i—the object (in the case analysed, a farm).
- mini{xij}—the minimum value of function j;
- maxi {xik}—the maximum value of function j;
- i—the object (in the case analysed, a farm).
- cj—the measure of the information capacity of feature j;
- sj(z)—the standard deviation calculated from the normalised values of feature j;
- rij—the correlation coefficient between features j and k.
- -
- Age of up to 25—a coefficient of 0.6;
- -
- Age 26–30—0.8;
- -
- Age 31–35—0.9;
- -
- Age 36–50—1.0;
- -
- Age 51–55—0.9;
- -
- Age 56–60—0.8;
- -
- Age 61–65—0.7;
- -
- Age 66 and older—0.6.
- -
- A 1 for sales without an agreement;
- -
- A 2 for sales on the basis of an informal (verbal) agreement;
- -
- A 3 for sales based on short-term agreements;
- -
- A 4 for sales based on long-term agreements;
- -
- A 5 for sales within producer or cooperative groups. All the listed activities were summarised into a single value to obtain the market relationship index.
- -
- A 3 in the case of an affirmative answer to the question—I primarily determine the terms of the agreement;
- -
- A 2 in the case of an affirmative answer to the question—both parties equally agree on the terms of the agreement;
- -
- A 1 in the case of an affirmative answer to the question—the terms of the agreement are determined primarily by the buyers.
- -
- A 3 in the case of an affirmative answer to the question—I primarily determine the terms of the agreement;
- -
- A 2 in the case of an affirmative answer to the question—both parties equally agree on the terms of the agreement;
- -
- A 1 in the case of an affirmative answer to the question—the terms of the agreement are determined primarily by the buyers.
- SSL—the variability for which the contrast is responsible;
- —contrast value (assessment) from the sample;
- n—number of measurements per group (replications);
- c—contrast value, e.g., for (−1; 0; 0; 1) the value is 2.
4. Results
5. Conclusions
- -
- The value of VA demonstrates a moderate declining trend with increasing farm area in Lithuania, Moldova and Serbia, while the opposite trend is observed in Poland and Romania;
- -
- The value of VA demonstrates a moderate declining trend with increasing farm area (except Moldavia);
- -
- The value of HC tends to increase with the increase in the farm area;
- -
- The value of SC in two countries indicates an increasing trend (Moldova and Romania) and in three countries shows a reverse trend (Lithuania, Poland, Serbia).
- -
- The value of the HCE index observed only as a difference between the smallest and the largest farms shows a declining trend understood as a decrease in the value of the synthetic measure as the farm size increases. This relationship was observed in each of the countries analysed.
- -
- The value of SCE showed a decreasing trend with increasing farm size in two countries, Poland and Lithuania, while an opposite trend was observed in Serbia, Romania and Moldova (the analysis only covers differences between the smallest and the largest farms).
- -
- A similar relationship analysis for the CEE index shows that this index is higher in the class of farms with the lowest area than in the farms with the largest area. This relationship applies to Lithuania, Moldova and Romania. In the other two countries, Poland and Serbia, the opposite relationship was found.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Tests of Significance
Effect | Multivariate Tests of Significance; Sigma-Restricted Parameterisation; Effective Hypothesis Decomposition | |||||
---|---|---|---|---|---|---|
Test | Value | F | Effect df | Error df | p | |
Lithuania | ||||||
Intercept | Wilks | 0.00 | 1,534,767 | 7 | 918.000 | 0.00 |
Pillai’s | 1.00 | 1,534,767 | 7 | 918.000 | 0.00 | |
Hotellng | 11,703.02 | 1,534,767 | 7 | 918.000 | 0.00 | |
Roy’s | 11,703.02 | 1,534,767 | 7 | 918.000 | 0.00 | |
Class | Wilks | 0.71 | 16 | 21 | 2636.550 | 0.00 |
Pillai’s | 0.30 | 15 | 21 | 2760.000 | 0.00 | |
Hotellng | 0.39 | 17 | 21 | 2750.000 | 0.00 | |
Roy’s | 0.34 | 45 | 7 | 920.000 | 0.00 | |
Moldova | ||||||
Intercept | Wilks | 0.00 | 1,407,221 | 7 | 434.000 | 0.00 |
Pillai’s | 1.00 | 1,407,221 | 7 | 434.000 | 0.00 | |
Hotellng | 22,697.12 | 1,407,221 | 7 | 434.000 | 0.00 | |
Roy’s | 22,697.12 | 1,407,221 | 7 | 434.000 | 0.00 | |
Class | Wilks | 0.83 | 4 | 21 | 1246.764 | 0.00 |
Pillai’s | 0.17 | 4 | 21 | 1308.000 | 0.00 | |
Hotellng | 0.20 | 4 | 21 | 1298.000 | 0.00 | |
Roy’s | 0.17 | 11 | 7 | 436.000 | 0.00 | |
Poland | ||||||
Intercept | Wilks | 0.00 | 760,236.9 | 7 | 438.000 | 0.00 |
Pillai’s | 1.00 | 760,236.9 | 7 | 438.000 | 0.00 | |
Hotellng | 12,149.90 | 760,236.9 | 7 | 438.000 | 0.00 | |
Roy’s | 12,149.90 | 760,236.9 | 7 | 438.000 | 0.00 | |
Class | Wilks | 0.86 | 3.1 | 21 | 1258.250 | 0.000003 |
Pillai’s | 0.14 | 3.1 | 21 | 1320.000 | 0.000004 | |
Hotellng | 0.15 | 3.1 | 21 | 1310.000 | 0.000002 | |
Roy’s | 0.10 | 6.5 | 7 | 440.000 | 0.000000 | |
Romania | ||||||
Intercept | Wilks | 0.000 | 912,008.4 | 7 | 774.000 | 0.00 |
Pillai’s | 1.000 | 912,008.4 | 7 | 774.000 | 0.00 | |
Hotellng | 8248.138 | 912,008.4 | 7 | 774.000 | 0.00 | |
Roy’s | 8248.138 | 912,008.4 | 7 | 774.000 | 0.00 | |
Class | Wilks | 0.711 | 13.3 | 21 | 2223.060 | 0.00 |
Pillai’s | 0.294 | 12.1 | 21 | 2328.000 | 0.00 | |
Hotellng | 0.398 | 14.6 | 21 | 2318.000 | 0.00 | |
Roy’s | 0.377 | 41.8 | 7 | 776.000 | 0.00 | |
Sebia | ||||||
Intercept | Wilks | 0.0 | 12,673,886 | 7 | 366.000 | 0.00 |
Pillai’s | 1.0 | 12,673,886 | 7 | 366.000 | 0.00 | |
Hotellng | 242,396.7 | 12,673,886 | 7 | 366.000 | 0.00 | |
Roy’s | 242,396.7 | 12,673,886 | 7 | 366.000 | 0.00 | |
Class | Wilks | 0.7 | 6 | 21 | 1051.505 | 0.00 |
Pillai’s | 0.3 | 5 | 21 | 1104.000 | 0.00 | |
Hotellng | 0.4 | 6 | 21 | 1094.000 | 0.00 | |
Roy’s | 0.3 | 17 | 7 | 368.000 | 0.00 |
Appendix B. Test HSD Tukey’s for Depended Variables Area
Approximate Probabilities for Post Hoc Tests Error: Between MS = 0.00029, df = 924.00 | ||||
Class | A | B | C | D |
Lithuania | ||||
A | 0.851163 | 0.862332 | 0.325203 | |
B | 0.851163 | 0.999995 | 0.810099 | |
C | 0.862332 | 0.999995 | 0.797247 | |
D | 0.325203 | 0.810099 | 0.797247 | |
Moldova | ||||
Approximate Probabilities for Post Hoc Tests Error: Between MS = 0.00035, df = 440.00 | ||||
A | 0.169867 | 0.016205 | 0.080283 | |
B | 0.169867 | 0.798880 | 0.987242 | |
C | 0.016205 | 0.798880 | 0.938751 | |
D | 0.080283 | 0.987242 | 0.938751 | |
Poland | ||||
Approximate Probabilities for Post Hoc Tests Error: Between MS = 0.00077, df = 444.00 | ||||
A | 0.214739 | 0.244448 | 0.571564 | |
B | 0.214739 | 0.999881 | 0.917282 | |
C | 0.244448 | 0.999881 | 0.939349 | |
D | 0.571564 | 0.917282 | 0.939349 | |
Romania | ||||
Approximate Probabilities for Post Hoc Tests Error: Between MS = 0.00074, df = 780.00 | ||||
A | 0.000008 | 0.000008 | 0.000008 | |
B | 0.000008 | 0.987308 | 0.270144 | |
C | 0.000008 | 0.987308 | 0.453403 | |
D | 0.000008 | 0.270144 | 0.453403 | |
Serbia | ||||
Approximate Probabilities for Post Hoc Tests Error: Between MS = 0.00050, df = 372.00 | ||||
A | 0.000008 | 0.000008 | 0.000008 | |
B | 0.000008 | 0.994691 | 0.997976 | |
C | 0.000008 | 0.994691 | 0.999884 | |
D | 0.000008 | 0.997976 | 0.999884 |
References
- Bozek, J. Differentiation and dynamics of number of small agricultural farms in European Union countries. Probl. Small Agric. Hold. 2018, 3, 5–19. [Google Scholar]
- Filippini, R.; Marraccini, E.; Lardon, S.; Bonari, E. Assessing food production capacity of farms in periurban areas. Ital. J. Agron. 2014, 9, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Tretiak, A.; Tretiak, V.; Priadka, T.; Lyashynskyy, V.; Tretiak, N. Non-conventional agricultural land use: A way to accelerate ecologization and capitalization. Sci. Pap. 2021, 21, 661–669. [Google Scholar]
- Xu, X.L.; Chen, H.H.; Zhang, R.R. The Impact of Intellectual Capital Efficiency on Corporate Sustainable Growth-Evidence from Smart Agriculture in China. Agriculture 2020, 10, 199. [Google Scholar] [CrossRef]
- Tillack, P.; SchulzE, E. The labor cost in CEE agriculture and its influence on competetiveness. In Proceedings of the Farm Work Science Facing Challenges of the XXI Century, Krakow, Poland, 25–27 June 2001; pp. 158–164. [Google Scholar]
- Kozera, M. Kapitał intelektualny w rolnictwie-zrozumieć, zmierzyć, zastosować. In Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, Efektywność-konceptualizacja i uwarunkowania; Dudycz, T., Osbert-Pociecha, G., Brycz, B., Eds.; Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu: Wrocław, Poland, 2012. [Google Scholar]
- Kozera-Kowalska, M. Kapitał Intelektualny w Tworzeniu Wartości Dodanej Przedsiębiorstw Rolnych; Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu: Poznań, Poland, 2017. [Google Scholar]
- Xu, X.L.; Li, J.P.; Wu, D.S.; Zhang, X. The intellectual capital efficiency and corporate sustainable growth nexus: Comparison from agriculture, tourism and renewable energy sector. Environ. Dev. Sustain. 2021, 23, 16038–16056. [Google Scholar] [CrossRef]
- Xu, J.; Liu, F. The impact of intellectual capital on firm performance: A modified and extended VAIC model. J. Compet. 2020, 12, 161–176. [Google Scholar] [CrossRef]
- Chen, J.; Chen, X.A.; Guo, J.; Zhu, R.Y.; Liu, M.R.; Kuang, X.X.; He, W.Q.; Lu, Y. Agricultural, Ecological, and Social Insights: Residual Mulch Film Management Capacity and Policy Recommendations Based on Evidence in Yunnan Province, China. Sustainability 2021, 13, 1603. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Xiao, X.; Cao, R.B.; Zheng, C.H.; Guo, Y.R.; Gong, W.X.; Wei, Z.C. How important is community participation to eco-environmental conservation in protected areas? From the perspective of predicting locals’ pro-environmental behaviours. Sci. Total Environ. 2020, 739, 10. [Google Scholar] [CrossRef]
- Stahle, P.; Stahle, S.; Aho, S. Value added intellectual coefficient (VAIC): A critical analysis. J. Intellect. Cap. 2011, 12, 531–551. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y. Does Intellectual Capital Measurement Matter in Financial Performance? An Investigation of Chinese Agricultural Listed Companies. Agronomy 2021, 11, 1872. [Google Scholar] [CrossRef]
- XU, X.L.; Liu, C.K. How to keep renewable energy enterprises to reach economic sustainable performance: From the views of intellectual capitaland lifecycle. Energy Sustain. Soc. 2019, 9, 10. [Google Scholar] [CrossRef]
- Pulic, A. VAIC (TM)—An accounting tool for IC management. Int. J. Technol. Manag. 2000, 20, 702–714. [Google Scholar] [CrossRef]
- Edvinsson, L.; Malone, M.S. Intellectual Capital: Realizing Your Company’s True Value by Finding Its Hidden Brainpower; Harper Business: New York, NY, USA, 1997. [Google Scholar]
- Bontis, N. National Intellectual Capital Index a United Nations initiative for the Arab region. J. Intellect. Cap. 2004, 5, 13–39. [Google Scholar] [CrossRef] [Green Version]
- Iazzolino, G.; Laise, D. Value added intellectual coefficient (VAIC) A methodological and critical review. J. Intellect. Cap. 2013, 14, 547–563. [Google Scholar] [CrossRef]
- Beggs, D.S.; Jongman, E.C.; Hemsworth, P.H.; Fisher, A.D. The effects of herd size on the welfare of dairy cows in a pasture-based system using animal- and resource-based indicators. J. Dairy Sci. 2019, 102, 3406–3420. [Google Scholar] [CrossRef] [Green Version]
- Ovechkin, D.V.; Romashkina, G.F.; Davydenko, V.A. The Impact of Intellectual Capital on the Profitability of Russian Agricultural Firms. Agronomy 2021, 11, 286. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Maji, S.G. Empirical Validity of Value Added Intellectual Coefficient Model in Indian Knowledge-based Sector. Glob. Bus. Rev. 2015, 16, 947–962. [Google Scholar] [CrossRef]
- Nadeem, M.; Dumay, J.; Massaro, M. If You Can Measure It, You Can Manage It: A Case of Intellectual Capital. Aust. Account. Rev. 2019, 29, 395–407. [Google Scholar] [CrossRef]
- Hron, J.; Stusek, J.; Arnost, M.; Huml, J. Diversification strategy in small and medium size agribusinesses in the Czech Republic-impulses for searching business opportunities. Agric. Econ. 2008, 54, 505–509. [Google Scholar] [CrossRef] [Green Version]
- Borychowski, M.; Stepien, S.; Polcyn, J.; Tosovic-Stevanovic, A.; Calovic, D.; Lalic, G.; Zuza, M. Socio-Economic Determinants of Small Family Farms’ Resilience in Selected Central and Eastern European Countries. Sustainability 2020, 12, 10362. [Google Scholar] [CrossRef]
- Rostamzadeh, R.; Keshavarz Ghorabaee, M.; Govindan, K.; Esmaeili, A.; Nobar, H.B.K. Evaluation of sustainable supply chain risk management using an integrated fuzzy TOPSIS- CRITIC approach. J. Clean. Prod. 2018, 175, 651–669. [Google Scholar] [CrossRef]
- Mandrzejewska-Smól, I. Wiek i doświadczenie jako atrybuty działalności zawodowej. In Praca Człowieka w XXI Wieku: Konteksty-Wyzwania-Zagrożenia; Gerlach, R., Ed.; Wydawnictwo Uniwersytetu Kazimierza Wielkiego: Bydgoszcz, Poland, 2008. [Google Scholar]
- Göbel, C.; Zwick, T. Which Personnel Measures Are Effective in Increasing Productivity of Old Workers? ZEW Discussion Papers; No. 10-069; IDEAS: St. Louis, MO, USA, 2010. [Google Scholar]
- Ruzik-Sierdzińska, A.; Lis, M.; Potoczna, M.; Belloni, M.; Villosio, C. Age and Productivity: Human Capital Accumulation and Depreciation; CASE Network Reports, No. 114/2013; Center for Social and Economic Research (CASE): Warsaw, Polan, 2012. [Google Scholar]
- Stanisz, A. Przystępny Kurs Statystyki z Zastosowaniem STATISTICA PL na Przykładach z Medycyny; StatSoft Polska: Kraków, Poland, 2007. [Google Scholar]
- Hanushek, E.A.; Woessmann, L. Overview of the symposium on performance pay for teachers. Econ. Educ. Rev. 2011, 30, 391–393. [Google Scholar] [CrossRef]
Nr | Item | Total Link Strength |
---|---|---|
1. | intellectual capital | 21 |
2. | financial performance | 14 |
3. | corporate performance | 8 |
4. | impact | 8 |
5. | firms market value | 8 |
6. | innovation | 7 |
7. | market value | 7 |
8. | knowledge management | 6 |
9. | firm performance | 5 |
10. | value creation | 5 |
11. | vaic | 4 |
Name of Synthetic Measure | Name of Variable | Type of Variable | Country | ||||
---|---|---|---|---|---|---|---|
Lithuania | Romania | Moldova | Serbia | Poland | |||
Number of Farms Analysed | |||||||
928 | 784 | 444 | 376 | 448 | |||
VA | Value of crop and livestock production (local currency) | stimulant | 0.301 | 0.151 | 0.295 | 0.532 | 0.194 |
Expenditure on electricity and/or gas | destimulant | 0.228 | 0.187 | 0.183 | 0.098 | 0.217 | |
Expenditure on fertilisers (local currency) | destimulant | 0.148 | 0.261 | 0.219 | 0.101 | 0.311 | |
Expenditure on crop protection products (local currency) | destimulant | 0.144 | 0.148 | 0.174 | 0.097 | 0.283 | |
Expenditure on fuel (local currency) | destimulant | 0.178 | 0.253 | 0.130 | 0.172 | 0.000 | |
VC | Value of the farm (local currency) | stimulant | 0.734 | 0.615 | 0.647 | 0.553 | 0.798 |
Commitments (local currency) | destimulant | 0.266 | 0.385 | 0.353 | 0.447 | 0.202 | |
HC | Professional experience (points) | stimulant | 0.070 | 0.074 | 0.053 | 0.056 | 0.124 |
Education (points) | stimulant | 0.053 | 0.051 | 0.069 | 0.062 | 0.102 | |
Agricultural qualifications (points) | stimulant | 0.115 | 0.123 | 0.114 | 0.031 | 0.020 | |
Participation in continued education—farm owner (points) | stimulant | 0.088 | 0.096 | 0.116 | 0.067 | 0.246 | |
Participation in continued education—spouse (points) | stimulant | 0.065 | 0.059 | 0.097 | 0.050 | 0.160 | |
Participation in continued education—other adults (points) | stimulant | 0.028 | 0.056 | 0.047 | 0.077 | 0.127 | |
Participation in social and/or cultural events—farm owner (points) | stimulant | 0.095 | 0.108 | 0.105 | 0.142 | 0.098 | |
Participation in social and/or cultural events—spouse (points) | stimulant | 0.108 | 0.114 | 0.112 | 0.147 | 0.020 | |
Participation in social and/or cultural events—other adults (points) | stimulant | 0.117 | 0.127 | 0.094 | 0.149 | 0.019 | |
Membership of any organisation, association, club, etc.—owner of the farm (points) | stimulant | 0.116 | 0.103 | 0.105 | 0.103 | 0.028 | |
Membership of any organisation, association, club, etc.—spouse (points) | stimulant | 0.096 | 0.047 | 0.057 | 0.036 | 0.028 | |
Membership of any organisation, association, club, etc.—other adults (points) | stimulant | 0.048 | 0.040 | 0.031 | 0.079 | 0.028 | |
SC | Number of distribution channels (number) | stimulant | 0.179 | 0.238 | 0.199 | 0.185 | 0.233 |
Market relationship index for sales of food or agricultural products (points) | stimulant | 0.172 | 0.285 | 0.226 | 0.294 | 0.260 | |
Market position index—sales (points) | stimulant | 0.326 | 0.439 | 0.333 | 0.261 | 0.325 | |
Market position index—purchase (points) | stimulant | 0.322 | 0.038 | 0.242 | 0.261 | 0.183 |
C | N | A | Measures | |||||||
---|---|---|---|---|---|---|---|---|---|---|
VA | VC | HC | SC | HCE | SCE | CEE | VAIC | |||
Lithuania | ||||||||||
A | 232 | 5.59 | 0.541037 | 0.363298 | 0.439745 | 0.392581 | 1.380992 | 0.721844 | 1.565260 | 3.668096 |
B | 232 | 8.95 | 0.542305 | 0.310117 | 0.444730 | 0.364102 | 1.321631 | 0.671240 | 1.775012 | 3.767882 |
C | 232 | 11.51 | 0.542267 | 0.297542 | 0.435130 | 0.405682 | 1.344086 | 0.747757 | 1.841434 | 3.933277 |
D | 232 | 15.10 | 0.543704 | 0.291731 | 0.468107 | 0.355425 | 1.270377 | 0.654437 | 1.873135 | 3.797948 |
Moldavia | ||||||||||
A | 111 | 2.75 | 0.557989 | 0.563256 | 0.468885 | 0.365980 | 1.271721 | 0.656711 | 1.006282 | 2.934714 |
B | 111 | 4.24 | 0.552835 | 0.549269 | 0.483340 | 0.366006 | 1.201383 | 0.661516 | 1.013427 | 2.876326 |
C | 111 | 5.86 | 0.550544 | 0.523363 | 0.499984 | 0.365781 | 1.187333 | 0.663747 | 1.053762 | 2.904842 |
D | 111 | 8.45 | 0.551997 | 0.530940 | 0.513735 | 0.372072 | 1.129910 | 0.673787 | 1.042469 | 2.846166 |
Poland | ||||||||||
A | 112 | 8.31 | 0.676487 | 0.154215 | 0.372517 | 0.399289 | 2.035951 | 0.592040 | 5.226856 | 7.854847 |
B | 112 | 12.20 | 0.683636 | 0.181486 | 0.413976 | 0.398204 | 1.918195 | 0.582712 | 5.478249 | 7.979156 |
C | 112 | 15.63 | 0.683380 | 0.193177 | 0.432781 | 0.367018 | 1.849403 | 0.538381 | 5.157616 | 7.545399 |
D | 112 | 24.19 | 0.681249 | 0.207279 | 0.427098 | 0.376509 | 1.882548 | 0.552860 | 4.341245 | 6.776653 |
Romania | ||||||||||
A | 196 | 2.16 | 0.713391 | 0.419147 | 0.425769 | 0.403195 | 2.021609 | 0.571531 | 1.723660 | 4.316800 |
B | 196 | 4.67 | 0.732844 | 0.400734 | 0.445609 | 0.396894 | 1.988803 | 0.542304 | 1.831208 | 4.362315 |
C | 196 | 8.83 | 0.733756 | 0.395324 | 0.453898 | 0.422845 | 2.019891 | 0.576117 | 1.857558 | 4.453566 |
D | 196 | 37.78 | 0.737794 | 0.389270 | 0.474660 | 0.448166 | 1.967022 | 0.607171 | 1.895566 | 4.469760 |
Serbia | ||||||||||
A | 94 | 2.80 | 0.331884 | 0.460347 | 0.361135 | 0.356724 | 1.238071 | 1.083457 | 0.719970 | 3.041498 |
B | 94 | 4.74 | 0.313928 | 0.450403 | 0.371682 | 0.383194 | 1.274221 | 1.220792 | 0.697001 | 3.192014 |
C | 94 | 5.99 | 0.313124 | 0.449587 | 0.409244 | 0.379404 | 1.128836 | 1.211604 | 0.696519 | 3.036959 |
D | 94 | 8.16 | 0.313347 | 0.449843 | 0.466222 | 0.420770 | 0.924232 | 1.342607 | 0.696565 | 2.963404 |
Name | C | Average Values | SSefect | Contrast 1 (1; 0; 0; −1) | Contrast 2 (0; 1; 0; −1) | Contrast 3 (0; 0; 1; −1) | Contrast 4 (1; −1; 0; 0) | Contrast 5 (0; 1; −1; 0) |
---|---|---|---|---|---|---|---|---|
VA | A | 0.541037 | 0.0008 | no significant | no significant | no significant | no significant | no significant |
B | 0.542305 | |||||||
C | 0.542267 | |||||||
D | 0.543704 | |||||||
VC | A | 0.363298 | 0.74263 | 0.80 | 0.05 | no significant | 0.44 | 0.02 |
B | 0.310117 | |||||||
C | 0.297542 | |||||||
D | 0.291731 | |||||||
HC | A | 0.439745 | 0.1495 | 0.62 | 0.42 | 0.84 | no significant | no significant |
B | 0.444730 | |||||||
C | 0.435130 | |||||||
D | 0.468107 | |||||||
SC | A | 0.392581 | 0.3882 | 0.41 | no significant | 0.75 | 0.24 | 0.52 |
B | 0.364102 | |||||||
C | 0.405682 | |||||||
D | 0.355425 | |||||||
HCE | A | 1.380992 | 1.490 | 0.95 | no significant | no significant | no significant | no significant |
B | 1.321631 | |||||||
C | 1.344086 | |||||||
D | 1.270377 | |||||||
SCE | A | 0.721844 | 1.3121 | 0.40 | no significant | 0.77 | 0.23 | 0.52 |
B | 0.671240 | |||||||
C | 0.747757 | |||||||
D | 0.654437 | |||||||
CEE | A | 1.565260 | 13.346 | 0.82 | 0.08 | no significant | 0.38 | 0.04 |
B | 1.775012 | |||||||
C | 1.841434 | |||||||
D | 1.873135 | |||||||
VAIC | A | 3.668096 | 8.34 | 0.23 | no significant | 0.25 | no significant | 0.38 |
B | 3.767882 | |||||||
C | 3.933277 | |||||||
D | 3.797948 |
Name | C | Average Values | SSefect | Contrast 1 (1; 0; 0; −1) | Contrast 2 (0; 1; 0; −1) | Contrast 3 (0; 0; 1; −1) | Contrast 4 (1; −1; 0; 0) | Contrast 5 (0; 1; −1; 0) |
---|---|---|---|---|---|---|---|---|
VA | A | 0.557989 | 0.0035 | 0.57 | no significant | no significant | 0.42 | no significant |
B | 0.552835 | |||||||
C | 0.550544 | |||||||
D | 0.551997 | |||||||
VC | A | 0.563256 | 0.1081 | 0.54 | 0.17 | no significant | 0.10 | 0.34 |
B | 0.549269 | |||||||
C | 0.523363 | |||||||
D | 0.530940 | |||||||
HC | A | 0.468885 | 0.1270 | 0.88 | 0.40 | no significant | no significant | no significant |
B | 0.483340 | |||||||
C | 0.499984 | |||||||
D | 0.513735 | |||||||
SC | A | 0.365980 | 0.00315 | no significant | no significant | no significant | no significant | no significant |
B | 0.366006 | |||||||
C | 0.365781 | |||||||
D | 0.372072 | |||||||
HCE | A | 1.271721 | 1.1317 | 0.98 | no significant | no significant | no significant | no significant |
B | 1.201383 | |||||||
C | 1.187333 | |||||||
D | 1.129910 | |||||||
SCE | A | 0.656711 | 0.0172 | no significant | no significant | no significant | no significant | no significant |
B | 0.661516 | |||||||
C | 0.663747 | |||||||
D | 0.673787 | |||||||
CEE | A | 1.006282 | 0.1724 | 0.42 | 0.27 | no significant | no significant | 0.52 |
B | 1.013427 | |||||||
C | 1.053762 | |||||||
D | 1.042469 | |||||||
VAIC | A | 2.934714 | 0,480 | no significant | no significant | no significant | no significant | no significant |
B | 2.876326 | |||||||
C | 2.904842 | |||||||
D | 2.846166 |
Name | C | Average Values | SSefect | Contrast 1 (1; 0; 0; −1) | Contrast 2 (0; 1; 0; −1) | Contrast 3 (0; 0; 1; −1) | Contrast 4 (1; −1; 0; 0) | Contrast 5 (0; 1; −1; 0) |
---|---|---|---|---|---|---|---|---|
VA | A | 0.676487 | 0.0037 | no significant | no significant | no significant | no significant | no significant |
B | 0.683636 | |||||||
C | 0.683380 | |||||||
D | 0.681249 | |||||||
VC | A | 0.154215 | 0.1702 | 0.93 | no significant | no significant | no significant | no significant |
B | 0.181486 | |||||||
C | 0.193177 | |||||||
D | 0.207279 | |||||||
HC | A | 0.372517 | 0.2489 | 0.67 | no significant | no significant | 0.39 | no significant |
B | 0.413976 | |||||||
C | 0.432781 | |||||||
D | 0.427098 | |||||||
SC | A | 0.399289 | 0.0867 | no significant | no significant | no significant | no significant | 0.63 |
B | 0.398204 | |||||||
C | 0.367018 | |||||||
D | 0.376509 | |||||||
HCE | A | 2.035951 | 2.220 | no significant | no significant | no significant | no significant | no significant |
B | 1.918195 | |||||||
C | 1.849403 | |||||||
D | 1.882548 | |||||||
SCE | A | 0.592040 | 0.2119 | 0.41 | no significant | no significant | no significant | 0.52 |
B | 0.582712 | |||||||
C | 0.538381 | |||||||
D | 0.552860 | |||||||
CEE | A | 5.226856 | 81.60 | 0.54 | 0.89 | 0.46 | no significant | no significant |
B | 5.478249 | |||||||
C | 5.157616 | |||||||
D | 4.341245 | |||||||
VAIC | A | 7.854847 | 97.97 | 0.66 | 0.83 | no significant | no significant | no significant |
B | 7.979156 | |||||||
C | 7.545399 | |||||||
D | 6.776653 |
Name | C | Average Values | SSefect | Contrast 1 (1; 0; 0; −1) | Contrast 2 (0; 1; 0; −1) | Contrast 3 (0; 0; 1; −1) | Contrast 4 (1; −1; 0; 0) | Contrast 5 (0; 1; −1; 0) |
---|---|---|---|---|---|---|---|---|
VA | A | 0.713391 | 0.0701 | 0.83 | no significant | no significant | 0.53 | no significant |
B | 0.732844 | |||||||
C | 0.733756 | |||||||
D | 0.737794 | |||||||
VC | A | 0.419147 | 0.0978 | 0.89 | 0.13 | 0.04 | 0.34 | no significant |
B | 0.400734 | |||||||
C | 0.395324 | |||||||
D | 0.389270 | |||||||
HC | A | 0.425769 | 0.2410 | 0.97 | no significant | no significant | no significant | no significant |
B | 0.445609 | |||||||
C | 0.453898 | |||||||
D | 0.474660 | |||||||
SC | A | 0.403195 | 0.3132 | 0.63 | 0.82 | no significant | no significant | no significant |
B | 0.396894 | |||||||
C | 0.422845 | |||||||
D | 0.448166 | |||||||
HCE | A | 2.021609 | 0.4060 | no significant | no significant | no significant | no significant | no significant |
B | 1.988803 | |||||||
C | 2.019891 | |||||||
D | 1.967022 | |||||||
SCE | A | 0.571531 | 0.4146 | no significant | 0.99 | no significant | no significant | no significant |
B | 0.542304 | |||||||
C | 0.576117 | |||||||
D | 0.607171 | |||||||
CEE | A | 1.723660 | 3.2010 | 0.90 | 0.13 | 0.04 | 0.35 | 0.02 |
B | 1.831208 | |||||||
C | 1.857558 | |||||||
D | 1.895566 | |||||||
VAIC | A | 4.316800 | 3.15 | no significant | no significant | no significant | no significant | no significant |
B | 4.362315 | |||||||
C | 4.453566 | |||||||
D | 4.469760 |
Name | C | Average Values | SSefect | Contrast 1 (1; 0; 0; −1) | Contrast 2 (0; 1; 0; −1) | Contrast 3 (0; 0; 1; −1) | Contrast 4 (1; −1; 0; 0) | Contrast 5 (0; 1; −1; 0) |
---|---|---|---|---|---|---|---|---|
VA | A | 0.331884 | 0.02395 | 0.67 | no significant | no significant | 0.63 | no significant |
B | 0.313928 | |||||||
C | 0.313124 | |||||||
D | 0.313347 | |||||||
VC | A | 0.460347 | 0.00766 | 0.68 | no significant | no significant | 0.61 | no significant |
B | 0.450403 | |||||||
C | 0.449587 | |||||||
D | 0.449843 | |||||||
HC | A | 0.361135 | 0.63601 | 0.82 | 0.66 | 0.24 | no significant | no significant |
B | 0.371682 | |||||||
C | 0.409244 | |||||||
D | 0.466222 | |||||||
SC | A | 0.356724 | 0.19868 | 0.97 | 0.33 | 0.40 | no significant | no significant |
B | 0.383194 | |||||||
C | 0.379404 | |||||||
D | 0.420770 | |||||||
HCE | A | 1.238071 | 6.9848 | 0.66 | 0.82 | no significant | no significant | no significant |
B | 1.274221 | |||||||
C | 1.128836 | |||||||
D | 0.924232 | |||||||
SCE | A | 1.083457 | 3.1614 | 0.99 | 0.22 | 0.26 | 0.28 | no significant |
B | 1.220792 | |||||||
C | 1.211604 | |||||||
D | 1.342607 | |||||||
CEE | A | 0.719970 | 0.0382 | 0.67 | no significant | no significant | 0.65 | no significant |
B | 0.697001 | |||||||
C | 0.696519 | |||||||
D | 0.696565 | |||||||
VAIC | A | 3.041498 | 2.596 | no significant | no significant | no significant | no significant | no significant |
B | 3.192014 | |||||||
C | 3.036959 | |||||||
D | 2.963404 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polcyn, J. Determining Value Added Intellectual Capital (VAIC) Using the TOPSIS-CRITIC Method in Small and Medium-Sized Farms in Selected European Countries. Sustainability 2022, 14, 3672. https://doi.org/10.3390/su14063672
Polcyn J. Determining Value Added Intellectual Capital (VAIC) Using the TOPSIS-CRITIC Method in Small and Medium-Sized Farms in Selected European Countries. Sustainability. 2022; 14(6):3672. https://doi.org/10.3390/su14063672
Chicago/Turabian StylePolcyn, Jan. 2022. "Determining Value Added Intellectual Capital (VAIC) Using the TOPSIS-CRITIC Method in Small and Medium-Sized Farms in Selected European Countries" Sustainability 14, no. 6: 3672. https://doi.org/10.3390/su14063672
APA StylePolcyn, J. (2022). Determining Value Added Intellectual Capital (VAIC) Using the TOPSIS-CRITIC Method in Small and Medium-Sized Farms in Selected European Countries. Sustainability, 14(6), 3672. https://doi.org/10.3390/su14063672