Prickly Pear (Opuntia spp.) as an Invasive Species and a Potential Fodder Resource for Ruminant Animals
Abstract
:1. Introduction
Taxon | Origin | Use | References |
---|---|---|---|
Opuntia leucotricha and O. rastrera | Mexico | Health benefits, domestic animal feedstuff, water supply, ornamental purposes | [21,22,23,24,25,26] |
Opuntia humifusa | Canada | Human consumption, fodder crop, prevent soil erosion, pharmaceutical (emergency hydration) | [27,28,29] |
Opuntia monacantha | Spain, South America | Human consumption and health and pharmaceutical benefits, chemical industrial uses | [30,31,32,33] |
Opuntia engelmannii | south-central, south-western United States and northern Mexico | Cultivated as an ornamental or as live hedge and the fruit is edible, health benefits | [25,34,35] |
Opuntia microdasys | central and northern Mexico | Animal feedstuff, pharmaceutical and health benefits, human consumption | [36,37] |
Opuntia megacantha | North America and Mexico | Health benefits and animal feedstuff, human consumption | [38,39,40] |
Opuntia stricta | Australia, central America | Health benefits and animal feedstuff, human consumption, living fences | [18,33,41,42] |
Opuntia cochenillifera | South Africa | Both traditional medicinal and edible purposes | [43,44] |
Opuntia ficus-indica | Ethiopia | Health benefits, animal feedstuff and fruits for humans | [45] |
Opuntia ficus-indica | Ethiopia | Health benefits, animal feedstuff and fruits for humans | [45] |
Opuntia ficus-indica | Argentina and Mediterranean region | Health benefits, animal feedstuff and fruits for humans | [46,47] |
Opuntia dillenii | Italy | Health benefits, animal feedstuff and fruits for humans | [33] |
Opuntia ficus-indica | Chile | Health benefits, animal feedstuff and fruits for humans | [33] |
2. Growing Conditions and Varieties of Prickly Pear
2.1. Temperature
2.2. Soil and Water
3. The Effect of the Invasive Opuntia Species on Biodiversity and Ecosystems
4. Nutritional Value of Opuntia Species
5. Enhancing the Feeding Value of Opuntia for Ruminants
6. Health Benefits of Opuntia spp. in Diets for Ruminant Animals
7. The Use of Opuntia Cladodes and Prickly Pears in Ruminant Nutrition
8. Control of Opuntia Species
9. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Inglese, P.; Basile, F.; Schirra, M. Cactus pear fruit production. In Cacti: Biology and Uses; University of California Press: Berkeley, CA, USA, 2002; pp. 163–179. [Google Scholar]
- Food and Agriculture Organisation (FAO). Agro-Industrial Utilization of Cactus Pear; FAO: Rome, Italy, 2013. [Google Scholar]
- Vastolo, A.; Calabrò, S.; Cutrignelli, M.I.; Raso, G.; Todaro, M. Silage of Prickly Pears (Opuntia spp.) juice by-products. Animals 2020, 10, 1716. [Google Scholar] [CrossRef]
- Amghar, F.; Forey, E.; Richard, B.; Touzard, B.; Laddada, S.; Brouri, L.; Langlois, E.; Margerie, P. Old nurses always die: Impacts of nurse age on local plant richness. Plant Ecol. 2016, 217, 407–419. [Google Scholar] [CrossRef]
- Neffar, S.; Menasria, T.; Chenchouni, H. Diversity and functional traits of spontaneous plant species in Algerian rangelands rehabilitated with prickly pear (Opuntia ficus-indica L.) plantations. Turk. J. Bot. 2018, 42, 448–461. [Google Scholar] [CrossRef]
- Chenchouni, H.; Benabderrahmane, M.C.; Arar, A. Modeling and mapping desertification risk in eastern Algeria with geomatic data. In Proceedings of the IECHAR Conference, Al-Ahsa, Saudi Arabia, 1–2 March 2010; pp. 213–217. [Google Scholar]
- Rodrigues, A.M.; Pitacas, F.I.; Reis, C.M.; Blasco, M. Nutritional value of Opuntia ficus-indica cladodes from Portuguese ecotypes. Bulg. J. Agric. Sci. 2016, 22, 40–45. [Google Scholar]
- Abay, N.G. Cactus (Opuntia ficus-indica): Current utilization and future threats as cattle forage in Raya Azebo, Ethiopia. Environ. Manag. Sustain. Dev. 2018, 7, 1–3. [Google Scholar] [CrossRef]
- Matlabe, G. Evaluation of Fermentation Characteristics of Opuntia Cladodes Legume Silage Mixture and Its Influence on Growth Performance of Mutton-Merino Wethers. Ph.D. Thesis, North-West University, Mafikeng, South Africa, 2020. [Google Scholar]
- Einkamerer, O.B.; De Waal, H.O.; Combrinck, W.J.; Fair, M.D. Feed utilization and growth of Dorper wethers on Opuntia-based diets. S. Afr. J. Anim. Sci. 2009, 39, 53–57. [Google Scholar] [CrossRef] [Green Version]
- Combrinck, W.J.; Zeeman, D.C.; De Waal, H.O. Wet faeces produced by sheep fed dried spineless cactus pear cladodes in balanced diets. S. Afr. J. Anim. Sci. 2006, 36, 10–13. [Google Scholar] [CrossRef] [Green Version]
- Mokoboki, H.K.; Sebola, N.A. Chemical composition and feed intake of Opuntia cladodes varieties offered to goats. J. Anim. Plant Sci. 2017, 32, 5096–5103. [Google Scholar]
- Cruz, A.A.; Véras, A.S.; Oliveira, J.C.; Santos, D.C.; Chagas, J.C.; Neves, M.L.; Monteiro, C.C.; Ferreira, M.D. Sugarcane and cactus cladodes plus urea: A new option for Girolando dairy heifers. Rev. Bras. Zootec. 2020, 49, 20200016. [Google Scholar] [CrossRef]
- Batista, A.M.; Mustafa, A.F.; McAllister, T.; Wang, Y.; Soita, H.; McKinnon, J.J. Effects of variety on chemical composition, in situ nutrient disappearance and in vitro gas production of spineless cacti. J. Sci. Food Agric. 2003, 83, 440–455. [Google Scholar] [CrossRef]
- Neffar, S.; Chenchouni, H.; Beddiar, A.; Redjel, N. Rehabilitation of degraded rangeland in drylands by prickly pear (Opuntia ficus-indica L.) plantations: Effect on soil and spontaneous vegetation. Ecol. Balk. 2013, 5, 63–76. [Google Scholar]
- Maruca, G.; Spampinato, G.; Turiano, D.; Laghetti, G.; Musarella, C.M. Ethnobotanical notes about medicinal and useful plants of the Reventino Massif tradition (Calabria region, Southern Italy). Genet. Resour. Crop Evol. 2019, 66, 1027–1040. [Google Scholar] [CrossRef]
- Guevara, J.C.; Suassuna, P.; Felker, P. Opuntia forage production systems: Status and prospects for rangeland application. Rangel. Ecol. Manag. 2009, 62, 428–434. [Google Scholar] [CrossRef]
- Witt, A.B.R.R.; Kiambi, S.; Beale, T.; Van Wilgen, B.W. A preliminary assessment of the extent and potential impacts of alien plant invasions in the Serengeti-Mara ecosystem, East Africa. Koedoe 2017, 59, 1–16. [Google Scholar] [CrossRef]
- Han, H.; Felker, P. Field validation of water-use efficiency of the CAM plant Opuntia ellisianain south Texas. J. Arid Environ. 1997, 36, 133–148. [Google Scholar] [CrossRef]
- Stinca, A.; Musarella, C.M.; Rosati, L.; Laface, V.L.A.; Licht, W.; Fanfarillo, E. Italian Vascular Flora: New Findings, Updates and Exploration of Floristic Similarities between Regions. Diversity 2021, 13, 600. [Google Scholar] [CrossRef]
- Hardesty, B.D.; Hughes, S.L.; Rodriguez, V.M.; Hawkins, J.A. Characterization of microsatellite loci for the endangered cactus Echinocactus grusonii, and their cross-species utilization. Mol. Ecol. Resour. 2008, 8, 164–167. [Google Scholar] [CrossRef]
- Verloove, F. New xenophytes from Gran Canaria (Canary Islands, Spain), with emphasis on naturalized and (potentially) invasive species. Collect. Bot. 2013, 32, 59–82. [Google Scholar] [CrossRef] [Green Version]
- Kamble, S.M.; Debaje, P.P.; Ranveer, R.C.; Sahoo, A. Nutritional importance of cactus: A review. Trends Biosci. 2017, 10, 7668–7677. [Google Scholar]
- Lee, S.Y.; Bae, C.S.; Choi, Y.H.; Seo, N.S.; Na, C.S.; Yoo, J.C.; Cho, S.S.; Park, D.H. Opuntia humifusa Modulates Morphological Changes Characteristic of Asthma via IL-4 and IL-13 in an Asthma Murine Model. Food Nutr. Res. 2017, 61, 1393307. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Cortes, A.; Reyes-Valdes, M.; Robledo-Torres, V.; Villarreal-Quintanilla, J.A.; Ramírez-Godina, F. Pre-germination treatments in four prickly pear cactus (Opuntia sp.) species from Northeastern Mexico. Aust. J. Crop Sci. 2018, 12, 1676–1684. [Google Scholar] [CrossRef]
- Fuentes, R.J.; Charles, R.A.; Ruiz, Z.F.; Garcia, E.R.; Lopez, T.R.; Aguilera, J.I. Nutrient composition and in-vitro digestibility of cactus pear cladodes (Opuntia rastrera) at different localities of northeast Mexico. Acta Hortic. 2019, 1247, 91–94. [Google Scholar] [CrossRef]
- Drezner, T.D. Shade, reproductive effort and growth of the endangered native cactus, Opuntia humifusa Raf. in Point Pelee National Park, Canada1. J. Torrey Bot. Soc. 2017, 144, 179–190. [Google Scholar] [CrossRef]
- Quines-Lagmay, V.C.; Jeong, B.G.; Kerr, W.L.; Choi, S.G.; Chun, J. Antioxidative properties of eastern prickly pear (Opuntia humifusa) fermented with lactic acid bacteria and cell wall-hydrolyzing enzymes. Food Sci. Technol. 2020, 122, 109029. [Google Scholar] [CrossRef]
- Park, S.H.; Jeong, B.G.; Song, W.; Jung, J.; Chun, J. Enhancement of functional and sensory properties of eastern prickly pear (Opuntia humifusa) by fermentation with yuza peel and guava leaf. Food Biosci. 2021, 41, 100921. [Google Scholar] [CrossRef]
- Zhao, M.; Yang, N.; Yang, B.; Jiang, Y.; Zhang, G. Structural characterization of water-soluble polysaccharides from Opuntia monacantha cladodes in relation to their anti-glycated activities. Food Chem. 2007, 105, 1480–1486. [Google Scholar] [CrossRef]
- Valente, L.M.; da Paixão, D.; Do Nascimento, A.C.; dos Santos, P.F.; Scheinvar, L.A.; Moura, M.R.; Tinoco, L.W.; Gomes, L.N.; da Silva, J.F. Antiradical activity, nutritional potential and flavonoids of the cladodes of Opuntia monacantha (Cactaceae). Food Chem. 2010, 123, 1127–1131. [Google Scholar] [CrossRef]
- Osuna-Martínez, U.; Reyes-Esparza, J.; Rodríguez-Fragoso, L. Cactus (Opuntia ficus-indica): A review on its antioxidants properties and potential pharmacological use in chronic diseases. Nat. Prod. Chem. Res. 2014, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Novoa, A.; Le Roux, J.J.; Robertson, M.P.; Wilson, J.R.; Richardson, D.M. Introduced and invasive cactus species: A global review. AoB Plants 2015, 7, plu078. [Google Scholar] [CrossRef] [Green Version]
- Melgar, B.; Pereira, E.; Oliveira, M.B.; Garcia-Castello, E.M.; Rodriguez-Lopez, A.D.; Sokovic, M.; Barros, L.; Ferreira, I.C. Extensive profiling of three varieties of Opuntia spp. fruit for innovative food ingredients. Food Res. Int. 2017, 101, 259–265. [Google Scholar] [CrossRef] [Green Version]
- Bagrikova, N.A.; Chichkanova, E.S. About some morphological and morphometric features of Opuntia engelmannii subsp. lindheimeri (Cactaceae), naturalised in the “Cape Martyan” Nature Reserve (Crimea). Nat. Conserv. Res. 2018, 3, 54–65. [Google Scholar] [CrossRef]
- Chahdoura, H.; Adouni, K.; Khlifi, A.; Dridi, I.; Haouas, Z.; Neffati, F.; Flamini, G.; Mosbah, H.; Achour, L. Hepatoprotective effect of Opuntia microdasys (Lehm.) Pfeiff flowers against diabetes type II induced in rats. Biomed. Pharmacother. 2017, 94, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Chahdoura, H.; Khlifi, A.; Lamine, J.B.; Ziani, B.E.; Adouni, K.; El Bok, S.; Haouas, Z.; Neffati, F.; Zakhama, A.; Flamini, G.; et al. Protective potential of Opuntia microdasys flower decoction on fructose-alloxan-induced diabetic rats on kidney and pancreas: Chemical and immunohistochemical analyses. Environ. Sci. Pollut. Res. 2018, 25, 33645–33655. [Google Scholar] [CrossRef]
- Sibiya, N.; Ngubane, P.; Mabandla, M. The ameliorative effect of pectin-insulin patch on renal injury in streptozotocin-induced diabetic rats. Kidney Blood Press Res. 2017, 42, 530–540. [Google Scholar] [CrossRef]
- Stinca, A.; Ravo, M.; Giacanelli, V.; Conti, F. Additions to the vascular flora of the islands of Procida and Vivara (Campania, southern Italy). Atti Della Soc. Toscana Di Sci. Nat. Resid. Pisa Mem. Ser. B 2018, 125, 87–93. [Google Scholar] [CrossRef]
- Bouhrim, M.; Ouassou, H.; Loukili, E.H.; Ramdani, M.; Mekhfi, H.; Ziyyat, A.; Legssyer, A.; Aziz, M.; Bnouham, M. Antidiabetic effect of Opuntia dillenii seed oil on streptozotocin-induced diabetic rats. Asian Pac. J. Trop. Biomed. 2019, 27, 381–388. [Google Scholar] [CrossRef]
- Shackleton, R.T.; Witt, A.B.; Piroris, F.M.; van Wilgen, B.W. Distribution and socio-ecological impacts of the invasive alien cactus Opuntia stricta in eastern Africa. Biol. Invasions 2017, 19, 2427–2441. [Google Scholar] [CrossRef] [Green Version]
- Izuegbuna, O.; Otunola, G.; Bradley, G. Chemical composition, antioxidant, anti-inflammatory, and cytotoxic activities of Opuntia stricta cladodes. PLoS ONE 2019, 14, 0209682. [Google Scholar] [CrossRef] [Green Version]
- Monrroy, M.; García, E.; Ríos, K.; García, J.R. Extraction and Physicochemical Characterization of Mucilage from Opuntia cochenillifera (L.) Miller. J. Chem. 2017, 2017, 4301901. [Google Scholar] [CrossRef] [Green Version]
- da Cruz Filho, I.J.; da Silva Barros, B.R.; de Souza Aguiar, L.M.; Navarro, C.D.; Ruas, J.S.; de Lorena, V.M.; de Moraes Rocha, G.J.; Vercesi, A.E.; de Melo, C.M.; Maior, A.M. Lignins isolated from Prickly pear cladodes of the species Opuntia fícus-indica (Linnaeus) Miller and Opuntia cochenillifera (Linnaeus) Miller induces mice splenocytes activation, proliferation and cytokines production. Int. J. Biol. Macromol. 2019, 123, 1331–1339. [Google Scholar] [CrossRef]
- Belay, T.; Gebreselassie, M.; Abadi, T. Description of Cactus Pear (Opuntia ficus-indica (L.) Mill.) Cultivars from Tigray, Northern Ethiopia; Research Report 1; Tigray Agricultural Research Institute: Mekelle, Ethiopia, 2011. [Google Scholar]
- Gurvich, D.E.; Zeballos, S.R.; Demaio, P.H. Diversity and composition of cactus species along an altitudinal gradient in the Sierras del Norte Mountains (Córdoba, Argentina). S. Afr. J. Bot. 2014, 93, 142–147. [Google Scholar] [CrossRef] [Green Version]
- Erre, P.; Chessa, I.; Nieddu, G.; Jones, P.G. Diversity and spatial distribution of Opuntia spp. in the Mediterranean Basin. J. Arid Environ. 2009, 73, 1058–1066. [Google Scholar] [CrossRef]
- Nyman, T.; Linder, H.P.; Peña, C.; Malm, T.; Wahlberg, N. Climate-driven diversity dynamics in plants and plant-feeding insects. Ecol. Lett. 2012, 15, 889–898. [Google Scholar] [CrossRef]
- Homer, I.; Varnero, M.T.; Bedregal, C. Nopal (Opuntia ficus-indica) energetic potential cultivated in arid and semi-arid zones of Chile: An assessment. IDESIA 2020, 38, 119–127. [Google Scholar] [CrossRef]
- Pérez-Sánchez, R.M.; Jurado, E.; Chapa-Vargas, L.; Flores, J. Seed germination of Southern Chihuahuan Desert plants in response to elevated temperatures. J. Arid Environ. 2011, 75, 978–980. [Google Scholar] [CrossRef]
- Aragón-Gastélum, J.L.; Flores, J.; Yanez-Espinosa, L.; Badano, E.; Ramirez-Tobias, H.M.; Rodas-Ortíz, J.P.; Gonzalez-Salvatierra, C. Induced climate change impairs photosynthetic performance in Echinocactus platyacanthus, an especially protected Mexican cactus species. Flora 2014, 209, 499–503. [Google Scholar] [CrossRef]
- Goettsch, B.; Hilton-Taylor, C.; Cruz-Piñón, G.; Duffy, J.P.; Frances, A.; Hernández, H.M.; Inger, R.; Pollock, C.; Schipper, J.; Superina, M.; et al. High proportion of cactus species threatened with extinction. Nat. Plants 2015, 1, 15142. [Google Scholar] [CrossRef] [Green Version]
- Gorostiague, P.; Sajama, J.; Ortega-Baes, P. Will climate change cause spatial mismatch between plants and their pollinators? A test using Andean cactus species. Biol. Conserv. 2018, 226, 247–255. [Google Scholar] [CrossRef]
- Arakaki, M.; Christin, P.A.; Nyffeler, R.; Lendel, A.; Eggli, U.; Ogburn, R.M.; Spriggs, E.; Moore, M.J.; Edwards, E.J. Contemporaneous and recent radiations of the world’s major succulent plant lineages. Proc. Natl. Acad. Sci. USA 2011, 108, 8379–8384. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Hernández, T.; Brown, J.W.; Schlumpberger, B.O.; Eguiarte, L.E.; Magallón, S. Beyond aridification: Multiple explanations for the elevated diversification of cacti in the New World Succulent Biome. New Phytol. 2014, 202, 1382–1397. [Google Scholar] [CrossRef] [Green Version]
- Silva, G.A.R.; Antonelli, A.; Lendel, A.; Moraes, E.D.M.; Manfrin, M.H. The impact of early Quaternary climate change on the diversification and population dynamics of a South American cactus species. J. Biogeogr. 2018, 45, 76–88. [Google Scholar] [CrossRef]
- du Toit, A.; de Wit, M.; Fouché, H.J.; Venter, S.L.; Hugo, A. Relationship between weather conditions and the physicochemical characteristics of cladodes and mucilage from two cactus pear species. PLoS ONE 2020, 15, 0237517. [Google Scholar] [CrossRef]
- Mueller, D.M.; Shoop, M.C.; Laycock, W.A. Mechanical harvesting of plains prickly pear for control and feeding. J. Range Manag. Arch. 1994, 47, 251–254. [Google Scholar] [CrossRef] [Green Version]
- Fitter, A.H.; Hay, R.K.M. Environmental Physiology of Plants, 3rd ed.; Academic Press: San Diego, CA, USA, 2002. [Google Scholar]
- Beck, E. Cold tolerance in tropical alpine plants. In Tropical Alpine Environments. Plant Form and Function; Cambridge University Press: Cambridge, UK; London, UK, 1994; pp. 77–110. [Google Scholar]
- Nobel, P.S.; Bobich, E.G. Environmental biology. In Cacti, Biology and Uses; Nobel, P.S., Ed.; University of California Press: Los Angeles, CA, USA, 2002; pp. 7–74. [Google Scholar]
- Drennan, P.M.; Nobel, P.S. Root growth dependence on soil temperature for Opuntia ficus-indica: Influences of air temperature and a doubled CO2 concentration. Funct. Ecol. 1998, 12, 959–964. [Google Scholar] [CrossRef]
- Valdez-Cepeda, R.D.; Blanco-Macías, F.; Salinas-García, G.; Vázquez-Alvarado, R.; Gallegos-Vázquez, C. Freezing tolerance of Opuntia spp. Acta Hortic. 2002, 581, 177–183. [Google Scholar] [CrossRef]
- Nobel, P.S. Environmental Biology of Agaves and Cacti; Cambridge University Press: New York, NY, USA; London, UK, 1988; p. 270. [Google Scholar]
- Nobel, P.S.; De la Barrera, E. Tolerances and acclimation to low and high temperatures for cladodes, fruits and roots of a widely cultivated cactus, Opuntia ficus-indica. New Phytol. 2003, 157, 271–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snyman, H.A.; Fouché, H.J.; Avenant, P.L.; Ratsele, C. Frost Sensitivity of Opuntia ficus-indica and O. robusta in a Semiarid Climate of South Africa. J. Prof. Assoc. Cactus Dev. 2007, 9, 1–21. [Google Scholar]
- Zañudo-Hernández, J.; del Castillo Aranda, E.G.; Ramírez-Hernández, B.C.; Pimienta-Barrios, E.; Castillo-Cruz, I.; Pimienta-Barrios, E. Ecophysiological responses of Opuntia to water stress under various semi–arid environments. J. Prof. Assoc. Cactus Dev. 2010, 12, 20–36. [Google Scholar]
- Nobel, P.S. Ecophysiology of Opuntia ficus-indica. In Cactus (Opuntia spp.) as Forage. FAO Plant Protection and Production Paper 169. 146; Mondragòn-Jacobo, C., PérezGonzález, S., Eds.; FAO: Rome, Italy, 2001; pp. 13–19. [Google Scholar]
- Food and Agriculture Organisation (FAO). Crop Ecology, Cultivation and Uses of Cactus Pear. IX International Congress on Cactus Pear and Cochineal; FAO: Coquimbo, Chile, 2010. [Google Scholar]
- Gajender, G.; Gurbachan, S.; Dagar, J.C.; Khajanchi, L.; Yadav, R.K. Performance of edible cactus (Opuntia ficus-indica) in saline environments. Indian J. Agric. Sci. 2014, 84, 509–513. [Google Scholar]
- Food and Agriculture Organisation (FAO). Cactus (Opuntia ssp.) as Forage. FAO Plant Production and Protection Paper No. 169; FAO: Rome, Italy, 2001. [Google Scholar]
- Snyman, H.A. Effect of various water application strategies on root development of Opuntia ficus-indica and O. robusta under greenhouse growth conditions. J. Prof. Assoc. Cactus Dev. 2004, 6, 35–61. [Google Scholar]
- Pimienta-Barrios, E.; del Castillo-Aranda, M.E.; Nobel, P.S. Ecophysiology of a wild platyopuntia exposed to prolonged drought. Environ. Exp. Bot. 2002, 47, 77–86. [Google Scholar] [CrossRef]
- Quintanar-Orozco, E.T.; Vázquez-Rodríguez, G.A.; Beltrán-Hernández, R.I.; Lucho-Constantino, C.A.; Coronel-Olivares, C.; Montiel, S.G.; Islas-Valdez, S. Enhancement of the biogas and biofertilizer production from Opuntia heliabravoana Scheinvar. Environ. Sci. Pollut. Res. 2018, 25, 28403–28412. [Google Scholar] [CrossRef] [PubMed]
- Snyman, H.A. Root distribution with changes in distance and depth of two-year-old cactus pears Opuntia ficus-indica and O. robusta plants. S. Afr. J. Bot. 2006, 72, 434–441. [Google Scholar] [CrossRef] [Green Version]
- Inglese, P.; Liguori, G.; De La Barrera, E. Ecophysiology and Reproductive Biology of Cultivated Cacti. Crop Ecology, Cultivation and Uses of Cactus Pear Crop Ecology, Cultivation; Food and Agriculture Organization of the United Nations and the International Center for Agricultural Research in the Dry Areas: Rome, Italy, 2017; pp. 43–50. [Google Scholar]
- Nobel, P.S. Environmental biology. In Agro-Ecology, Cultivation and Uses of Cactus Pear; Barbera, G., Inglese, P., Pimienta-Barrios, E., Eds.; FAO: Rome, Italy, 1995; pp. 36–48, 213, FAO Plant production and protection paper No. 132. [Google Scholar]
- Nobel, P.S. Remarkable Agaves and Cacti; Oxford University Press: New York, NY, USA; Oxford, UK, 1994. [Google Scholar]
- Edvan, R.L.; Mota, R.R.; Dias-Silva, T.P.; do Nascimento, R.R.; de Sousa, S.V.; da Silva, A.L.; de Araújo, M.J.; Araújo, J.S. Resilience of cactus pear genotypes in a tropical semi-arid region subject to climatic cultivation restriction. Sci. Rep. 2020, 10, 10040. [Google Scholar] [CrossRef]
- Mooney, H.A. Invasive alien species: The nature of the problem. In Invasive Alien Species, a New Synthesis; Mooney, H.A., Ed.; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Shackleton, S.; Kirby, D.; Gambiza, J. Invasive plants–friends or foes? Contribution of prickly pear (Opuntia ficus-indica) to livelihoods in Makana Municipality, Eastern Cape, South Africa. Dev. S. Afr. 2011, 28, 177–193. [Google Scholar] [CrossRef]
- Du Toit, A.; De Wit, M.; Osthoff, G.; Hugo, A. Antioxidant properties of fresh and processed cactus pear cladodes from selected Opuntia ficus-indica and O. robusta cultivars. S. Afr. J. Bot. 2018, 118, 44–51. [Google Scholar] [CrossRef]
- Blondel, J.; Medail, F. Biodiversity and conservation. In The Physical Geography of the Mediterranean; Woodward, J.C., Ed.; Oxford University Press: Oxford, UK, 2009; pp. 615–650. [Google Scholar]
- Novoa, A.; Flepu, V.; Boatwright, J.S. Is spinelessness a stable character in cactus pear cultivars? Implications for invasiveness. J. Arid Environ. 2019, 160, 11–16. [Google Scholar] [CrossRef]
- Zimmermann, H.G.; Perez-Sandi y Cuen, M. Prickly pear, the other face of cactus pear. Acta Hortic. 2004, 728, 289–296. [Google Scholar] [CrossRef]
- Beinart, W.; Wotshela, L. Prickly Pear. The Social History of a Plant in the Eastern Cape, South Africa; University of the Witwatersrand Press: Johannesburg, South Africa, 2013. [Google Scholar]
- Walters, M.; Figueiredo, E.; Crouch, N.R.; Winter, P.J.D.; Smith, G.F.; Zimmermann, H.G.; Mashope, B.K. Abc Taxa. Naturalised and Invasive Succulents of Southern Africa; Belgium Development Corporation: Brussels, Belgium, 2011; Volume 11. [Google Scholar]
- Mokotjomela, T.M.; Thabethe, V.; Downs, C. Comparing germination metrics of Opuntia ficus-indica and O. robusta between two sets of bird species (Pied Crows and two smaller species). Acta Oecol. 2020, 110, 103676. [Google Scholar] [CrossRef]
- Jones, C.G.; Lawton, J.H.; Shachak, M. Organisms as ecosystem engineers. Oikos 1994, 69, 373–386. [Google Scholar] [CrossRef]
- Pyšek, P.; Hulme, P.E.; Simberloff, D.; Bacher, S.; Blackburn, T.M.; Carlton, J.T.; Dawson, W.; Essl, F.; Foxcroft, L.C.; Genovesi, P.; et al. Scientists’ warning on invasive alien species. Biol. Rev. 2020, 95, 1511–1534. [Google Scholar] [CrossRef] [PubMed]
- Seebens, H.; Blackburn, T.M.; Hulme, P.E.; van Kleunen, M.; Liebhold, A.M.; Orlova-Bienkowskaja, M.; Pyšek, P.; Schindler, S.; Essl, F. Around the world in 500 years: Inter-regional spread of alien species over recent centuries. Glob. Ecol. Biogeogr. 2021, 30, 1621–1632. [Google Scholar] [CrossRef]
- Githae, E.W. Status of Opuntia invasions in the arid and semi-arid lands of Kenya. CAB Rev. 2018, 13, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Tesfay, Y.B.; Kreyling, J. The invasive Opuntia ficus-indica homogenizes native plant species compositions in the highlands of Eritrea. Biol. Invasions 2021, 23, 433–442. [Google Scholar] [CrossRef]
- Felker, P.; Rodriguez, S.D.; Casoliba, R.M.; Filippini, R.; Medina, D.; Zapata, R. Comparison of Opuntia ficus indica varieties of Mexican and Argentine origin for fruit yield and quality in Argentina. J. Arid Environ. 2005, 60, 405–422. [Google Scholar] [CrossRef]
- Schaffer, S.; Schmitt-Schillig, S.; Muller, W.E.; Eckert, G.P. Antioxidant properties of Mediterranean food plant extracts: Geographical differences. J. Physiol. Pharmacol. 2005, 56, 115–124. [Google Scholar]
- Paiz, R.C.; Juárez-Flores, B.I.; Cecilia, J.R.; Ortega, C.; Aguuml, J.A.; Chávez, E.G.; Fuentes, G.Á. Glucose-lowering effect of xoconostle (Opuntia joconostle A. Web., Cactaceae) in diabetic rats. J. Med. Plant Res. 2010, 4, 2326–2333. [Google Scholar]
- Heba, H.R.; El Sayed, S.S.; Abdel-Mawla, E.M.; Agamy, N.F. Nutritional Value of Cladodes and Fruits of Prickly Pears (Opuntia ficus-indica).Els. Alex. J. Food Sci. Technol. 2020, 17, 17–25. [Google Scholar] [CrossRef]
- El-Mostafa, K.; El Kharrassi, Y.; Badreddine, A.; Andreoletti, P.; Vamecq, J.; El Kebbaj, M.; Latruffe, N.; Lizard, G.; Nasser, B.; Cherkaoui-Malki, M. Nopal cactus (Opuntia ficus-indica) as a source of bioactive compounds for nutrition, health and disease. Molecules 2014, 19, 14879–14901. [Google Scholar] [CrossRef] [Green Version]
- Todaro, M.; Alabiso, M.; Di Grigoli, A.; Scatassa, M.L.; Cardamone, C.; Mancuso, I.; Mazza, F.; Bonanno, A. Prickly Pear By-Product in the Feeding of Livestock Ruminants: Preliminary Investigation. Animals 2020, 10, 949. [Google Scholar] [CrossRef]
- Jun, H.I.; Cha, M.N.; Yang, E.I.; Choi, D.G.; Kim, Y.S. Physicochemical properties and antioxidant activity of Korean cactus (Opuntia humifusa) cladodes. Hortic. Environ. Biotechnol. 2013, 54, 288–295. [Google Scholar] [CrossRef]
- Alves, F.A.; de Andrade, A.P.; Bruno, R.; Silva, M.D.; Souza, M.; dos Santos, D.C. Seasonal variability of phenolic compounds and antioxidant activity in prickly pear cladodes of Opuntia and Nopalea genres. Food Sci. Technol. 2017, 37, 536–543. [Google Scholar] [CrossRef] [Green Version]
- da Silva, T.G.; Batista, Â.M.; Guim, A.; Souza de Carvalho, F.F.; da Silva Júnior, V.A.; Arandas, J.K.; de Barros, M.E.; Sousa, D.R.; da Silva, S.M. Cactus cladodes cause intestinal damage, but improve sheep performance. Trop. Anim. Health Prod. 2021, 53, 281. [Google Scholar] [CrossRef] [PubMed]
- Haile, K.; Mehari, B.; Atlabachew, M.; Chandravanshi, B.S. Phenolic composition and antioxidant activities of cladodes of the two varieties of cactus pear (Opuntia ficus-indica) grown in Ethiopia. Bull. Chem. Soc. Ethiop. 2016, 30, 347–356. [Google Scholar] [CrossRef]
- Bakari, S.; Daoud, A.; Felhi, S.; Smaoui, S.; Gharsallah, N.; Kadri, A. Proximate analysis, mineral composition, phytochemical contents, antioxidant and antimicrobial activities and GC-MS investigation of various solvent extracts of cactus cladode. Food Sci. Technol. 2017, 37, 286–293. [Google Scholar] [CrossRef] [Green Version]
- Figueroa-Pérez, M.G.; Pérez-Ramírez, I.F.; Paredes-López, O.; Mondragón-Jacobo, C.; Reynoso-Camacho, R. Phytochemical composition and in vitro analysis of nopal (O. ficus-indica) cladodes at different stages of maturity. Int. J. Food Prop. 2018, 21, 1728–1742. [Google Scholar] [CrossRef] [Green Version]
- Feugang, J.M.; Konarski, P.; Zou, D.; Stintzing, F.C.; Zou, C. Nutritional and medicinal use of Cactus pear (Opuntia spp.) cladodes and fruits. Front. Biosci. 2006, 11, 2574–2589. [Google Scholar] [CrossRef]
- Abidi, S.; Salem, H.B.; Vasta, V.; Priolo, A. Supplementation with barley or spineless cactus (Opuntia ficus indica f. inermis) cladodes on digestion, growth and intramuscular fatty acid composition in sheep and goats receiving oaten hay. Small Rumin. Res. 2009, 87, 9–16. [Google Scholar] [CrossRef]
- Alves, F.A.; de Andrade, A.P.; Bruno, R.D.; dos Santos, D.C. Study of the variability, correlation and importance of chemical and nutritional characteristics in cactus pear (Opuntia and Nopalea). Afr. J. Agric. Res. 2016, 11, 2882–2892. [Google Scholar] [CrossRef] [Green Version]
- Junior, J.C.D.; de Araújo Filho, J.T.; dos Santos, M.V.; Lira, M.D.A.; dos Santos, D.C.; Pessoa, R.A. Mineral fertilization on the growth and mineral composition of forage cactus-Clone IPA-201. Braz. J. Agric Sci. 2010, 5, 129–135. [Google Scholar] [CrossRef]
- Cordova-Torres, A.; Gutierrez-Berroeta, L.; Kawas, J.R.; García-Gasca, T.; Aguilera-Barreiro, A.; Malda, G.; Andrade-Montemayor, H.M. The nopal (Opuntia fícus indica) can be a supplementation alternative for goats in semi-arid regions: Effect of leaf size or maturity on in vivo digestibility and composition. In VI Latin American Congress of the Association of Specialists in Small Ruminants and South American Camelids. XXIV Meeting of the AMPCA; International Goat Association: Querétaro, Mexico, 2009; pp. 143–151. [Google Scholar]
- Pessoa, D.V.; de Andrade, A.P.; Magalhães, A.L.; Teodoro, A.L.; dos Santos, D.C.; de Araújo, G.G.; de Medeiros, A.N.; do Nascimento, D.B.; de Lima Valença, R.; Cardoso, D.B. Forage nutritional differences within the genus Opuntia. J. Arid Environ. 2020, 181, 104243. [Google Scholar] [CrossRef]
- Bazie, B.; Weldemariam, N.G.; Haftu, B. Chemical composition and in-vitro digestibility of cultivars of cactus pear (Opuntia ficus-indica) cladodes in Ganta-Afeshum district, Tigray, Ethiopia. Livest. Res. Rural Dev. 2019, 31. [Google Scholar]
- Silva, E.T.; Melo, A.A.; Ferreira, M.D.; Oliveira, J.C.; Santos, D.C.; Silva, R.C.; Inácio, J.G. Acceptability by Girolando heifers and nutritional value of erect prickly pear stored for different periods. Pesqui. Agropecu. Bras. 2017, 52, 761–767. [Google Scholar] [CrossRef] [Green Version]
- Perrino, E.V.; Wagensommer, R.P. Crop Wild Relatives (CWRs) Threatened and Endemic to Italy: Urgent Actions for Protection and Use. Biology 2022, 11, 193. [Google Scholar] [CrossRef] [PubMed]
- Misra, A.K.; Kumar, S.; Kumar, T.K.; Ahmed, S.; Palsaniya, D.R.; Ghosh, P.K.; Louhaichi, M.; Sarker, A.; Hassan, S.; Ates, S. Nutrient intake and utilization in sheep fed opuntia [Opuntia ficus-indica (L.) Mill.] in combination with conventional green and dry fodders. Range Manag. Agrofor. 2018, 39, 97–102. [Google Scholar]
- Gürsoy, E. Determining the nutrient content, relative feed value, and in vitro digestibility value of some legume forage plants. Pak. J. Agri. Sci. 2021, 58, 1423–1428. [Google Scholar] [CrossRef]
- da Menezes, C.M.D.; Schwalbach, L.M.J.; Combrinck, W.J.; Fair, M.D.; de Waal, H.O. Effects of sun-dried Opuntia ficus-indica on feed and water intake and excretion of urine and faeces by Dorper sheep. S. Afr. J. Anim. Sci. 2010, 40, 491–494. [Google Scholar]
- Vilela, M.D.S.; Ferreira, M.D.A.; Azevedo, M.D.; Modesto, E.C.; Farias, I.; Guimaraes, A.V.; Bispo, S.V. Effect of processing and feeding strategy of the spineless cactus (Opuntia fícus-indica Mill.) for lactating cows: Ingestive behavior. Appl. Anim. Behav. Sci. 2010, 125, 1–8. [Google Scholar] [CrossRef]
- Andrade-Montemayor, H.M.; Cordova-Torres, A.V.; García-Gasca, T.; Kawas, J.R. Alternative foods for small ruminants in semiarid zones, the case of Mesquite (Prosopis laevigata spp.) and Nopal (Opuntia spp.). Small Rumin. Res. 2011, 98, 83–92. [Google Scholar] [CrossRef]
- Costa, R.G.; Treviño, I.H.; De Medeiros, G.R.; Medeiros, A.N.; Pinto, T.F.; De Oliveira, R.L. Effects of replacing corn with cactus pear (Opuntia ficus indica Mill) on the performance of Santa Inês lambs. Small Rumin. Res. 2012, 102, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Cürek, M.; Özen, N. Feed value of cactus and cactus silage. Turk. J. Vet. Anim. Sci. 2004, 28, 633–639. [Google Scholar]
- Matias, A.G.; Araujo, G.G.; Campos, F.S.; Moraes, S.A.; Gois, G.C.; Silva, T.S.; Neto, J.E.; Voltolini, T.V. Fermentation profile and nutritional quality of silages composed of cactus pear and maniçoba for goat feeding. J. Agric. Sci. 2020, 158, 304–312. [Google Scholar] [CrossRef]
- Mokoboki, H.K.; Sebola, N.A.; Matlabe, G. Effects of molasses levels and growing conditions on nutritive value and fermentation quality of Opuntia cladodes silage. J. Anim. Plant Sci. 2016, 28, 4488–4495. [Google Scholar]
- Borreani, G.I.; Tabacco, E.R.; Schmidt, R.J.; Holmes, B.J.; Muck, R.E. Silage review: Factors affecting dry matter and quality losses in silages. J. Dairy Sci. 2018, 101, 3952–3979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gusha, J.; Halimani, T.E.; Ngongoni, N.T.; Ncube, S. Effect of feeding cactus-legume silages on nitrogen retention, digestibility and microbial protein synthesis in goats. Anim. Feed Sci. Technol. 2015, 206, 1–7. [Google Scholar] [CrossRef]
- Yen, G.C.; Duh, P.D.; Tsai, H.L. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem. 2002, 79, 307–313. [Google Scholar] [CrossRef]
- Sanchez, E.; García, S.; Heredia, N. Extracts of edible and medicinal plants damage membranes of Vibrio cholerae. Appl. Environ. Microbiol. 2010, 76, 6888–6894. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Guo, M.; Zhang, G.; Xu, X.; Li, Q. Nicotiflorin reduces cerebral ischemic damage and upregulates endothelial nitric oxide synthase in primarily cultured rat cerebral blood vessel endothelial cells. J. Ethnopharmacol. 2006, 107, 143–150. [Google Scholar] [CrossRef]
- Shetty, A.A.; Rana, M.K.; Preetham, S.P. Cactus: A medicinal food. J. Food Sci. Technol. 2012, 49, 530–536. [Google Scholar] [CrossRef] [Green Version]
- Mayer, J.A.; Cushman, J.C. Nutritional and mineral content of prickly pear cactus: A highly water-use efficient forage, fodder and food species. J. Agron. Crop Sci. 2019, 205, 625–634. [Google Scholar] [CrossRef]
- Gebremariam, T.; Melaku, S.; Yami, A. Effect of different levels of cactus (Opuntia ficus-indica) inclusion on feed intake, digestibility and body weight gain in tef (Eragrostis tef) straw-based feeding of sheep. Anim. Feed Sci. Technol. 2006, 131, 43–52. [Google Scholar] [CrossRef]
- Beltrão, E.S.; de Azevedo Silva, A.M.; Pereira Filho, J.M.; de Moura, J.F.; de Oliveira, J.P.; Oliveira, R.L.; Dias-Silva, T.P.; Bezerra, L.R. Effect of different blend levels of spineless cactus and Mombasa hay as roughage on intake, digestibility, ingestive behavior, and performance of lambs. Trop. Anim. Health Prod. 2021, 53, 140. [Google Scholar] [CrossRef] [PubMed]
- Salem, I.B.; Khnissi, S.; Rekik, M.; Younes, A.B.; Lassoued, N. Effect of supplementation by cactus (Opuntia ficus indica f. inermis) cladodes on reproductive response and some blood metabolites of female goat on pre-mating phase. J. New Sci. 2019, 63, 3956–3964. [Google Scholar]
- Tegegne, F.; Kijora, C.; Peters, K.J. Study on the optimal level of cactus pear (Opuntia ficus-indica) supplementation to sheep and its contribution as source of water. Small Rumin. Res. 2007, 72, 157–164. [Google Scholar] [CrossRef]
- Costa, R.G.; Beltrão Filho, E.M.; de Medeiros, A.N.; Givisiez, P.E.; do Egypto, R.D.; Melo, A.A. Effects of increasing levels of cactus pear (Opuntia ficus-indica L. Miller) in the diet of dairy goats and its contribution as a source of water. Small Rumin. Res. 2009, 82, 62–65. [Google Scholar] [CrossRef]
- de Andrade Ferreira, M.; Bispo, S.V.; Rocha Filho, R.R.; Urbano, S.A.; Costa, C.T. The use of cactus as forage for dairy cows in semi-arid regions of Brazil. In Organic Farming and Food Production; InTechOpen: London, UK, 2012; p. 169. [Google Scholar]
- Misra, A.K.; Mishra, A.S.; Tripathi, M.K.; Chaturvedi, O.H.; Vaithiyanathan, S.; Prasad, R.; Jakhmola, R.C. Intake, digestion and microbial protein synthesis in sheep on hay supplemented with prickly pear cactus [Opuntia ficus-indica (L.) Mill.] with or without groundnut meal. Small Rumin Res. 2006, 63, 125–134. [Google Scholar] [CrossRef]
- Nefzaoui, A.; Louhaichi, M.; Ben Salem, H. Cactus as a tool to mitigate drought and to combat desertification. J. Arid Land 2014, 24, 121–124. [Google Scholar] [CrossRef]
- Otmani, S.E.; Chebli, Y.; Chentouf, M.; Hornick, J.L.; Cabaraux, J.F. Carcass characteristics and meat quality of male goat kids supplemented by alternative feed resources: Olive cake and cactus cladodes. Res. Sq. 2020, 23, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Mahouachi, M.; Atti, N.; Hajji, H. Use of Spineless Cactus (Opuntia Ficus Indica F. Inermis) for Dairy Goats and Growing Kids: Impacts on Milk Production, Kid’s Growth, and Meat Quality. Sci. World J. 2012, 2012, 321567. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, F.A.; Carvalho, G.G.; Assis, D.Y.; Oliveira, R.J.; Nascimento, C.O.; Tosto, M.S.; Pina, D.S.; Santos, A.V.; Rufino, L.M.; Azevêdo, J.A.; et al. Quantitative and qualitative traits of carcass and meat of goats fed diets with cactus meal replacing corn. Trop. Anim. Health Prod. 2019, 51, 589–598. [Google Scholar] [CrossRef]
- van Wilgen, B.W.; Forsyth, G.G.; Le Maitre, D.C.; Wannenburgh, A.; Kotzé, J.D.; van den Berg, E.; Henderson, L. An assessment of the effectiveness of a large, national-scale invasive alien plant control strategy in South Africa. Biol. Conserv. 2012, 148, 28–38. [Google Scholar] [CrossRef]
- Paterson, I.D.; Manheimmer, C.A.; Zimmermann, H.G. Prospects for biological control of cactus weeds in Namibia. Biocontrol. Sci. Technol. 2019, 29, 393–399. [Google Scholar] [CrossRef]
- Shackleton, R.T.; Foxcroft, L.C.; Pyšek, P.; Wood, L.E. Assessing biological invasions in protected areas after 30 years: Revisiting nature reserves targeted by the 1980s SCOPE programme. Biol. Conserv. 2020, 243, 108424. [Google Scholar] [CrossRef]
- Mazzeo, G.; Nucifora, S.; Russo, A.; Suma, P. Dactylopius opuntiae, a new prickly pear cactus pest in the Mediterranean: An overview. Entomol. Exp. Appl. 2019, 167, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Mendel, Z.; Protasov, A.; Vanegas-Rico, J.M.; Lomeli-Flores, J.R.; Suma, P.; Rodríguez-Leyva, E. Classical and fortuitous biological control of the prickly pear cochineal, Dactylopius opuntiae, in Israel. Biol. Control 2020, 142, 104157. [Google Scholar] [CrossRef]
- Zimmerman, H.G.; Moran, V.C. Biological control of prickly pear, Opuntia ficus-indica (Cactaceae), in South Africa. Agric. Ecosyst. Environ. 1991, 37, 29–35. [Google Scholar] [CrossRef]
- Zimmermann, H.G.; Moran, V.C.; Hoffman, J.H. Invasive cactus species (Cactaceae). In Biological Control of Tropical Weeds Using Arthropods; Muniappan, R., Reddy, G.V.P., Raman, A., Eds.; Cambridge University Press: Cambridge, UK, 2009; pp. 108–129. [Google Scholar]
- da Silva Santos, A.C.; Oliveira, R.L.; da Costa, A.F.; Tiago, P.V.; de Oliveira, N.T. Controlling Dactylopius opuntiae with Fusarium incarnatum–equiseti species complex and extracts of Ricinus communis and Poincianella pyramidalis. J. Pest Sci. 2016, 89, 539–547. [Google Scholar] [CrossRef]
- Wilson, J.R.; Klein, H.; Manyama, P.; Zimmermann, H.G.; Henderson, L.; Kaplan, H.; Richardson, D.M.; Novoa, A.; Ivey, P. A proposed national strategic framework for the management of Cactaceae in South Africa. Bothalia-Afr. Biodivers. Conserv. 2017, 47, 1–2. [Google Scholar]
- Shaw, R.H.; Ellison, C.A.; Marchante, H.; Pratt, C.F.; Schaffner, U.; Sforza, R.F.; Deltoro, V. Weed biological control in the European Union: From serendipity to strategy. BioControl 2018, 63, 333–347. [Google Scholar] [CrossRef] [Green Version]
- dos Santos Sá, W.C.C.; Santos, E.M.; de Oliveira, J.S.; Perazzo, A.F. Production of spineless cactus in Brazilian semiarid. In New Perspectives in Forage Crops; IntechOpen: London, UK, 2018. [Google Scholar]
- Louhaichi, M.; Kumar, S.; Tiwari, S.; Islam, M.; Hassan, S.; Yadav, O.P.; Dayal, D.; Peter Moyo, H.; Dev, R.; Sarker, A. Adoption and Utilization of Cactus Pear in South Asia—Smallholder Farmers’ Perceptions. Sustainability 2018, 10, 3625. [Google Scholar] [CrossRef] [Green Version]
Variety | Tannins | Oxalates | Flavonoids | Saponins | Phenolics | References |
---|---|---|---|---|---|---|
O. humifusa | - | - | 23.5 | 23.0 | [100] | |
Opuntia Strica | - | - | 1.65 | 1.99 | [101] | |
O. Cochenillifera | - | 2.1 | 1.87 | 1.51 | [101,102] | |
O. megacantha | 42 | - | 25 | - | 71.4 | [103] |
O. ficus-indica (L.) Mill | 29.5 | - | 109 | 265 | [104] | |
O. ficus-indica | 5.5 | - | 11.2 | 22.5 | 19.6 | [105] |
Amino Acids | Values | Values |
---|---|---|
Alanine | 0.6 | 1.25 |
Agrenine | 2.4 | 5.01 |
Asparagine | 1.4 | 3.13 |
Glutamine | 17.3 | 36.12 |
Glycine | 0.5 | - |
Histidine | 2.0 | 4.18 |
Isoleucine | 1.9 | 3.97 |
Leucine | 1.3 | 2.71 |
Lysine | 2.5 | 5.22 |
Metheinine | 1.4 | 2.92 |
Phenylanine | 1.7 | 3.55 |
Serine | 3.2 | 6.67 |
Threonine | 2.0 | - |
Tyrocine | 0.7 | - |
Tryptophane | 0.5 | - |
Valine | 3.7 | - |
References | [106] | [98] |
Varieties | Ca | P | K | Mg | Na | Zn | Cu | Fe | Mn | References |
---|---|---|---|---|---|---|---|---|---|---|
O.humifusa (mg/100 g) | 1.967 | 1.110 | 1.269 | 1.411 | 282.8 | 20.4 | 2.2 | 16.8 | - | [100] |
O. ficus-indica f. inermis (g/kg) | 70.2 | 1.8 | 4.4 | 0.43 | 6.7 | [107] | ||||
O. ficus-indica (L.) Mill cv Marado (g/kg) | 22.5 | 0.7 | 25.0 | 15.0 | 0.8 | 26.50 (dpm) | 5.05 dpm | 55.0 dpm | 547.50 (dpm) | [12] |
O. ficus- indica cv Algerian (g/kg) | 20.5 | 0.7 | 21.0 | 19.5 | 0.6 | 27.5 dpm | 9.06 dpm | 64.00 dpm | 485.00 dpm | [12] |
O. atropes (g/kg) | 17.2 | 2.0 | 2.3 | 5.7 | - | - | - | - | - | [108] |
O. ficus-indica (g/kg) | 34.4 | 4.7 | 33.4 | 7.4 | - | - | - | - | - | [109] |
Variety | DM | OM | CP | ADF | NDF | ADL | EE | References |
---|---|---|---|---|---|---|---|---|
Malta | 925 | 827 | 106 | 97 | 194 | - | 12 | [108] |
Copena | 165 | 866 | 46 | 202 | 359 | - | - | [110] |
Miuda | 118 | - | 57 | 259 | - | 26 | [102] | |
Gigante | 105 | 889 | 50 | 200 | 418 | 29 | 14 | [111] |
Halibo | 82 | 815 | 39 | 23 | 186 | 16 | 6 | [112] |
EPP | 127 | 915 | 33 | 173 | 227 | 108 | 12 | [113] |
OSM | OLL | Roedtan | Vas as | CAAS | CLIS | |
---|---|---|---|---|---|---|
DM | 393 | 278 | 913 | 917 | 440 | 380 |
CP | 67 | 107 | 69 | 61 | 200 | 250 |
EE | 18 | 24 | 66 | 61 | - | - |
NDF | 322 | 337 | 259 | 248 | 573 | 634 |
ADF | 224 | 234 | 213 | 198 | 523 | 574 |
References | [9] | [123] | [125] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sipango, N.; Ravhuhali, K.E.; Sebola, N.A.; Hawu, O.; Mabelebele, M.; Mokoboki, H.K.; Moyo, B. Prickly Pear (Opuntia spp.) as an Invasive Species and a Potential Fodder Resource for Ruminant Animals. Sustainability 2022, 14, 3719. https://doi.org/10.3390/su14073719
Sipango N, Ravhuhali KE, Sebola NA, Hawu O, Mabelebele M, Mokoboki HK, Moyo B. Prickly Pear (Opuntia spp.) as an Invasive Species and a Potential Fodder Resource for Ruminant Animals. Sustainability. 2022; 14(7):3719. https://doi.org/10.3390/su14073719
Chicago/Turabian StyleSipango, Nkosomzi, Khuliso Emmanuel Ravhuhali, Nthabiseng Amenda Sebola, Onke Hawu, Monnye Mabelebele, Hilda Kwena Mokoboki, and Bethwell Moyo. 2022. "Prickly Pear (Opuntia spp.) as an Invasive Species and a Potential Fodder Resource for Ruminant Animals" Sustainability 14, no. 7: 3719. https://doi.org/10.3390/su14073719