Performance Evaluation of Hospital Site Suitability Using Multilayer Perceptron (MLP) and Analytical Hierarchy Process (AHP) Models in Malacca, Malaysia
Abstract
:1. Introduction
- To investigate suitable sites for establishing new hospitals in Malacca;
- To identify and map relevant environmental, topographic, and geodemographic conditioning factors and discover their weighted commitment in selecting suitable sites for new hospitals;
- To identify the most-influencing factors that impact the choice of a suitable hospital location using correlation-based feature selection (CFS) and a search algorithm (greedy stepwise);
- To apply MLP, AHP, and weighted overlay analysis to prepare hospital site suitability maps;
- To validate the results of the suitability maps based on sensitivity, specificity, area under the curve (AUC), and 10-fold cross-validation.
2. Literature Review
2.1. MCDA Technique for Site Selection
Name | MCDA Model | Decision Problem and Criteria Used |
---|---|---|
Vahidnia et al. [50] | Fuzzy AHP | Prioritizing hospital location for target population with minimum time, pollution, and cost. |
Alavi et al. [51] | AHP & TOPSIS | Determining optimal location of hospitals based on road access factors and green spaces, as well as distance from industrial and military centers. |
Abdullahi et al. [52] | AHP & OLS | Comparing AHP and the ordinary least square (OLS) evaluation model based on technical, environmental, and socio-economic factors for selecting new suitable sites. |
Ahmed et al. [12] | AHP | Determining the optimal location of a new hospital based on urban, environmental, and economic factors. |
Rahimi et al. [53] | AHP | Determining optimal locations for hospitals based on urban land and social factors. |
Youzi et al. [49] | AHP | Determining the optimal location of a new hospital based on the criteria of utility, performance, safety, population, density, proximity, and adaptability factors. |
Soltani et al. [26] | AHP | Choosing optimal sites for hospitals based on spatial analysis and urban land use planning factors. |
Kahraman et al. [54] | Fuzzy TOPSIS | Developing spherical fuzzy TOPSIS and applying it to a hospital site selection problem. |
Tripathi et al. [55] | AHP & Fuzzy AHP | Determining a suitable MCDA method for selecting hospital sites on a social, geographic, and environmental basis. |
2.2. ML for Site Suitability
3. Materials and Methods
3.1. Study Area
3.2. Data Description and GIS Techniques
3.2.1. Hospital Sites
3.2.2. Conditioning Factors
3.3. Hospital Site Suitability Conditioning Factors
3.3.1. Topographical Factors
3.3.2. Surface Elevation (Altitude)
3.3.3. Surface Slope
3.3.4. Surface Aspect
3.3.5. Surface Curvature
3.4. Hydrological Indices (SPI, TWI, TRI)
3.5. Environmental Factors
3.5.1. Distance from River Network
3.5.2. Distance from Highway and Road
3.5.3. Distance from an Agricultural Area
3.5.4. Distance from the Residential Area
3.6. Geodemographic Factors
3.6.1. Population Factors
3.6.2. Population Size
3.6.3. Population Density
3.7. Methodology
3.7.1. Overview
3.7.2. Factor Analysis
- Allows the learning algorithm to train faster;
- Minimizes ambiguity of a model and makes it easier to analyze;
- Improves the performance of the learner;
- Eliminates redundancy.
3.8. AHP
- Development of a pairwise comparison matrix.
- 2.
- Computation of criterion weight.
- 3.
- Estimation of the CR.
- Summing up the values of each column in the pairwise matrix;
- Dividing the matrix element by its column total (to derive the normalized matrix);
- Calculating the average of the elements in every row of the normalized matrix to obtain an estimated relative priority of the elements being compared.
- Determining the total weighted vector. To achieve this, the weight of the first scale was multiplied by the first column of the leading binary comparative matrix and then multiplied by the second scale of the second column. Then, the third scale was multiplied by the third column of the primary matrix, and, finally, these values were summed;
- Determining the consistency vector: we divided the weight vector by the scale weights. Using the weight produced by AHP, the conditioning factors were combined in an ArcGIS environment using the weighted sum overlay tool to create a final suitability map. Table 8 presents the pairwise comparison matrix of the selected conditioning factors for hospital site suitability in Malacca.
3.9. ML Model
3.10. Validation
4. Results
5. Discussions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaye, A.D.; Okeagu, C.N.; Pham, A.D.; Silva, R.A.; Hurley, J.J.; Arron, B.L.; Sarfraz, N.; Lee, H.N.; Ghali, G.E.; Gamble, J.W.; et al. Economic impact of COVID-19 pandemic on healthcare facilities and systems: International perspectives. Best Pract. Res. Clin. Anaesthesiol. 2021, 35, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, E.H.; Mohamed, S.E.; Atwan, A.A. Combining fuzzy analytic hierarchy process and GIS to select the best location for a wastewater lift station in El-Mahalla El-Kubra, North Egypt. Int. J. Eng. Technol. 2011, 11, 44–50. [Google Scholar]
- Hopkins, L.D. Methods for Generating Land Suitability Maps: A Comparative Evaluation. J. Am. Inst. Plan. 1977, 43, 386–400. [Google Scholar] [CrossRef]
- Pantzartzis, E.; Edum-Fotwe, F.T.; Price, A.D. Sustainable healthcare facilities: Reconciling bed capacity and local needs. Int. J. Sustain. Built Environ. 2017, 6, 54–68. [Google Scholar] [CrossRef] [Green Version]
- Velez, F.F.; Colman, S.; Kauffman, L.; Ruetsch, C.; Anastassopoulos, K. Real-world reduction in healthcare resource utilization following treatment of opioid use disorder with reSET-O. Expert Rev. Pharm. Outcomes Res. 2021, 21, 69–76. [Google Scholar]
- Daskin, M.S.; Dean, L.K. Location of health care facilities. In Operations Research and Health Care: A Hand-Book of Methods and Applications; Brandeau, M.L., Sainfort, F., Pierskalla, W.P., Eds.; Springer: Boston, MA, USA, 2005; pp. 43–76. [Google Scholar]
- Murad, A.A. Creating a GIS application for health services at Jeddah city. Comput. Biol. Med. 2007, 37, 879–889. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Agrawal, S.; Gupta, R.D. A conceptual framework of public health SDI. In Applications of Geomatics in Civil Engineering; Ghosh, J.K., da Silva, I., Eds.; Lecture Notes in Civil Engineering; Springer: Singapore, 2020; Volume 33, pp. 479–487. [Google Scholar]
- Dell’Ovo, M.; Capolongo, S.; Oppio, A. Combining spatial analysis with MCDA for the siting of healthcare facilities. Land Use Policy 2018, 76, 634–644. [Google Scholar] [CrossRef]
- Reath, J.; King, M.; Kmet, W.; O’Halloran, D.; Brooker, R.; Aspinall, D.; Bittar, H.; Seelan, T.; Burke, M.; Usherwood, T. Experiences of primary healthcare professionals and patients from an area of urban disadvantage: A qualitative study. BJGP Open 2019, 3, bjgpopen19X101676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahbod, N.; Bayat, M.; Mansouri, N.; Nouri, J.; Ghoddusi, J. Application of delphi method and fuzzy analytic hierarchy process in modeling environmental performance assessment in urban medical centers. Environ. Energy Econ. Res. 2020, 4, 43–56. [Google Scholar]
- Ahmed, A.H.; Mahmoud, H.; Aly, A.M.M. Site suitability evaluation for sustainable distribution of hospital using spatial information technologies and AHP: A case study of upper egypt, aswan city. J. Geogr. Inf. Syst. 2016, 8, 578–594. [Google Scholar] [CrossRef] [Green Version]
- Nsaif, Q.A.; Khaleel, S.M.; Khateeb, A.H. Integration of GIS and remote sensing technique for hospital site selection in Baquba district. J. Eng. Sci. Technol. 2020, 15, 1492–1505. [Google Scholar]
- Miç, P.; Antmen, Z.F. A healthcare facility location selection problem with fuzzy TOPSIS method for a regional hospital. Eur. J. Sci. Technol. 2019, 16, 750–757. [Google Scholar] [CrossRef]
- Çetinkaya, C.; Özceylan, E.; Erbaş, M.; Kabak, M. GIS-based fuzzy MCDA approach for siting refugee camp: A case study for southeastern Turkey. Int. J. Disaster Risk Reduct. 2016, 18, 218–231. [Google Scholar] [CrossRef]
- Erbaş, M.; Kabak, M.; Özceylan, E.; Çetinkaya, C. Optimal siting of electric vehicle charging stations: A GIS-based fuzzy Multi-Criteria Decision Analysis. Energy 2018, 163, 1017–1031. [Google Scholar] [CrossRef]
- Ding, Z.; Niu, J.; Liu, S.; Wu, H.; Zuo, J. An approach integrating geographic information system and building information modelling to assess the building health of commercial buildings. J. Clean. Prod. 2020, 257, 120532. [Google Scholar] [CrossRef]
- Longaray, A.; Ensslin, L.; Ensslin, S.; Alves, G.; Dutra, A.; Munhoz, P. Using MCDA to evaluate the performance of the logistics process in public hospitals: The case of a Brazilian teaching hospital. Int. Trans. Oper. Res. 2018, 25, 133–156. [Google Scholar] [CrossRef] [Green Version]
- Almansi, K.Y.; Shariff, A.R.M.; Abdullah, A.F.; Ismail, S.N.S. Hospital site suitability assessment using three machine learning approaches: Evidence from the gaza strip in Palestine. Appl. Sci. 2021, 11, 11054. [Google Scholar] [CrossRef]
- Malczewski, J.; Rinner, C. Multicriteria Decision Analysis in Geographic Information Science; Springer: New York, NY, USA, 2015. [Google Scholar]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Aggarwal, R.; Singh, S.; Ahp, A.C. AHP and Extent Fuzzy AHP approach for prioritization of performance measurement attributes. Eng. Technol. 2013, 7, 160–165. [Google Scholar]
- Çetinkaya, C.; Kabak, M.; Erbaş, M.; Özceylan, E. Evaluation of Ecotourism Sites: A GIS-Based Multi-Criteria Decision Analysis. Kybernetes 2018, 47. [Google Scholar] [CrossRef]
- Saha, A.K.; Agrawal, S. Mapping and assessment of flood risk in Prayagraj district, India: A GIS and remote sensing study. Nanotechnol. Environ. Eng. 2020, 5, 2. [Google Scholar] [CrossRef]
- Soltani, A.; Inaloo, R.B.; Rezaei, M.; Shaer, F.; Riyabi, M.A. Spatial analysis and urban land use planning emphasising hospital site selection: A case study of Isfahan city. Bull. Geogr. 2019, 43, 71–89. [Google Scholar] [CrossRef] [Green Version]
- Maguire, D.J. An overview and definition of GIS. In Geographical Information Systems; Maguire, D.J., Goodchild, M.F., Rhind, D.W., Eds.; Principles; Wiley: Hoboken, NJ, USA, 1991; Volume 1, pp. 9–20. [Google Scholar]
- Feizizadeh, B.; Roodposhti, M.S.; Jankowski, P.; Blaschke, T. A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping. Comput. Geosci. 2014, 73, 208–221. [Google Scholar] [CrossRef] [Green Version]
- Mateus, R.; Ferreira, J.A.; Carreira, J. Multicriteria decision analysis (MCDA): Central porto high-speed railway station. Eur. J. Oper. Res. 2008, 187, 1–18. [Google Scholar] [CrossRef]
- Prasertsri, N.; Sangpradid, S. Parking site selection for light rail stations in Muaeng district. Symmetry 2020, 12, 6. [Google Scholar] [CrossRef]
- Chaudhary, P.; Chhetri, S.K.; Joshi, K.M.; Shrestha, B.M.; Kayastha, P. Application of an analytic hierarchy process (AHP) in the GIS interface for suitable fire site selection: A case study from Kathmandu Metropolitan city, Nepal. Socio-Econ. Plan. Sci. 2016, 53, 60–71. [Google Scholar] [CrossRef]
- Nyimbili, P.H.; Erden, T. GIS-based fuzzy multi-criteria approach for optimal site selection of fire stations in Istanbul, Turkey. Socio-Econ. Plan. Sci. 2020, 71, 100860. [Google Scholar] [CrossRef]
- Garni, H.Z.A.; Awasthi, A. Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia. Appl. Energy 2017, 206, 1225–1240. [Google Scholar] [CrossRef]
- Shorabeh, S.N.; Firozjaei, M.K.; Nematollahi, O.; Firozjaei, H.K.; Jelokhani-Niaraki, M. A risk-based multi-criteria spatial decision analysis for solar power plant site selection in different climates: A case study in Iran. Renew. Energy 2019, 143, 958–973. [Google Scholar] [CrossRef]
- Aksoy, E.; San, B.T. Geographical information systems (GIS) and multi-criteria decision analysis (MCDA) integration for sustainable landfill site selection considering dynamic data source. Bull. Eng. Geol. Environ. 2019, 78, 779–791. [Google Scholar] [CrossRef]
- Rahmat, Z.G.; Niri, M.V.; Alavi, N.; Goudarzi, G.; Babaei, A.A.; Baboli, Z.; Hosseinzadeh, M. Landfill site selection using GIS and AHP: A case study: Behbahan, Iran. KSCE J. Civ. Eng. 2017, 21, 111–118. [Google Scholar] [CrossRef]
- Aydi, A.; Abichou, T.; Nasr, I.H.; Louati, M.; Zairi, M. Assessment of land suitability for olive mill wastewater disposal site selection by integrating fuzzy logic, AHP, and WLC in a GIS. Environ. Monit. Assess. 2016, 188, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Singh, R.K.; Sinha, P. Optimal site selection for a hospital using a fuzzy extended ELECTRE approach. J. Manag. Anal. 2016, 3, 115–135. [Google Scholar] [CrossRef]
- Mishra, S.; Sahu, P.K.; Sarkar, A.K.; Mehran, B.; Sharma, S. Geo-spatial site suitability analysis for development of health care units in rural India: Effects on habitation accessibility. J. Transp. Geogr. 2019, 78, 135–149. [Google Scholar] [CrossRef]
- Kim, J.I.; Senaratna, D.M.; Ruza, J.; Kam, C.; Ng, S. Feasibility study on an evidence-based decision-support system for hospital site selection for an aging population. RACSAM Rev. Real Acad. Cienc. Exactas Fis. Naturales. Ser. A Mat. 2015, 7, 2730–2744. [Google Scholar] [CrossRef] [Green Version]
- Ramani, K.V.; Mavalankar, D.; Patel, A.; Mehandiratta, S. A GIS approach to plan and deliver healthcare services to urban poor: A public private partnership model for Ahmedabad City, India. Int. J. Pharm. Healthc. Mark. 2007, 1, 159–173. [Google Scholar] [CrossRef]
- Schuurman, N.; Leight, M.; Berube, M. A Web-based graphical user interface for evidence-based decision making for health care allocations in rural areas. Int. J. Health Geogr. 2008, 7, 49. [Google Scholar] [CrossRef] [Green Version]
- Senvar, O.; Otay, I.; Bolturk, E. Hospital site selection via hesitant fuzzy TOPSIS. IFAC PapersOnLine 2016, 49, 1140–1145. [Google Scholar] [CrossRef]
- Hamadouche, M.A.; Mederbal, K.; Kouri, L.; Regagba, Z.; Fekir, Y.; Anteur, D. GIS-based multicriteria analysis: An approach to select priority areas for preservation in the Ahaggar National Park, Algeria. Arab. J. Geosci. 2014, 7, 419–434. [Google Scholar] [CrossRef]
- Kalantar, B.; Ueda, N.; Mansor, S.; Abdul Halin, A.; Shafri, H.Z.M.; Zand, M. A graph-based approach for moving objects detection from UAV videos. In Proceedings of the Image and Signal Processing for Remote Sensing XXIV, Berlin, Germany, 10–13 September 2018; Volume 10789, p. 107891Y. [Google Scholar] [CrossRef]
- Mojaddadi, H.R. Flood Risk Assessment Using Multi-Sensor Remote Sensing, Geographic Information System, 2D Hydraulic and Machine Learning Based Models. Ph.D Thesis, University of Technology, Sydney, NSW, Australia, 2018. [Google Scholar]
- Thi, P.; Lien, H. Mapping Vegetation with Remote Sensing and GIS Data Using Object-Based Analysis and Machine Learning Algorithms. Ph.D. Thesis, The University of Waikato, Hamilton, New Zealand, 2018. [Google Scholar]
- Chapi, K.; Singh, V.P.; Shirzadi, A.; Shahabi, H.; Bui, D.T.; Pham, B.T.; Khosravi, K. A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environ. Model. Softw. 2017, 95, 229–245. [Google Scholar] [CrossRef]
- Youzi, H.; Nemati, G.; Emamgholi, S. The Optimized Location of Hospital Using an Integrated Approach GIS and Analytic Hierarchy Process: A Case Study of Kohdasht City. Int. J. Econ. Manag. Sci. 2018, 7, 1–6. [Google Scholar] [CrossRef]
- Vahidnia, M.H.; Alesheikh, A.A.; Alimohammadi, A. Hospital site selection using fuzzy AHP and its derivatives. J. Environ. Manag. 2009, 90, 3048–3056. [Google Scholar] [CrossRef]
- Ali, S.A.; Ali, A.; Mohammad, M.Q.; Vali, P.; Kazem, B. Proper Site Selection of Urban Hospital Using Combined Techniques of MCDM and Spatial Analysis of GIS (Case study: Region 7 in Tehran city). 2013. Available online: https://brief.land/semj/articles/57572.html (accessed on 10 February 2022).
- Abdullahi, S.; Bin Mahmud, A.R.; Pradhan, B. Spatial modelling of site suitability assessment for hospitals using geographical information system-based multicriteria approach at Qazvin city, Iran. Geocarto Int. 2013, 29, 164–184. [Google Scholar] [CrossRef]
- Rahimi, F.; Goli, A.; Rezaee, R. Hospital location-allocation in Shiraz using geographical information system (GIS). Shiraz E-Med. J. 2017, 18, e57572. [Google Scholar] [CrossRef] [Green Version]
- Kahraman, C.; Gündogdu, F.K.; Onar, S.C.; Oztaysi, B. Hospital location selection using spherical fuzzy TOPSIS. In Proceedings of the 11th Conference of the European Society for Fuzzy Logic and Technology EUSFLAT 2019, Prague, Czech Republic, 9–13 September 2019. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, A.K.; Agrawal, S.; Gupta, R.D. Comparison of GIS-based AHP and fuzzy AHP methods for hospital site selection: A case study for Prayagraj city, India. GeoJournal 2021, 1–22. [Google Scholar] [CrossRef]
- Al-Najjar, H.A.H.; Pradhan, B. Spatial landslide susceptibility assessment using machine learning techniques assisted by additional data created with generative adversarial networks. Geosci. Front. 2021, 12, 625–637. [Google Scholar] [CrossRef]
- Kalantar, B.; Ueda, N.; Al-Najjar, H.A.H.; Gibril, M.B.A.; Lay, U.S.; Motevalli, A. An evaluation of landslide susceptibility mapping using remote sensing data and machine learning algorithms in Iran. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 4, 503–511. [Google Scholar] [CrossRef] [Green Version]
- Kalantar, B.; Ueda, N.; Saeidi, V.; Janizadeh, S.; Shabani, F.; Ahmadi, K.; Shabani, F. Deep neural network utilizing remote sensing datasets for flood hazard susceptibility mapping in Brisbane, Australia. Remote Sens. 2021, 13, 2638. [Google Scholar] [CrossRef]
- Bragagnolo, L.; da Silva, R.V.; Grzybowski, J.M.V. Landslide susceptibility mapping with r.landslide: A free open-source GIS-integrated tool based on Artificial Neural Networks. Environ. Model. Softw. 2020, 123, 104565. [Google Scholar] [CrossRef]
- Brusca, S.; Famoso, F.; Lanzafame, R.; Galvagno, A.; Mauro, S.; Messina, M. Wind farm power forecasting: New algorithms with simplified mathematical structure. In Proceedings of the AIP Conference Proceedings, Modena, Italy, 11–13 September 2019; AIP Publishing: College Park, MD, USA, 2019. [Google Scholar]
- Jayasinghe, P.; Yoshida, M. GIS-based neural network modeling to predict suitable area for beetroot in sri lanka: Towards sustainable agriculture. J. Dev. Sustain. Agric. 2009, 4, 165–172. [Google Scholar] [CrossRef]
- Lu, F.; Zhang, H.; Liu, W. Development and application of a GIS-based artificial neural network system for water quality prediction: A case study at the Lake Champlain area. J. Oceanol. Limnol. 2019, 38, 1835–1845. [Google Scholar] [CrossRef]
- Zhou, J.; Civco, D.L. Using genetic learning neural networks for spatial decision making in GIS. Photogramm. Eng. Remote Sens. 1996, 62, 1287–1295. [Google Scholar]
- Yang, Y.; Tang, J.; Luo, H.; Law, R. Hotel location evaluation: A combination of machine learning tools and web GIS. Int. J. Hosp. Manag. 2015, 47, 14–24. [Google Scholar] [CrossRef]
- Abujayyab, S.K.M.; Ahamad, M.A.S.; Yahya, A.S.; Saad, A.M.H.Y. A new framework for geospatial site selection using artificial neural networks as decision rules: A case study on landfill sites. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Kuala Lumpur, Malaysia, 28–30 October 2015; The International Society for Photogrammetry and Remote Sensing: Hannover, Germany, 2015. [Google Scholar]
- Abujayyab, S.K.M.; Ahamad, M.S.S.; Yahya, A.S.; Aziz, H.A. Spatial data mining toolbox for mapping suitability of landfill sites using neural networks. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives, Kuala Lumpur, Malaysia, 3–5 October 2016; The International Society for Photogrammetry and Remote Sensing: Hannover, Germany, 2016. [Google Scholar]
- Shimray, B.A.; Singh, K.M.; Khelchandra, T.; Mehta, R.K. Optimal ranking of hydro power plant sites based on MLP-BP and fuzzy inference approach. In Proceedings of the 2017 8th Industrial Automation and Electromechanical Engineering Conference, IEMECON 2017, Bangkok, Thailand, 16–18 August 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Al-Ruzouq, R.; Shanableh, A.; Yilmaz, A.G.; Idris, A.E.; Mukherjee, S.; Khalil, M.A.; Gibril, M.B.A. Dam site suitability mapping and analysis using an integrated GIS and machine learning approach. Water 2019, 11, 1880. [Google Scholar] [CrossRef] [Green Version]
- Taghizadeh-Mehrjardi, R.; Nabiollahi, K.; Rasoli, L.; Kerry, R.; Scholten, T. Land suitability assessment and agricultural production sustainability using machine learning models. Agronomy 2020, 10, 573. [Google Scholar] [CrossRef]
- Beven, K.J.; Kirkby, M.J.; Kirkby, A.J. A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant) A physically based, variable contributing area model of basin hydrology/Un modèle à base phys. Hydrol. Sci. J. 1979, 24, 43–69. [Google Scholar] [CrossRef] [Green Version]
- Zainol, R.; Elsawa, H. Relationship between adequate healthcare facilities and population distribution in melaka using spatial statistics. J. Des. Built Environ. 2018, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Mojaddadi, H.; Pradhan, B.; Nampak, H.; Ahmad, N.; Ghazali, A.H.B. Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS. Geomat. Nat. Hazards Risk 2017, 8, 1080–1102. [Google Scholar] [CrossRef] [Green Version]
- Pham, B.T.; Bui, D.T.; Dholakia, M.B.; Prakash, I.; Pham, H.V. A comparative study of least square support vector machines and multiclass alternating decision trees for spatial prediction of rainfall-induced landslides in a tropical cyclones area. Geotech. Geol. Eng. 2016, 34, 1807–1824. [Google Scholar] [CrossRef]
- Kalantar, B.; Ueda, N.; Idrees, M.O.; Janizadeh, S.; Ahmadi, K.; Shabani, F. Forest fire susceptibility prediction based on machine learning models with resampling algorithms on remote sensing data. Remote Sens. 2020, 12, 3682. [Google Scholar] [CrossRef]
- McLafferty, S.L. GIS and health care. Annu. Rev. Public Health 2003, 24, 25–42. [Google Scholar] [CrossRef] [PubMed]
- Maantay, J.A.; Maroko, A.R.; Herrmann, C. Mapping population distribution in the urban environment: The cadastral-based expert dasymetric system (CEDS). Cartogr. Geogr. Inf. Sci. 2007, 34, 77–102. [Google Scholar] [CrossRef]
- Zhou, L.; Wu, J. GIS-Based Multi-Criteria Analysis for Hospital Site Selection in Haidian District of Beijing. 2012. Available online: https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=3558914&fileOId=3558923 (accessed on 10 February 2022).
- Kalantar, B.; Pradhan, B.; Amir Naghibi, S.; Motevalli, A.; Mansor, S. Assessment of the effects of training data selection on the landslide susceptibility mapping: A comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN). Geomat. Nat. Hazards Risk 2018, 9, 49–69. [Google Scholar] [CrossRef]
- Lawther, A. The Application of GIS-Based Binary Logistic Regression for Slope Failure Susceptibility Mapping in the Western Grampian Mountains, Scotland. Master’s Thesis, Lund University, Lund, Sweden, 2008. [Google Scholar]
- Ayalew, L.; Yamagishi, H.; Marui, H.; Kanno, T. Landslides in Sado island of Japan: Part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications. Eng. Geol. 2005, 81, 432–445. [Google Scholar] [CrossRef]
- Gómez, H.; Kavzoglu, T. Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Eng. Geol. 2005, 78, 11–27. [Google Scholar] [CrossRef]
- Gokceoglu, C.; Sonmez, H.; Nefeslioglu, H.A.; Duman, T.Y.; Çan, T. The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity. Eng. Geol. 2005, 81, 65–83. [Google Scholar] [CrossRef]
- Seutloali, K.E.; Dube, T.; Mutanga, O. Assessing and mapping the severity of soil erosion using the 30-m Landsat multispectral satellite data in the former South African homelands of Transkei. Phys. Chem. Earth Parts A/B/C 2017, 100, 296–304. [Google Scholar] [CrossRef]
- Çan, T.; Nefeslioglu, H.A.; Gokceoglu, C.; Sonmez, H.; Duman, T.Y. Susceptibility assessments of shallow earthflows triggered by heavy rainfall at three catchments by logistic regression analyses. Geomorphology 2005, 72, 250–271. [Google Scholar] [CrossRef]
- Gorsevski, P.V.; Jankowski, P.; Gessler, P.E. An heuristic approach for mapping landslide hazard by integrating fuzzy logic with analytic hierarchy process. Control Cybern. 2006, 35, 121–146. [Google Scholar]
- Mezaal, M.R.; Pradhan, B.; Sameen, M.I.; Shafri, H.Z.M.; Yusoff, Z.M. Optimized neural architecture for automatic landslide detection from high-resolution airborne laser scanning data. Appl. Sci. 2017, 7, 730. [Google Scholar] [CrossRef] [Green Version]
- Hall, M.A. Correlation-Based Feature Selection for Machine Learning. Ph.D. Thesis, The University of Waikato, Hamilton, New Zealand, 1999. [Google Scholar]
- Ayidagn, K.A.; Gite, P. Filter based feature selection and ensemble of classifier for high dimensional data: Comparative study. Int. J. Pure Appl. Math. 2018, 118. [Google Scholar]
- Vanaja, S.; Kumar, K.R. Analysis of Feature Selection Algorithms on Classification: A Survey. Int. J. Comput. Appl. 2014, 96, 29–35. [Google Scholar] [CrossRef]
- Ziemba, P.; Wątróbski, J.; Jankowski, J.; Piwowarski, M. Research on the properties of the AHP in the Environment of inaccurate expert evaluations. In Selected Issues in Experimental Economics; Nermend, K., Łatuszyńska, M., Eds.; Springer Proceedings in Business and Economics; Springer: Cham, Switzerland, 2016; pp. 227–243. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw: New York, NY, USA, 1980; ISBN 1888603151. [Google Scholar]
- Kumar, M.; Denis, D.M.; Gabril, E.M.A.; Nath, S.; Paul, A.; Mukesh Kumar, C. Site suitability analysis for urban development using geospatial technologies and AHP: A case study in Prayagraj, Uttar Pradesh, India Waste Management View project Evaluation of Irrigation System and improvement strategies for higher water productivity i. Pharma Innov. J. 2019, 8, 676–681. [Google Scholar]
- Saaty, T.L. Relative measurement and its generalization in decision making why pairwise comparisons are central in mathematics for the measurement of intangible factors the analytic hierarchy/network process. RACSAM Rev. De La Real Acad. De Cienc. Exactas Fis. Nat. Ser. A. Mat. 2008, 102, 251–318. [Google Scholar] [CrossRef]
- Katla, S.; Xu, D.; Wu, Y.; Pan, Q.; Wu, X. DPWeka: Achieving differential privacy in WEKA. In Proceedings of the 2017 IEEE Symposium on Privacy-Aware Computing, PAC 2017, Washington, DC, USA, 1–4 August 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Pourhashemi, S.M.; Mashalizadeh, A.M. A Novel Feature Selection Method Using Cfs with Greedy-Stepwise Search Algorithm in E-Mail Spam Filtering; Semantic Scholar: Seattle, WA, USA, 2013; Volume 15. [Google Scholar]
- Hall, M.A. Correlation-Based Feature Selection for Discrete and Numerci Class Machine Learning; University of Waikato: Hamilton, New Zealand, 2008. [Google Scholar]
- Iguyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. [Google Scholar] [CrossRef] [Green Version]
- Mayfield, C.J.; Kumler, M.; Afzalan, N. Automating the Classification of Thematic Rasters for Weighted Overlay Analysis in GeoPlanner for ArcGIS; University of Redlands: Redlands, CA, USA, 2015. [Google Scholar]
- Otukei, J.R.; Blaschke, T. Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, S27–S31. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Halder, A.; Ghosh, A.; Ghosh, S. Supervised and unsupervised landuse map generation from remotely sensed images using ant based systems. Appl. Soft Comput. J. 2011, 11, 5770–5781. [Google Scholar] [CrossRef]
- Logo, M.; Theses, M.; Jagirdar, N.M. Trace: Tennessee Research and Creative Exchange Online Machine Learning Algorithms Review and Comparison in Healthcare. Master’s Thesis, University of Tennessee, Knoxville, TN, USA, 2018. [Google Scholar]
- Dai, F.C.; Lee, C.F. Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 2002, 42, 213–228. [Google Scholar] [CrossRef]
- Dehuri, S.; Mishra, B.; Mallick, P.; Cho, S. Biologically inspired techniques in many-criteria decision making. In Proceedings of the International Conference on Biologically Inspired Techniques in Many-Criteria Decision Making (BITMDM-2019), Balasore, India, 19–20 December 2019; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Ünver, H.M.; Kökver, Y.; Çifci, A. Hipertansiyon tahmini İçin Temel Bileşen Analizi’nin kullanımı; A comprehensive foundation: Neural networks. Int. J. Eng. Res. Dev. 2020, 12, 42–51. [Google Scholar]
- Borra, S.; Di Ciaccio, A. Measuring the prediction error. A comparison of cross-validation, bootstrap and covariance penalty methods. Comput. Stat. Data Anal. 2010, 54, 2976–2989. [Google Scholar] [CrossRef]
- Idrees, M.O.; Pradhan, B. Hybrid taguchi-objective function optimization approach for automatic cave bird detection from terrestrial laser scanning intensity image. Int. J. Speleol. 2016, 45, 289–301. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.; Li, J.; Cheng, W.; Wang, N.; Guo, L. A GIS-based support vector machine model for flash flood vulnerability assessment and mapping in China. ISPRS Int. J. Geo-Inf. 2019, 8, 297. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Singh, K.K. Satellite image classification using genetic algorithm trained radial basis function neural network, application to the detection of flooded areas. J. Vis. Commun. Image Represent. 2017, 42, 173–182. [Google Scholar] [CrossRef]
- Pandey, V.K.; Pourghasemi, H.R.; Sharma, M.C. Landslide susceptibility mapping using maximum entropy and support vector machine models along the highway corridor, Garhwal Himalaya. Geocarto Int. 2020, 35, 168–187. [Google Scholar] [CrossRef]
- Stojanova, D.; Panov, P.; Kobler, A.; Džeroski, K.T.S. Learning to predict forest fires with different data mining techniques. In Proceedings of the Data Mining and Data Warehouses (SiKDD 2006), Ljubljana, Slovenia, 17 October 2006. [Google Scholar]
- Thach, N.N.; Ngo, D.B.-T.; Xuan-Canh, P.; Hong-Thi, N.; Thi, B.H.; Nhat-Duc, H.; Dieu, T.B. Spatial pattern assessment of tropical forest fire danger at Thuan Chau area (Vietnam) using GIS-based advanced machine learning algorithms: A comparative study. Ecol. Inform. 2018, 46, 74–85. [Google Scholar] [CrossRef]
- Maier, H.R.; Dandy, G.C. Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications. Environ. Model. Softw. 2000, 15, 101–124. [Google Scholar] [CrossRef]
- Kim, G.B. A study on the establishment of groundwater protection area around a saline waterway by combining artificial neural network and GIS-based AHP. Environ. Earth Sci. 2020, 79, 117. [Google Scholar] [CrossRef]
- Mia, M.M.; Biswas, S.K.; Urmi, M.C.; Siddique, A. An algorithm for training multilayer perceptron (MLP) for Image reconstruction using neural network without overfitting. Int. J. Sci. Technol. Res. 2015, 4, 271–275. [Google Scholar]
- Murata, N.; Yoshizawa, S.; Amari, S.I. Network Information Criterion—Determining the Number of Hidden Units for an Artificial Neural Network Model. IEEE Trans. Neural Netw. 1994, 5, 865–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardner, M.W.; Dorling, S.R. Artificial neural networks (the multilayer perceptron)—A review of applications in the atmospheric sciences. Atmos. Environ. 1998, 32, 2627–2636. [Google Scholar] [CrossRef]
Name | ML Model | Decision Problem |
---|---|---|
Yang et al. [64] | MLP, LR, SVR, PPR, & BR | Hotel location selection |
Abujayyab et al. [65] Abujayyab et al. [66] | MLP and ANN | Landfill site suitability |
Shimray et al. [67] | MLP-BP | Hydro power plant site selection |
Al-Ruzouq et al. [68] | FR, BTR, SVM, & AHP | Dam site suitability |
Taghizadeh-Mehrjardi et al. [69] | SVM & RF | Land suitability and the sustainability of agricultural production |
Almansi et al. [19] | MLP, SVM, & LR | Hospital site suitability |
No. | Conditioning Factors |
---|---|
1 | Altitude |
2 | Slope |
3 | Aspect |
4 | Curvature |
5 | SPI |
6 | TWI |
7 | TRI |
8 | Distance from river network |
9 | Distance from highway |
10 | Distance road |
11 | Distance from the agricultural area |
12 | Distance from the residential area |
13 | Population size |
14 | Population density |
Factors | Classes | Suitability Rating |
---|---|---|
Altitude (m) | 0–9 | 1 |
9–12 | 2 | |
12–16 | 3 | |
16–21 | 4 | |
21–27 | 5 | |
27–34 | 6 | |
34–43 | 7 | |
43–56 | 8 | |
56–75 | 9 | |
75–489 | 10 | |
Aspect | Flat | 1 |
North | 9 | |
Northeast | 9 | |
East | 5 | |
Southeast | 5 | |
South | 1 | |
Southwest | 1 | |
West | 1 | |
Northwest | 5 | |
Slope (°) | 0 | 1 |
0–1 | 2 | |
1–2 | 3 | |
2–3 | 4 | |
3–4 | 5 | |
4–6 | 6 | |
6–8 | 7 | |
8–10 | 8 | |
10–14 | 9 | |
14–61 | 10 | |
Curvature | Concave | 10 |
Flat | 1 | |
Convex | 10 | |
TWI | 3–5 | 1 |
5–6 | 2 | |
6–7 | 3 | |
7–8 | 4 | |
8–9 | 5 | |
9–10 | 6 | |
10–11 | 7 | |
11–12 | 8 | |
12–13 | 9 | |
13–17 | 10 | |
TRI | 1–2 | 1 |
2–3 | 2 | |
3–4 | 3 | |
4–5 | 4 | |
5–6 | 5 | |
6–7 | 6 | |
7–8 | 7 | |
8–9 | 8 | |
SPI | −7 | 1 |
−1–−4 | 2 | |
−4–−3 | 3 | |
−3–−2 | 4 | |
−2–−1 | 5 | |
−1–0 | 6 | |
0–1 | 7 | |
1–2 | 8 | |
2–3 | 9 | |
3–4 | 10 | |
Agriculture (m) | 0 | 10 |
0–53.7 | 9 | |
53.7–107.5 | 8 | |
107.5–161.2 | 7 | |
161.2–268.7 | 6 | |
268.7–376.2 | 5 | |
376.2–537.5 | 4 | |
537.5–752.5 | 3 | |
752.5–1128.8 | 2 | |
12,128–13,706 | 1 | |
Residential (m) | 0 | 1 |
0–108.5 | 2 | |
108.5–217.1 | 3 | |
217.1–379.8 | 4 | |
379.8–542.7 | 5 | |
542.7–759.7 | 6 | |
759.7–976.8 | 7 | |
976.8–1302.5 | 8 | |
1302.5–1790.9 | 9 | |
1790.9–13,839.1 | 10 | |
Highway (m) | 0–1070.5 | 10 |
1070.5–2542.4 | 9 | |
2542.4–4014.4 | 8 | |
4014.4–5486.3 | 7 | |
5486.3–6958.2 | 6 | |
6958.2–8564.1 | 5 | |
8564.1–10,303.6 | 4 | |
10,303.6–12,578.4 | 3 | |
12,578.4–15,254.7 | 2 | |
15,254.7–34,122.4 | 1 | |
Road (m) | 0 | 1 |
0–110.2 | 2 | |
110.2–220.5 | 3 | |
220.5–330.8 | 4 | |
330.8–496.2 | 5 | |
496.2–661.6 | 6 | |
661.6–882.2 | 7 | |
882.2–1157.9 | 8 | |
1157.9–1654.1 | 9 | |
1654.1–14,060.6 | 10 | |
River (m) | 0 | 10 |
0–1150.2 | 9 | |
1150.2–2091.4 | 8 | |
2091.4–2927.9 | 7 | |
2927.9–3764.5 | 6 | |
3764.5–4653.3 | 5 | |
4653.3–5699.1 | 4 | |
5699.1–6953.9 | 3 | |
6953.9–8993.1 | 2 | |
8993.1–13,332.7 | 1 | |
Population Density | 55–82 | 10 |
82–110 | 9 | |
110–146 | 8 | |
146–241 | 7 | |
241–291 | 6 | |
291–412 | 5 | |
412–558 | 4 | |
558–1068 | 3 | |
1068–1678 | 2 | |
1678–4837 | 1 | |
Population | 500–2500 | 10 |
2500–4800 | 9 | |
4800–5700 | 8 | |
5700–8300 | 7 | |
8300–8700 | 6 | |
8.700–11,300 | 5 | |
11,300–16,200 | 4 | |
16,200–21,300 | 3 | |
21,300–29,300 | 2 | |
29,300–64,400 | 1 |
Intensity of Importance | Definition |
---|---|
1 | Equal importance |
2 | Equal to moderate |
3 | Moderate to importance |
4 | Moderate to strong importance |
5 | Strong importance |
6 | Strong to very strong importance |
7 | Very strong importance |
8 | Very to extremely strong importance |
9 | Extreme importance |
n | RI |
---|---|
1 | 0.00 |
2 | 0.00 |
3 | 0.58 |
4 | 0.90 |
5 | 1.12 |
6 | 1.24 |
7 | 1.32 |
8 | 1.41 |
9 | 1.45 |
10 | 1.49 |
11 | 1.51 |
12 | 1.48 |
13 | 1.56 |
14 | 1.57 |
15 | 1.59 |
Description | Intensity of Importance |
---|---|
Extremely less important | 1/9 |
1/8 | |
Very strongly less important | 1/7 |
1/6 | |
Strongly less important | 1/5 |
1/4 | |
Moderately less important | 1/3 |
1/2 | |
Equal importance | 1 |
2 | |
Moderately more important | 3 |
4 | |
Strongly more important | 5 |
6 | |
Very strongly more important | 7 |
8 | |
Extremely more important | 9 |
A | B | C | D | E | F | G | H | I | J | K | L | M | N | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | 1 | 2 | 2 | 1 | 4 | 5 | 2 | 7 | 8 | 9 | 7 | 6 | 5 | 3 |
B | 1/2 | 1 | 3 | 3 | 4 | 6 | 6 | 4 | 6 | 6 | 6 | 4 | 3 | 4 |
C | 1/2 | 1/3 | 1 | 2 | 2 | 5 | 4 | 3 | 6 | 7 | 6 | 2 | 5 | 3 |
D | 1 | 1/3 | 1/2 | 1 | 1 | 4 | 3 | 3 | 1 | 5 | 4 | 1 | 2 | 8 |
E | 1/4 | 1/4 | 1/2 | 1 | 1 | 3 | 2 | 1/2 | 5 | 3 | 5 | 1 | 2 | 6 |
F | 1/5 | 1/6 | 1/5 | 1/4 | 1/3 | 1 | 1/3 | 1/3 | 1 | 3 | 4 | 1 | 3 | 7 |
G | 1/2 | 1/6 | 1/4 | 1/3 | 1/2 | 3 | 1 | 1 | 4 | 6 | 5 | 1 | 3 | 1 |
H | 1/9 | 1/8 | 1/7 | 1/5 | 1/5 | 1/3 | 1/6 | 1 | 1/2 | 6 | 1 | 1 | 2 | 4 |
I | 1/2 | 1/2 | 1/2 | 1/5 | 1/7 | 1/7 | 1/5 | 1/5 | 1 | 7 | 2 | 2 | 2 | 3 |
J | 1/9 | 1/6 | 1/7 | 1/5 | 1/3 | 1/3 | 1/6 | 1/6 | 1/7 | 1 | 1/2 | 1/7 | 4 | 2 |
K | 1/7 | 1/6 | 1/6 | 1/4 | 1/5 | 1/4 | 1/5 | 1/2 | 1/2 | 1/2 | 1 | 1/9 | 2 | 2 |
L | 1/6 | 1/4 | 1/2 | 1 | 1/3 | 1/2 | 1/2 | 1/2 | 1/2 | 1/3 | 1/3 | 1 | 9 | 3 |
M | 1/2 | 1/3 | 1/4 | 1/3 | 1/9 | 1/9 | 1/5 | 1/6 | 1/5 | 1/7 | 1/2 | 1/7 | 1 | 5 |
N | 1/9 | 1/4 | 1/3 | 1/3 | 1/5 | 1/9 | 1/3 | 1/2 | 1/7 | 1/2 | 1/2 | 1/6 | 1/5 | 1 |
Conditioning Factors | Weights |
---|---|
Population Density | 0.074 |
Population | 0.034 |
Altitude | 0.015 |
Agriculture | 0.136 |
Residential | 0.218 |
Road | 0.208 |
Highway | 0.096 |
River | 0.03 |
Slope | 0.012 |
Curvature | 0.066 |
Aspect | 0.027 |
TRI | 0.016 |
TWI | 0.02 |
SPI | 0.048 |
Parameters | Values | Relative Influence % |
---|---|---|
Population density | Density of population | 100% |
Road | Distance from the road | 90% |
Agriculture | Distance from agriculture | 90% |
Residential | Distance from residential areas | 90% |
Highway | Distance from the highway | 80% |
River | Distance from the river | 80% |
Population | Population number | 80% |
Slope | Slope degree | 70% |
Altitude | Altitude | 70% |
TRI | Topographic roughness index | 70% |
TWI | Topographic wetness index | 70% |
SPI | Stream power index | 60% |
Curvature | Plan curvature | 60% |
Aspect | Aspect | 40% |
95% Confidence Interval | |||||
---|---|---|---|---|---|
Model | AUC | Std. Error | Lower Bound | Upper Bound | |
MLP | 0.922 | 0.066 | 0.793 | 1.000 | |
AHP | 0.914 | 0.070 | 0.777 | 1.000 | |
10-Fold Cross-Correlation Method | |||||
R2 | RMSE | RRSE (%) | RAE (%) | MAE | |
MLP | 0.998 | 0.0027 | 0.54 | 0.38 | 0.0019 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almansi, K.Y.; Shariff, A.R.M.; Kalantar, B.; Abdullah, A.F.; Ismail, S.N.S.; Ueda, N. Performance Evaluation of Hospital Site Suitability Using Multilayer Perceptron (MLP) and Analytical Hierarchy Process (AHP) Models in Malacca, Malaysia. Sustainability 2022, 14, 3731. https://doi.org/10.3390/su14073731
Almansi KY, Shariff ARM, Kalantar B, Abdullah AF, Ismail SNS, Ueda N. Performance Evaluation of Hospital Site Suitability Using Multilayer Perceptron (MLP) and Analytical Hierarchy Process (AHP) Models in Malacca, Malaysia. Sustainability. 2022; 14(7):3731. https://doi.org/10.3390/su14073731
Chicago/Turabian StyleAlmansi, Khaled Yousef, Abdul Rashid Mohamed Shariff, Bahareh Kalantar, Ahmad Fikri Abdullah, Sharifah Norkhadijah Syed Ismail, and Naonori Ueda. 2022. "Performance Evaluation of Hospital Site Suitability Using Multilayer Perceptron (MLP) and Analytical Hierarchy Process (AHP) Models in Malacca, Malaysia" Sustainability 14, no. 7: 3731. https://doi.org/10.3390/su14073731
APA StyleAlmansi, K. Y., Shariff, A. R. M., Kalantar, B., Abdullah, A. F., Ismail, S. N. S., & Ueda, N. (2022). Performance Evaluation of Hospital Site Suitability Using Multilayer Perceptron (MLP) and Analytical Hierarchy Process (AHP) Models in Malacca, Malaysia. Sustainability, 14(7), 3731. https://doi.org/10.3390/su14073731