The Impact of Climate Change on Urban Transportation Resilience to Compound Extreme Events
Abstract
:1. Introduction
2. Overview of UT resilience Research
2.1. Constructing the Transportation Resilience Index System
2.2. Analysis Mechanism of the Impact of Extreme Events on Transportation Resilience
2.3. Mining the Relationship between Climate Change and Transportation Resilience
2.4. Evaluation and Prediction of Transportation Resilience Features
3. Challenges in Current UT resilience Research
3.1. There Is No Unified Quantitative Index to Measure the Intensity of Transportation Resilience
3.2. The Methods of Analysis of the Impact of Extreme Weather Events on Transportation Resilience Are Limited
3.3. Limited Research Has Been Conducted on the Resilience of Transportation Systems to Global Climate Change and Extreme Weather Events
3.4. Research on Transportation Resilience Cannot Accurately Assess and Predict the Impact during Extreme Weather Events
4. Research Direction of Future UT resilience
4.1. Mechanistic Studies on How Extremes Impact Transportation Resilience
4.2. Evaluating and Predicting Transportation Resilience for Climate Extremes Using Multisource Data Fusion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zscheischler, J.; Westra, S.; Van Den Hurk, B.J.J.M.; Seneviratne, S.I.; Ward, P.J.; Pitman, A.; AghaKouchak, A.; Bresch, D.N.; Leonard, M.; Wahl, T.; et al. Future climate risk from compound events. Nat. Clim. Chang. 2018, 8, 469–477. [Google Scholar] [CrossRef]
- Hao, Z.; Singh, V.P. Compound Events under Global Warming: A Dependence Perspective. J. Hydrol. Eng. 2020, 25, 03120001. [Google Scholar] [CrossRef]
- Hao, Z.; Hao, F.; Singh, V.P.; Xia, Y.; Shi, C.; Zhang, X. A multivariate approach for statistical assessments of compound extremes. J. Hydrol. 2018, 565, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Tavakol, A.; Rahmani, V.; Harrington, J., Jr. Probability of compound climate extremes in a changing climate: A copula-based study of hot, dry, and windy events in the central United States. Environ. Res. Lett. 2020, 15, 104058. [Google Scholar] [CrossRef]
- Ridder, N.N.; Pitman, A.J.; Westra, S.; Ukkola, A.; Do, H.X.; Bador, M.; Hirsch, A.L.; Evans, J.P.; Di Luca, A.; Zscheischler, J. Global hotspots for the occurrence of compound events. Nat. Commun. 2020, 11, 5956. [Google Scholar] [CrossRef] [PubMed]
- Chester, M.V.; Allenby, B. Toward adaptive infrastructure: Flexibility and agility in a non-stationarity age. Sustain. Resilient Infrastruct. 2018, 4, 173–191. [Google Scholar] [CrossRef]
- Zhang, L.J.; Li, L.S. People-oriented emergency response mechanism—An example of the emergency work when typhoon Meranti stroked Xiamen. Int. J. Disaster Risk Reduct. 2019, 38, 101185. [Google Scholar] [CrossRef]
- Yang, J.; Li, L.; Zhao, K.; Wang, P.; Wang, D.; Sou, I.M.; Yang, Z.; Hu, J.; Tang, X.; Mok, K.M.; et al. A Comparative Study of Typhoon Hato (2017) and Typhoon Mangkhut (2018)—Their Impacts on Coastal Inundation in Macau. J. Geophys. Res. Oceans 2019, 124, 9590–9619. [Google Scholar] [CrossRef]
- Zhou, C.; Chen, P.; Yang, S.; Zheng, F.; Yu, H.; Tang, J.; Lu, Y.; Chen, G.; Lu, X.; Zhang, X.; et al. The impact of Typhoon Lekima (2019) on East China: A postevent survey in Wenzhou City and Taizhou City. Front. Earth Sci. 2021, 16, 109–120. [Google Scholar] [CrossRef]
- Gonçalves, L.; Ribeiro, P. Resilience of urban transportation systems. Concept, characteristics, and methods. J. Transp. Geogr. 2020, 85, 102727. [Google Scholar] [CrossRef]
- Wang, H.-W.; Peng, Z.-R.; Wang, D.; Meng, Y.; Wu, T.; Sun, W.; Lu, Q.-C. Evaluation and prediction of transportation resilience under extreme weather events: A diffusion graph convolutional approach. Transp. Res. Part C Emerg. Technol. 2020, 115, 102619. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Bollinger, L.A.; Bogmans, C.W.J.; Chappin, E.J.L.; Dijkema, G.P.J.; Huibregtse, J.N.; Maas, N.; Schenk, T.; Snelder, M.; Van Thienen, P.; De Wit, S.; et al. Climate adaptation of interconnected infrastructures: A framework for supporting governance. Reg. Environ. Chang. 2014, 14, 919–931. [Google Scholar] [CrossRef] [Green Version]
- Cao, M. Transportation Resilience: A summative review on Definition and Connotation. In Proceedings of the 2015 International Conference on Automation, Mechanical Control and Computational Engineering, Changsha, China, 24–25 October 2015. [Google Scholar]
- Pregnolato, M.; Ford, A.; Wilkinson, S.M.; Dawson, R.J. The impact of flooding on road transport: A depth-disruption function. Transp. Res. Part D Transp. Environ. 2017, 55, 67–81. [Google Scholar] [CrossRef]
- Markolf, S.A.; Hoehne, C.; Fraser, A.; Chester, M.V.; Underwood, B.S. Transportation resilience to climate change and extreme weather events—Beyond risk and robustness. Transp. Policy 2019, 74, 174–186. [Google Scholar] [CrossRef]
- Pregnolato, M.; Ford, A.; Robson, C.; Glenis, V.; Barr, S.; Dawson, R. Assessing urban strategies for reducing the impacts of extreme weather on infrastructure networks. R. Soc. Open Sci. 2016, 3, 160023. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Wang, N.; Nicholson, C. Resilience-based post-disaster recovery strategies for road-bridge networks. Struct. Infrastruct. Eng. 2017, 13, 1404–1413. [Google Scholar] [CrossRef]
- Chan, R.; Schofer, J.L. Measuring Transportation System Resilience: Response of Rail Transit to Weather Disruptions. Nat. Hazards Rev. 2016, 17, 05015004. [Google Scholar] [CrossRef]
- Donovan, B.; Work, D.B. Empirically quantifying city-scale transportation system resilience to extreme events. Transp. Res. Part C Emerg. Technol. 2017, 79, 333–346. [Google Scholar] [CrossRef] [Green Version]
- Rashidy, R.A.H.E.; Grant-Muller, S. A composite resilience index for road transport networks. Transport 2017, 172, 174–183. [Google Scholar] [CrossRef] [Green Version]
- Liao, T.-Y.; Hu, T.-Y.; Ko, Y.-N. A resilience optimization model for transportation networks under disasters. Nat. Hazards 2018, 93, 469–489. [Google Scholar] [CrossRef]
- Aydin, N.Y.; Duzgun, H.S.; Wenzel, F.; Heinimann, H.R. Integration of stress testing with graph theory to assess the resil-ience of urban road networks under seismic hazards. Nat. Hazards 2018, 91, 37–68. [Google Scholar] [CrossRef]
- Xiangdong, X.; Anthony, C.; Sarawut, J.; Chao, Y.; Seungkyu, R. Transportation network redundancy: Complementary measures and computational methods. Transp. Res. Part B Methodol. 2018, 114, 68–85. [Google Scholar]
- Leobons, C.M.; Campos, V.B.G.; Bandeira, R.A.d.M. Assessing Urban Trans-portation Systems Resilience: A Proposal of Indicators. Transp. Res. Procedia 2019, 37, 322–329. [Google Scholar] [CrossRef]
- Nogal, M.; O’Connor, A.; Martinez-Pastor, B.; Caulfield, B. Novel Probabilistic Resilience Assessment Framework of Transportation Networks against Extreme Weather Events. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2017, 3, 04017004. [Google Scholar] [CrossRef]
- Aydin, N.Y.; Duzgun, H.S.; Heinimann, H.R.; Wenzel, F.; Gnyawali, K.R. Framework for improving the resilience and recovery of transportation networks under geohazard risks. Int. J. Disaster Risk Reduct. 2018, 31, 832–843. [Google Scholar] [CrossRef]
- Yazicioglu, A.Y.; Roozbehani, M.; Dahleh, M.A. Resilient Control of Transportation Networks by Using Variable Speed Limits. IEEE Trans. Control Netw. Syst. 2017, 5, 2011–2022. [Google Scholar] [CrossRef]
- Engler, E.; Gewies, S.; Bany, P.; Grunewald, E. Trajectory-Based Multimodal Transport Management For Resilient Trans-portation. Transp. Probl. 2018, 13, 81–96. [Google Scholar] [CrossRef] [Green Version]
- Qing-Chang, L. Modeling network resilience of rail transit under operational incidents. Transp. Res. Part A Policy Pract. 2018, 117, 227–237. [Google Scholar]
- Chopra, S.S.; Dillon, T.; Bilec, M.M.; Khanna, V. A network-based framework for assessing infrastructure resilience: A case study of the London metro system. J. R. Soc. Interface 2016, 13, 20160113. [Google Scholar] [CrossRef] [Green Version]
- Ganin, A.A.; Kitsak, M.; Marchese, D.; Keisler, J.M.; Seager, T.; Linkov, I. Resilience and efficiency in transportation net-works. Sci. Adv. 2017, 3, e1701079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilbeigi, M. Statistical process control for analyzing resilience of transportation networks. Int. J. Disaster Risk Reduct. 2019, 33, 155–161. [Google Scholar] [CrossRef]
- Alipour, A.; Shafei, B. Seismic Resilience of Transportation Networks with Deteriorating Components. J. Struct. Eng. 2016, 142. [Google Scholar] [CrossRef]
- Duan, M.; Wu, D.; Dong, B.; Zhang, L. Quantitatively Measuring Transportation Network Resilience under Earthquake Uncertainty and Risks. Am. J. Civ. Eng. 2016, 4, 174–184. [Google Scholar] [CrossRef] [Green Version]
- Adjeteybahun, K.; Planchet, J.L.; Birregah, B.; Chatelet, E. Railway transportation system’s resilience: Integration of operating conditions into topological indicators. In Proceedings of the Network Operations & Management Symposium, Istanbul, Turkey, 25–29 April 2016. [Google Scholar]
- Kim, S.; Yeo, H. A Flow-based Vulnerability Measure for the Resilience of Urban Road Network. Procedia—Soc. Behav. Sci. 2016, 218, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Kim, C.; Chun, Y. Network Reliability and Resilience of Rapid Transit Systems. Prof. Geogr. 2015, 68, 53–65. [Google Scholar] [CrossRef]
- Soltani-Sobh, A.; Heaslip, K.; Scarlatos, P.; Kaisar, E. Reliability based pre-positioning of recovery centers for resilient transportation infrastructure. Int. J. Disaster Risk Reduct. 2016, 19, 324–333. [Google Scholar] [CrossRef]
- Soltani-Sobh, A.; Heaslip, K.; Stevanovic, A.; El Khoury, J.; Song, Z. Evaluation of transportation network reliability during unexpected events with multiple uncertainties. Int. J. Disaster Risk Reduct. 2016, 17, 128–136. [Google Scholar] [CrossRef]
- Deloukas, A.; Apostolopoulou, E. Static and dynamic resilience of transport infrastructure and demand: The case of the Athens metro. Transp. Res. Procedia 2017, 24, 459–466. [Google Scholar] [CrossRef]
- Wang, J.W.; Wang, H.F.; Zhou, Y.; Wang, Y.; Zhang, W.J. On an integrated approach to resilient transportation systems in emergency situations. Nat. Comput. 2017, 18, 815–823. [Google Scholar] [CrossRef]
- Calvert, S.C.; Snelder, M. A methodology for road traffic resilience analysis and review of related concepts. Transp. A Transp. Sci. 2018, 14, 130–154. [Google Scholar] [CrossRef]
- Junqing, T.; Rudolf, H.H.; Xiaolei, M. A resilience-oriented approach for quantitatively assessing recurrent spatial-temporal congestion on urban roads. PLoS ONE 2018, 13, e0190616. [Google Scholar]
- Jin, J.G.; Tang, L.C.; Sun, L.; Lee, D.-H. Enhancing metro network resilience via localized integration with bus services. Transp. Res. Part E Logist. Transp. Rev. 2014, 63, 17–30. [Google Scholar] [CrossRef]
- Faturechi, R.; Miller-Hooks, E. Travel time resilience of roadway networks under disaster. Transp. Res. Part B Methodol. 2014, 70, 47–64. [Google Scholar] [CrossRef]
- Azadeh, A.; Atrchin, N.; Salehi, V.; Shojaei, H. Modelling and improvement of supply chain with imprecise transportation delays and resilience factors. Int. J. Logist. Res. Appl. 2013, 17, 269–282. [Google Scholar] [CrossRef]
- Zobel, C.W.; Khansa, L. Characterizing multi-event disaster resilience. Comput. Oper. Res. 2014, 42, 83–94. [Google Scholar] [CrossRef]
- Ye, Q.; Ukkusuri, S.V. Resilience as an Objective in the Optimal Reconstruction Sequence for Transportation Networks. J. Transp. Saf. Secur. 2014, 7, 91–105. [Google Scholar] [CrossRef]
- Balakrishnan, S.; Zhang, Z.; Machemehl, R.; Murphy, M.R. Mapping resilience of Houston freeway network during Hurricane Harvey using extreme travel time metrics. Int. J. Disaster Risk Reduct. 2020, 47, 101565. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, Z. Measuring the performance of airport resilience to severe weather events. Transp. Res. Part D Transp. Environ. 2020, 83, 102362. [Google Scholar] [CrossRef]
- Schlögl, M.; Laaha, G. Extreme weather exposure identification for road networks—A comparative assessment of statistical methods. Nat. Hazards Earth Syst. Sci. 2017, 17, 515–531. [Google Scholar] [CrossRef] [Green Version]
- Akbari, H.; Menon, S.; Rosenfeld, A. Global cooling: Increasing world-wide urban albedos to offset CO2. Clim. Chang. 2008, 94, 275–286. [Google Scholar] [CrossRef]
- Asaeda, T.; Ca, V.T.; Wake, A. Heat storage of pavement and its effect on the lower atmosphere. Atmos. Environ. 1996, 30, 413–427. [Google Scholar] [CrossRef]
- Meyer, M.D.; Weigel, B. Climate Change and Transportation Engineering: Preparing for a Sustainable Future. J. Transp. Eng. 2011, 137, 393–403. [Google Scholar] [CrossRef]
- Taylor, M.A.; Philp, M.L. Investigating the impact of maintenance regimes on the design life of road pavements in a changing climate and the implications for transport policy. Transp. Policy 2015, 41, 117–135. [Google Scholar] [CrossRef]
- Rattanachot, W.; Wang, Y.; Chong, D.; Suwansawas, S. Adaptation strategies of transport infrastructures to global climate change. Transp. Policy 2015, 41, 159–166. [Google Scholar] [CrossRef]
- Camp, J.; Abkowitz, M.; Hornberger, G.; Benneyworth, L.; Banks, J.C. Climate Change and Freight-Transportation Infrastructure: Current Challenges for Adaptation. J. Infrastruct. Syst. 2013, 19, 363–370. [Google Scholar] [CrossRef]
- Mitsakis, E.; Stamos, I.; Diakakis, M.; Grau, J.M.S. Impacts of high-intensity storms on urban transportation: Applying traffic flow control methodologies for quantifying the effects. Int. J. Environ. Sci. Technol. 2014, 11, 2145–2154. [Google Scholar] [CrossRef] [Green Version]
- Vajjarapu, H.; Verma, A.; Allirani, H. Evaluating climate change adaptation policies for urban transportation in India. Int. J. Disaster Risk Reduct. 2020, 47, 101528. [Google Scholar] [CrossRef]
- Serrao-Neumann; Silvia; Choy, L.; Darryl; Staden, V. Climate Change Impacts on Road Infrastructure Systems and Services in South East Queensland: Implications for Infrastructure Planning and Management. In Proceedings of the State of Australian Cities Conference, Melbourne, VIC, Australia, 1 January 2011. [Google Scholar]
- Suarez, P.; Anderson, W.; Mahal, V.; Lakshmanan, T. Impacts of flooding and climate change on urban transportation: A systemwide performance assessment of the Boston Metro Area. Transp. Res. Part D Transp. Environ. 2005, 10, 231–244. [Google Scholar] [CrossRef]
- Zhu, Y.; Xie, K.; Ozbay, K.; Zuo, F.; Yang, H. Data-Driven Spatial Modeling for Quantifying Networkwide Resilience in the Aftermath of Hurricanes Irene and Sandy. Transp. Res. Rec. J. Transp. Res. Board 2017, 2604, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Faturechi, R.; Miller-Hooks, E. Measuring the Performance of Transportation Infrastructure Systems in Disasters: A Com-prehensive Review. J. Infrastruct. Syst. 2015, 21, 04014025. [Google Scholar] [CrossRef]
- Wan, C.; Yang, Z.; Zhang, D.; Yan, X.; Fan, S. Resilience in transportation systems: A systematic review and future directions. Transp. Rev. 2017, 38, 479–498. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, N. Resilience-based risk mitigation for road networks. Struct. Saf. 2016, 62, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Shafieezadeh, A.; Burden, L.I. Scenario-based resilience assessment framework for critical infrastructure systems: Case study for seismic resilience of seaports. Reliab. Eng. Syst. Saf. 2014, 132, 207–219. [Google Scholar] [CrossRef]
- Balijepalli, C.; Oppong, O. Measuring vulnerability of road network considering the extent of serviceability of critical road links in urban areas. J. Transp. Geogr. 2014, 39, 145–155. [Google Scholar] [CrossRef]
- Li, T.; Rong, L.; Yan, K. Vulnerability analysis and critical area identification of public transport system: A case of high-speed rail and air transport coupling system in China. Transp. Res. Part A Policy Pract. 2019, 127, 55–70. [Google Scholar] [CrossRef]
- Henry, D.; Ramirez-Marquez, J.E. Generic metrics and quantitative approaches for system resilience as a function of time. Reliab. Eng. Syst. Saf. 2012, 99, 114–122. [Google Scholar] [CrossRef]
- Janić, M. Modelling the resilience, friability and costs of an air transport network affected by a large-scale disruptive event. Transp. Res. Part A Policy Pract. 2015, 71, 1–16. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of IPCC the In-tergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2013; pp. 159–254. [Google Scholar]
- Melillo, J.M.; Richmond, T.; Yohe, G. Climate Change Impacts in the United States: The Third National Climate Assessment. Eval. Assess. 2014, 61, 46–48. [Google Scholar]
- Milly, P.C.D.; Betancourt, J.; Falkenmark, M.; Hirsch, R.M.; Kundzewicz, Z.W.; Lettenmaier, D.P.; Stouffer, R.J. Stationarity Is Dead: Whither Water Management? Science 2008, 319, 573–574. [Google Scholar] [CrossRef]
- Woods, D.D. Four concepts for resilience and the implications for the future of resilience engineering. Reliab. Eng. Syst. Saf. 2015, 141, 5–9. [Google Scholar] [CrossRef]
- Jaroszweski, D.; Hooper, E.; Chapman, L. The impact of climate change on urban transport resilience in a changing world. Prog. Phys. Geogr. Earth Environ. 2014, 38, 448–463. [Google Scholar] [CrossRef]
- Aksu, D.T.; Ozdamar, L. A mathematical model for post-disaster road restoration: Enabling accessibility and evacuation. Transp. Res. Part E Logist. Transp. Rev. 2014, 61, 56–67. [Google Scholar] [CrossRef]
- Kepaptsoglou, K.L.; Konstantinidou, M.A.; Karlaftis, M.G.; Stathopoulos, A. Planning Postdisaster Operations in a Highway Network: Network Design Model with Interdependencies. Transp. Res. Rec. 2018, 2459, 1–10. [Google Scholar] [CrossRef]
- Testa, A.C.; Furtado, M.N.; Alipour, A. Resilience of Coastal Transportation Networks Faced with Extreme Climatic Events. Transp. Res. Rec. J. Transp. Res. Board 2015, 2532, 29–36. [Google Scholar] [CrossRef]
- Sun, L.; Yin, Y. Discovering themes and trends in transportation research using topic modeling. Transp. Res. Part C Emerg. Technol. 2017, 77, 49–66. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Sun, J.; Sun, J. A car-following model considering asymmetric driving behavior based on long short-term memory neural networks. Transp. Res. Part C Emerg. Technol. 2018, 95, 346–362. [Google Scholar] [CrossRef]
- Hao, S.; Lee, D.H.; Zhao, D. Sequence to sequence learning with attention mechanism for short-term passenger flow prediction in large-scale metro system. Transp. Res. Part C Emerg. Technol. 2019, 107, 287–300. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, J.; Du, B.; Ding, C.; Sun, L. Parallel Architecture of Convolutional Bi-Directional LSTM Neural Networks for Network-Wide Metro Ridership Prediction. IEEE Trans. Intell. Transp. Syst. 2018, 20, 2278–2288. [Google Scholar] [CrossRef]
- Wu, Y.; Tan, H.; Qin, L.; Ran, B.; Jiang, Z. A hybrid deep learning based traffic flow prediction method and its understanding. Transp. Res. Part C Emerg. Technol. 2018, 90, 166–180. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.B.; Wang, D.; Zhao, J.; Peng, Z. Regional prediction of ground-level ozone using a hybrid sequence-to-sequence deep learning approach. J. Clean. Prod. 2019, 253, 119841. [Google Scholar] [CrossRef]
- Ke, J.; Zheng, H.; Yang, H.; Chen, X. Short-term forecasting of passenger demand under on-demand ride services: A spa-tio-temporal deep learning approach. Transp. Res. 2017, 85c, 591–608. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Lin, Y.; Li, S.; Chen, Z.; Wan, H. Deep Spatial-Temporal 3D Convolutional Neural Networks for Traffic Data Fore-casting. IEEE Trans. Intell. Transp. Syst. 2019, 20, 1–14. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, T.; Ren, Y. A graph deep learning method for short-term traffic forecasting on large road networks. Comput. Civ. Infrastruct. Eng. 2019, 34, 877–896. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, M.; Lin, X.; Wang, Y.; He, F. Multistep speed prediction on traffic networks: A deep learning approach con-sidering spatio-temporal dependencies. Transp. Res. Part C Emerg. Technol. 2019, 105, 297–322. [Google Scholar] [CrossRef]
- Lin, L.; He, Z.; Peeta, S. Predicting station-level hourly demand in a large-scale bike-sharing network: A graph convolutional neural network approach. Transp. Res. Part C Emerg. Technol. 2018, 97, 258–276. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Ma, W.; Pi, X.; Qian, S. A deep learning approach to real-time parking occupancy prediction in transportation networks incorporating multiple spatio-temporal data sources. Transp. Res. Part C Emerg. Technol. 2019, 107, 248–265. [Google Scholar] [CrossRef]
- Sathiaraj, D.; Punkasem, T.-O.; Wang, F.; Seedah, D.P.K. Data-driven analysis on the effects of extreme weather elements on traffic volume in Atlanta, GA, USA. Comput. Environ. Urban Syst. 2018, 72, 212–220. [Google Scholar] [CrossRef]
- Ji, T.; Li, G. Contemporary monitoring of storm surge activity. Prog. Phys. Geogr. Earth Environ. 2019, 44, 299–314. [Google Scholar] [CrossRef]
- Ji, T.; Li, G.; Liu, Y.; Liu, R.; Zhu, Y. Spatiotemporal Features of Storm Surge Activity and Its Response to Climate Change in the Southeastern Coastal Area of China in the Past 60 years. J. Geophys. Res. Atmos. 2021, 126, e33234. [Google Scholar] [CrossRef]
- Mattsson, L.-G.; Jenelius, E. Vulnerability and resilience of transport systems—A discussion of recent research. Transp. Res. Part A Policy Pract. 2015, 81, 16–34. [Google Scholar] [CrossRef]
Types of Extreme Events | Impact on Transportation | Authors |
---|---|---|
Extreme heat events | Asphalt cracking Asphalt aging/oxidation Migration of liquid asphalt Asphalt softening rutting Railway bucking Catenary wire sag Failed expansion joints Concrete pavements blowups | [16,53,54,55] |
Season shift in temperatures | Increased damage from freeze-thaw cycles More frequent landslides/mudslides | [16,56,57] |
Extreme precipitation events | Flooding of roadways Overloading of drainage systems Roadway washout Bridge scour/washout Reduced structural integrity from soil moisture More frequent landslides/mudslides | [11,16,55,56,58,59,60] |
Droughts | Greater chance of wildfire Road closure from wildfire & reduced visibility Increased flooding in a deforested area More debris in stormwater management systems Reduced pavement integrity due to ground shrinking | [16,55] |
Sea Level Rise/Storm Surge/Coastal Flooding | More frequent/intense floods in low-lying areas Erosion of road base Erosion of bridge supports/bridge scouring Land subsidence | [11,16,55,57,59,60,61,62,63] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, T.; Yao, Y.; Dou, Y.; Deng, S.; Yu, S.; Zhu, Y.; Liao, H. The Impact of Climate Change on Urban Transportation Resilience to Compound Extreme Events. Sustainability 2022, 14, 3880. https://doi.org/10.3390/su14073880
Ji T, Yao Y, Dou Y, Deng S, Yu S, Zhu Y, Liao H. The Impact of Climate Change on Urban Transportation Resilience to Compound Extreme Events. Sustainability. 2022; 14(7):3880. https://doi.org/10.3390/su14073880
Chicago/Turabian StyleJi, Tao, Yanhong Yao, Yue Dou, Shejun Deng, Shijun Yu, Yunqiang Zhu, and Huajun Liao. 2022. "The Impact of Climate Change on Urban Transportation Resilience to Compound Extreme Events" Sustainability 14, no. 7: 3880. https://doi.org/10.3390/su14073880
APA StyleJi, T., Yao, Y., Dou, Y., Deng, S., Yu, S., Zhu, Y., & Liao, H. (2022). The Impact of Climate Change on Urban Transportation Resilience to Compound Extreme Events. Sustainability, 14(7), 3880. https://doi.org/10.3390/su14073880