Modeling of the Kinetic Factors in Flame-Assisted Fuel Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Operating Principle of FFC
2.2. Fuel-Rich Combustion
2.3. Fuel Cell
2.3.1. Fuel Cell Potential
2.3.2. Standard State Thermoneutral Potential
2.3.3. Standard State Reversible Potential
2.4. Fuel Cell Kinetic Losses
2.4.1. Activation Loss
2.4.2. Ohmic Loss
2.4.3. Concentration Loss
2.5. Fuel Cell Efficiencies
2.5.1. Fuel Utilization Efficiency
2.5.2. Fuel Cell Efficiency
2.6. Fuel-Lean Combustion
3. Experimental Setup
3.1. Species Flow Rate
3.2. Measurement Techniques
3.3. Fuel Cell Fabrication
3.4. Experimental Error and Reproducibility
4. Results and Discussion
4.1. Dependence of Cell Potentials on Fuel Concentration
4.2. Dependence of Activation Losses on Fuel Concentration
4.3. Dependence of Concentration Loss on Fuel Concentration
4.4. Dependence of Fuel Utilization Efficiency on Fuel Concentration
4.5. Dependence of Exchange Current Density on Fuel Concentration
4.6. Dependence of Charge Transfer Coefficient on Fuel Concentration
4.7. Dependence of Nernst Diffusion Layer Thickness on Fuel Concentration
4.8. Model Sensitivity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ormerod, R.M. Solid Oxide Fuel Cells. Chem. Soc. Rev. 2003, 32, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Al-Khori, K.; Bicer, Y.; Koç, M. Integration of Solid Oxide Fuel Cells into Oil and Gas Operations: Needs, Opportunities, and Challenges. J. Clean. Prod. 2020, 245, 118924. [Google Scholar] [CrossRef]
- Baldi, F.; Moret, S.; Tammi, K.; Maréchal, F. The Role of Solid Oxide Fuel Cells in Future Ship Energy Systems. Energy 2020, 194, 116811. [Google Scholar] [CrossRef]
- Shao, Z.; Haile, S.M.; Ahn, J.; Ronney, P.D.; Zhan, Z.; Barnett, S.A. A Thermally Self-Sustained Micro Solid-Oxide Fuel-Cell Stack with High Power Density. Nature 2005, 435, 795–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milcarek, R.J.; Garrett, M.J.; Welles, T.S.; Ahn, J. Performance Investigation of a Micro-Tubular Flame-Assisted Fuel Cell Stack with 3000 Rapid Thermal Cycles. J. Power Sources 2018, 394, 86–93. [Google Scholar] [CrossRef]
- Horiuchi, M.; Suganuma, S.; Watanabe, M. Electrochemical Power Generation Directly from Combustion Flame of Gases, Liquids, and Solids. J. Electrochem. Soc. 2004, 151, A1402. [Google Scholar] [CrossRef]
- Vogler, M.; Horiuchi, M.; Bessler, W.G. Modeling, Simulation and Optimization of a No-Chamber Solid Oxide Fuel Cell Operated with a Flat-Flame Burner. J. Power Sources 2010, 195, 7067–7077. [Google Scholar] [CrossRef]
- Kronemayer, H.; Barzan, D.; Horiuchi, M.; Suganuma, S.; Tokutake, Y.; Schulz, C.; Bessler, W.G. A Direct-Flame Solid Oxide Fuel Cell (DFFC) Operated on Methane, Propane, and Butane. J. Power Sources 2007, 166, 120–126. [Google Scholar] [CrossRef]
- Vogler, M.; Barzan, D.; Kronemayer, H.; Schulz, C.; Horiuchi, M.; Suganuma, S.; Tokutake, Y.; Warnatz, J.; Bessler, W.G. Direct-Flame Solid-Oxide Fuel Cell (DFFC): A Thermally Self-Sustained, Air Self- Breathing, Hydrocarbon-Operated SOFC System in a Simple, No-Chamber Setup. ECS Trans. 2007, 7, 555–564. [Google Scholar] [CrossRef]
- O’Hayre, R.; Cha, S.-W.; Colella, W.; Prinz, F.B. Fuel Cell Fundamentals. Intergovernmental Panel on Climate Change, Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; ISBN 9781119191766. [Google Scholar]
- Endo, S.; Nakamura, Y. Power Generation Properties of Direct Flame Fuel Cell (DFFC). J. Phys. Conf. Ser. 2014, 557, 012119. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, Y.; Endo, S. Power Generation Performance of Direct Flame Fuel Cell (DFFC) Impinged by Small Jet Flames. J. Micromech. Microeng. 2015, 25, 104015. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, L.; Luo, L.; Wu, Y.; Liu, L.; Shi, J. The Study of Portable Direct-Flame Solid Oxide Fuel Cell (DF-SOFC) Stack with Butane Fuel. J. Fuel Chem. Technol. 2014, 42, 1135–1139. [Google Scholar] [CrossRef]
- Hirasawa, T.; Kato, S. A Study on Energy Conversion Efficiency of Direct Flame Fuel Cell Supported by Clustered Diffusion Microflames. J. Phys. Conf. Ser. 2014, 557, 012120. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Shi, Y.; Yu, X.; Cai, N.; Qian, J.; Wang, S. Experimental Characterization of a Direct Methane Flame Solid Oxide Fuel Cell Power Generation Unit. J. Electrochem. Soc. 2014, 161, F1348–F1353. [Google Scholar] [CrossRef]
- Zhu, X.; Lü, Z.; Wei, B.; Huang, X.; Wang, Z.; Su, W. Direct Flame SOFCs with La0.75Sr0.25Cr0.5Mn0.5O3−δ∕Ni Coimpregnated Yttria-Stabilized Zirconia Anodes Operated on Liquefied Petroleum Gas Flame. J. Electrochem. Soc. 2010, 157, B1838. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, Y.; Cao, T.; Zeng, H.; Cai, N.; Ye, X.; Wang, S. A Flame Fuel Cell Stack Powered by a Porous Media Combustor. Int. J. Hydrogen Energy 2018, 43, 22595–22603. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, H.; Shi, Y.; Cao, T.; Cai, N.; Ye, X.; Wang, S. Power and Heat Co-Generation by Micro-Tubular Flame Fuel Cell on a Porous Media Burner. Energy 2016, 109, 117–123. [Google Scholar] [CrossRef]
- Milcarek, R.J.; Garrett, M.J.; Wang, K.; Ahn, J. Micro-Tubular Flame-Assisted Fuel Cells Running Methane. Int. J. Hydrogen Energy 2016, 41, 20670–20679. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Zeng, P.; Ahn, J. High Performance Direct Flame Fuel Cell Using a Propane Flame. Proc. Combust. Inst. 2011, 33, 3431–3437. [Google Scholar] [CrossRef]
- Hossain, M.M.; Myung, J.; Lan, R.; Cassidy, M.; Burns, I.; Tao, S.; Irvine, J.T.S. Study on Direct Flame Solid Oxide Fuel Cell Using Flat Burner and Ethylene Flame. ECS Trans. 2015, 68, 1989–1999. [Google Scholar] [CrossRef] [Green Version]
- Milcarek, R.J.; Garrett, M.J.; Baskaran, A.; Ahn, J. Combustion Characterization and Model Fuel Development for Micro-Tubular Flame-Assisted Fuel Cells. J. Vis. Exp. 2016, e54638. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zeng, H.; Cao, T.; Shi, Y.; Cai, N.; Ye, X.; Wang, S. Start-up and Operation Characteristics of a Flame Fuel Cell Unit. Appl. Energy 2016, 178, 415–421. [Google Scholar] [CrossRef]
- Milcarek, R.J.; Ahn, J. Rich-Burn, Flame-Assisted Fuel Cell, Quick-Mix, Lean-Burn (RFQL) Combustor and Power Generation. J. Power Sources 2018, 381, 18–25. [Google Scholar] [CrossRef]
- Milcarek, R.J.; Ahn, J.; Zhang, J. Review and Analysis of Fuel Cell-Based, Micro-Cogeneration for Residential Applications: Current State and Future Opportunities. Sci. Technol. Built Environ. 2017, 23, 1224–1243. [Google Scholar] [CrossRef]
- Ghotkar, R.; Milcarek, R.J. Investigation of Flame-Assisted Fuel Cells Integrated with an Auxiliary Power Unit Gas Turbine. Energy 2020, 204, 117979. [Google Scholar] [CrossRef]
- Kakaç, S.; Pramuanjaroenkij, A.; Zhou, X.Y. A Review of Numerical Modeling of Solid Oxide Fuel Cells. Int. J. Hydrog. Energy 2007, 32, 761–786. [Google Scholar] [CrossRef]
- Hajimolana, S.A.; Hussain, M.A.; Daud, W.M.A.W.; Soroush, M.; Shamiri, A. Mathematical Modeling of Solid Oxide Fuel Cells: A Review. Renew. Sustain. Energy Rev. 2011, 15, 1893–1917. [Google Scholar] [CrossRef]
- Brandon, N. Solid Oxide Fuel Cell Lifetime and Reliability: Critical Challenges in Fuel Cells; Elsevier Science: Amsterdam, The Netherlands, 2017; ISBN 9780128097243. [Google Scholar]
- Costamagna, P. Modeling of Solid Oxide Heat Exchanger Integrated Stacks and Simulation at High Fuel Utilization. J. Electrochem. Soc. 2006, 145, 3995. [Google Scholar] [CrossRef]
- Shin, D.; Nam, J.H. An Effectiveness Model for Electrochemical Reactions in Electrodes of Intermediate-Temperature Solid Oxide Fuel Cells. Electrochim. Acta 2015, 171, 1–6. [Google Scholar] [CrossRef]
- Yakabe, H.; Hishinuma, M.; Uratani, M.; Matsuzaki, Y.; Yasuda, I. Evaluation and Modeling of Performance of Anode-Supported Solid Oxide Fuel Cell. J. Power Sources 2000, 86, 423–431. [Google Scholar] [CrossRef]
- Gebregergis, A.; Pillay, P.; Bhattacharyya, D.; Rengaswemy, R. Solid Oxide Fuel Cell Modeling. IEEE Trans. Ind. Electron. 2009, 56, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.H.; Khor, K.A.; Xia, Z.T. Complete Polarization Model of a Solid Oxide Fuel Cell and Its Sensitivity to the Change of Cell Component Thickness. J. Power Sources 2001, 93, 130–140. [Google Scholar] [CrossRef]
- Guidelli, R.; Compton, R.G.; Feliu, J.M.; Gileadi, E.; Lipkowski, J.; Schmickler, W.; Trasatti, S. Defining the Transfer Coefficient in Electrochemistry: An Assessment (IUPAC Technical Report). Pure Appl. Chem. 2014, 86, 245–258. [Google Scholar] [CrossRef] [Green Version]
- Molina, A.; González, J.; Laborda, E.; Compton, R.G. On the Meaning of the Diffusion Layer Thickness for Slow Electrode Reactions. Phys. Chem. Chem. Phys. 2013, 15, 2381–2388. [Google Scholar] [CrossRef]
- Ghotkar, R.; Milcarek, R.J. Modeling of Micro-Tubular Flame-Assisted Fuel Cells. In Proceedings of the American Society of Mechanical Engineers, Power Division POWER, Salt Lake City, UT, USA, 4 August 2020. [Google Scholar]
- Costa-Nunes, O.; Gorte, R.J.; Vohs, J.M. Comparison of the Performance of Cu-CeO2-YSZ and Ni-YSZ Composite SOFC Anodes with H2, CO, and Syngas. J. Power Sources 2005, 141, 241–249. [Google Scholar] [CrossRef] [Green Version]
- Pihlatie, M.H.; Kaiser, A.; Mogensen, M.; Chen, M. Electrical Conductivity of Ni-YSZ Composites: Degradation Due to Ni Particle Growth. Solid State Ion. 2011, 189, 82–90. [Google Scholar] [CrossRef]
- Ahamer, C.; Opitz, A.K.; Rupp, G.M.; Fleig, J. Revisiting the Temperature Dependent Ionic Conductivity of Yttria Stabilized Zirconia (YSZ). J. Electrochem. Soc. 2017, 164, F790–F803. [Google Scholar] [CrossRef]
- McBride, B.J.; Gordon, S.; McBride, B.J. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications; NASA Lewis Research Center: Cleveland, OH, USA, 1994; pp. 1–175. [Google Scholar]
- Suwanwarangkul, R.; Croiset, E.; Fowler, M.W.; Douglas, P.L.; Entchev, E.; Douglas, M.A. Performance Comparison of Fick’s, Dusty-Gas and Stefan-Maxwell Models to Predict the Concentration Overpotential of a SOFC Anode. J. Power Sources 2003, 122, 9–18. [Google Scholar] [CrossRef]
- Milcarek, R.J.; Wang, K.; Falkenstein-Smith, R.L.; Ahn, J. Micro-Tubular Flame-Assisted Fuel Cells for Micro-Combined Heat and Power Systems. J. Power Sources 2016, 306, 148–151. [Google Scholar] [CrossRef] [Green Version]
- Bao, C.; Jiang, Z.; Zhang, X. Mathematical Modeling of Synthesis Gas Fueled Electrochemistry and Transport Including H2/CO Co-Oxidation and Surface Diffusion in Solid Oxide Fuel Cell. J. Power Sources 2015, 294, 317–332. [Google Scholar] [CrossRef]
- Yao, W. Hydrogen and Carbon Monoxide Electrochemical Oxidation Reaction Kinetics on Solid Oxide Fuel Cell Anodes. Ph.D. Thesis, University of Waterloo, Waterloo, ON, Canada, 2013. Available online: http://hdl.handle.net/10012/7772 (accessed on 15 January 2022).
Experiment Identifier | XCO | XH2 | XCO2 | XN2 |
---|---|---|---|---|
CH2 | 0 | 0.1 | 0 | 0.9 |
CCO | 0.1 | 0 | 0 | 0.9 |
Φ = 1.4 | 0.07 | 0.06 | 0.046 | 0.81 |
Φ = 1.8 | 0.11 | 0.14 | 0.032 | 0.72 |
Φ = 2.2 | 0.13 | 0.21 | 0.027 | 0.63 |
Φ = 2.6 | 0.15 | 0.27 | 0.025 | 0.55 |
Φ = 3 | 0.16 | 0.32 | 0.024 | 0.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghotkar, R.; Milcarek, R.J. Modeling of the Kinetic Factors in Flame-Assisted Fuel Cells. Sustainability 2022, 14, 4121. https://doi.org/10.3390/su14074121
Ghotkar R, Milcarek RJ. Modeling of the Kinetic Factors in Flame-Assisted Fuel Cells. Sustainability. 2022; 14(7):4121. https://doi.org/10.3390/su14074121
Chicago/Turabian StyleGhotkar, Rhushikesh, and Ryan J. Milcarek. 2022. "Modeling of the Kinetic Factors in Flame-Assisted Fuel Cells" Sustainability 14, no. 7: 4121. https://doi.org/10.3390/su14074121
APA StyleGhotkar, R., & Milcarek, R. J. (2022). Modeling of the Kinetic Factors in Flame-Assisted Fuel Cells. Sustainability, 14(7), 4121. https://doi.org/10.3390/su14074121