Enhanced Net Channel Based-Heat Sink Designs for Cooling of High Concentration Photovoltaic (HCPV) Systems in Dammam City
Abstract
:1. Introduction
2. Design and Methodology
2.1. Geometric Designs
2.2. Simulation Setup
2.3. Governing Equations and Boundary Conditions
2.3.1. Governing Equations
2.3.2. Overall Single-Cell HCPV Module Efficiency
2.3.3. Boundary Conditions
- No slip condition is applied to all the walls
- The water flow is assumed laminar, steady, and incompressible.
- The outlet pressure is equal to = .
- Reynolds number is ranged between 7–508.
- The range of inlet water mass flow rate in each channel is set to be 0.001– /.
- The natural convection heat transfer coefficient is 15 //, which is reasonable for free air stream conditions.
- The sided walls of the mini channels and the bottom sheet of the heat sink are insulated.
- The ambient and inlet water temperatures are assumed equal to 25 .
- The thermophysical properties of the water (i.e., density, specific heat capacity, thermal conductivity…) are considered temperature-dependent scalars.
2.3.4. Grid Independence Study
2.3.5. Validation Study
3. Results and Discussion
3.1. Parallel Flow Net Channel Based-Heat Sink Configurations
3.1.1. Maximum Cell Surface Temperature and Temperature Distribution
3.1.2. Outlet Water Temperature
3.1.3. Thermal Resistance
3.2. Counter-Flow Net Channel Based Heat Sink Configurations
3.2.1. Maximum Cell Surface Temperature and Temperature Distribution
3.2.2. Outlet Water Temperature
3.2.3. Thermal Resistance
3.3. Comparison between the Proposed Designs under the Climate Conditions of Dammam City
3.3.1. Maximum Cell Surface Temperature
3.3.2. Outlet Water Temperature
3.3.3. Electrical Performance
3.3.4. Average Thermal Resistance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Abbreviations | |
CR | Concentration ratio |
DNI | Direct normal irradiance |
GCR | Geometric concentration ratio |
HCPV | High concentration photovoltaic |
Symbols | |
Volume flow rate [ ] | |
Area of the solar cell [ ] | |
Specific heat capacity [ ] | |
E | Electric power [ ] |
Body force vector [ ] | |
P | Pressure [ ] |
Q | Thermal power [ ] |
Thermal flux via conduction [ ] | |
Thermal flux via radiation [ ] | |
T | Temperature [ ] |
u | Velocity vector [ ] |
Greek symbols | |
Thermal expansion coefficient | |
Optical efficiency of the solar cell | |
Electrical efficiency of the solar cell | |
Density [ ] | |
Viscous stress tensor | |
Subscripts | |
Fluid outlet | |
Fluid inlet |
References
- Hasan, A.; Sarwar, J.; Shah, A.H. Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities. Renew. Sustain. Energy Rev. 2018, 94, 835–852. [Google Scholar] [CrossRef]
- Jakhar, S.; Soni, M.S.; Gakkhar, N. Historical and recent development of concentrating photovoltaic cooling technologies. Renew. Sustain. Energy Rev. 2016, 60, 41–59. [Google Scholar] [CrossRef]
- Xiao, M.; Tang, L.; Zhang, X.; Lun, I.Y.F.; Yuan, Y. A review on recent development of cooling technologies for concentrated photovoltaics (CPV) systems. Energies 2018, 11, 3416. [Google Scholar] [CrossRef] [Green Version]
- Gilmore, N.; Timchenko, V.; Menictas, C. Microchannel cooling of concentrator photovoltaics: A review. Renew. Sustain. Energy Rev. 2018, 90, 1041–1059. [Google Scholar] [CrossRef]
- Chou, T.L.; Shih, Z.H.; Hong, H.F.; Han, C.N.; Chiang, K.N. Thermal performance assessment and validation of high-concentration photovoltaic solar cell module. IEEE Trans. Components Packag. Manuf. Technol. 2012, 2, 578–586. [Google Scholar] [CrossRef]
- Theristis, M.; O’Donovan, T.S. Electrical-thermal analysis of III-V triple-junction solar cells under variable spectra and ambient temperatures. Sol. Energy 2015, 118, 533–546. [Google Scholar] [CrossRef] [Green Version]
- Valera, A.; Fernández, E.F.; Rodrigo, P.M.; Almonacid, F. Feasibility of flat-plate heat-sinks using microscale solar cells up to 10,000 suns concentrations. Sol. Energy 2019, 181, 361–371. [Google Scholar] [CrossRef]
- Alzahrani, M.; Baig, H.; Shanks, K.; Mallick, T. Estimation of the performance limits of a concentrator solar cell coupled with a micro heat sink based on a finite element simulation. Appl. Therm. Eng. 2020, 176, 115315. [Google Scholar] [CrossRef]
- Aldossary, A.; Mahmoud, S.; Al-Dadah, R. Technical feasibility study of passive and active cooling for concentrator PV in harsh environment. Appl. Therm. Eng. 2016, 100, 490–500. [Google Scholar] [CrossRef]
- Zaghloul, H.; Emam, M.; Abdelrahman, M.A.; Abd Rabbo, M.F. Optimization and parametric analysis of a multi-junction high-concentrator PV cell combined with a straight fins heat sink. Energy Convers. Manag. 2021, 243, 114382. [Google Scholar] [CrossRef]
- AlFalah, G.; Maatallah, T.S.; Al-Amri, F.G. Performance analysis of a single cell-ultra-high concentration photovoltaic. Int. J. Energy Res. 2021, 46, 2947–2969. [Google Scholar] [CrossRef]
- AlFalah, G.; Maatallah, T.S.; Alzahrani, M.; Al-Amri, F.G. Optimization and feasibility analysis of a microscale pin-fins heat sink of an ultrahigh concentrating photovoltaic system. Int. J. Energy Res. 2020, 44, 11852–11871. [Google Scholar] [CrossRef]
- Maatallah, T.S. A comprehensive study of pin fins cooling channel for a single-cell concentration photovoltaic system under ultra-high concentration ratios. Int. J. Energy Res. 2020, 45, 4613–4629. [Google Scholar] [CrossRef]
- AlFalah, G.; Maatallah, T.S.; Okasha, A.; Al-Amri, F.G. Design and optimization study of a densely packed ultrahigh concentration photovoltaic thermal array for desalination usability. Int. J. Energy Res. 2021, 46, 1693–1710. [Google Scholar] [CrossRef]
- Abo-Zahhad, E.M.; Ookawara, S.; Radwan, A.; El-Shazly, A.H.; ElKady, M.F. Thermal and structure analyses of high concentrator solar cell under confined jet impingement cooling. Energy Convers. Manag. 2018, 176, 39–54. [Google Scholar] [CrossRef]
- Abo-Zahhad, E.M.; Ookawara, S.; Radwan, A.; El-Shazly, A.H.; Elkady, M.F. Numerical analyses of hybrid jet impingement/microchannel cooling device for thermal management of high concentrator triple-junction solar cell. Appl. Energy 2019, 253, 113538. [Google Scholar] [CrossRef]
- Torbatinezhad, A.; Rahimi, M.; Ranjbar, A.A.; Gorzin, M. Performance evaluation of PV cells in HCPV/T system by a jet impingement/mini-channel cooling scheme. Int. J. Heat Mass Transf. 2021, 178, 121610. [Google Scholar] [CrossRef]
- Al Siyabi, I.; Shanks, K.; Mallick, T.; Sundaram, S. Indoor and outdoor characterization of concentrating photovoltaic attached to multi-layered microchannel heat sink. Sol. Energy 2020, 202, 55–72. [Google Scholar] [CrossRef]
- Elqady, H.I.; Radwan, A.; Ali, A.Y.M.; Rabie, M.; Abo-Zahhad, E.M.; Ookawara, S.; Elkady, M.F.; El-Shazly, A.H. Concentrator photovoltaic thermal management using a new design of double-layer microchannel heat sink. Sol. Energy 2021, 220, 552–570. [Google Scholar] [CrossRef]
- Ali, A.Y.; Abo-Zahhad, E.; Elkady, M.F.; Ookawara, S.; El-Shazly, A.H.; Radwan, A. Temperature uniformity enhancement of densely packed high concentrator photovoltaic module using four quadrants microchannel heat sink. Sol. Energy 2020, 202, 446–464. [Google Scholar] [CrossRef]
- Ahmed, A.; Shanks, K.; Sundaram, S.; Mallick, T.K. Theoretical investigation of the temperature limits of an actively cooled high concentration photovoltaic system. Energies 2020, 13, 1902. [Google Scholar] [CrossRef] [Green Version]
- Khoshvaght-Aliabadi, M.; Hormozi, F.; Zamzamian, A. Experimental analysis of thermal-hydraulic performance of copper-water nanofluid flow in different plate-fin channels. Exp. Therm. Fluid Sci. 2014, 52, 248–258. [Google Scholar] [CrossRef]
- Anwar, M.; Tariq, H.A.; Shoukat, A.A.; Ali, H.M.; Ali, H. Numerical study for heat transfer enhancement using cuo-water nanofluids through mini-channel heat sinks for microprocessor cooling. Therm. Sci. 2020, 24, 2965–2976. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Huang, J.; Shang, Y.; Huang, H. Study on the flow and heat dissipation of water-based alumina nanofluids in microchannels. Case Stud. Therm. Eng. 2020, 22, 100746. [Google Scholar] [CrossRef]
- Lee, J.; Mudawar, I. Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels. Int. J. Heat Mass Transf. 2007, 50, 452–463. [Google Scholar] [CrossRef]
- Abo-Zahhad, E.M.; Ookawara, S.; Esmail, M.F.; El-Shazly, A.H.; Elkady, M.F.; Radwan, A. Thermal management of high concentrator solar cell using new designs of stepwise varying width microchannel cooling scheme. Appl. Therm. Eng. 2020, 172, 115124. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Lalia, B.S.; Hashaikeh, R.; Hilal, N. Alternative heating techniques in membrane distillation: A review. Desalination 2020, 496, 114713. [Google Scholar] [CrossRef]
- Li, Q.; Beier, L.J.; Tan, J.; Brown, C.; Lian, B.; Zhong, W.; Wang, Y.; Ji, C.; Dai, P.; Li, T.; et al. An integrated, solar-driven membrane distillation system for water purification and energy generation. Appl. Energy 2019, 237, 534–548. [Google Scholar] [CrossRef]
Material | Length (mm) | Width (mm) | Thickness (mm) |
---|---|---|---|
Aluminum | 29 | 27 | 6 |
GalnP | 10 | 10 | 0.07 |
GalnAs | 10 | 10 | 0.07 |
Ge | 10 | 10 | 0.07 |
Copper (1) | 27 | 25 | 0.25 |
Ceramic | 29 | 27 | 0.32 |
Copper (2) | 29 | 27 | 0.25 |
Material | k (W/m/K) | C (J/kg/K) | (kg/m) | Emissivity () |
---|---|---|---|---|
Aluminum | 160 | 900 | 2700 | - |
GalnP | 73 | 370 | 4470 | 0.9 |
GalnAs | 65 | 550 | 5316 | - |
Ge | 60 | 320 | 5323 | - |
Copper | 400 | 385 | 8700 | 0.05 |
Ceramic | 27 | 900 | 3900 | 0.75 |
Metrological Data | Value |
---|---|
Average direct normal irradiance | 428 / |
Maximum direct normal irradiance | 1011 / |
Average wind speed | / |
Average wind direction | |
Minimum wind speed | / |
Average ambient temperature | 30 |
Maximum ambient temperature |
Heat Sink Design | Average Thermal Resistance (°C/W) |
---|---|
Conventional Channel | 0.43 |
Parallel flow net channel with 5 layers | 0.39 |
Counter flow net channel with 2 layers | 0.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Amri, F.G.; Maatallah, T.; Zachariah, R.; Okasha, A.T.; Alghamdi, A.K. Enhanced Net Channel Based-Heat Sink Designs for Cooling of High Concentration Photovoltaic (HCPV) Systems in Dammam City. Sustainability 2022, 14, 4142. https://doi.org/10.3390/su14074142
Al-Amri FG, Maatallah T, Zachariah R, Okasha AT, Alghamdi AK. Enhanced Net Channel Based-Heat Sink Designs for Cooling of High Concentration Photovoltaic (HCPV) Systems in Dammam City. Sustainability. 2022; 14(7):4142. https://doi.org/10.3390/su14074142
Chicago/Turabian StyleAl-Amri, Fahad Ghallab, Taher Maatallah, Richu Zachariah, Ahmed T. Okasha, and Abdullah Khalid Alghamdi. 2022. "Enhanced Net Channel Based-Heat Sink Designs for Cooling of High Concentration Photovoltaic (HCPV) Systems in Dammam City" Sustainability 14, no. 7: 4142. https://doi.org/10.3390/su14074142
APA StyleAl-Amri, F. G., Maatallah, T., Zachariah, R., Okasha, A. T., & Alghamdi, A. K. (2022). Enhanced Net Channel Based-Heat Sink Designs for Cooling of High Concentration Photovoltaic (HCPV) Systems in Dammam City. Sustainability, 14(7), 4142. https://doi.org/10.3390/su14074142