Degradation Risk Assessment: Understanding the Impacts of Climate Change on Geoheritage
Abstract
:1. Introduction
2. Study Area
3. Principles and Methods
Quantitative Assessment of Geosites Degradation Risk
- Active processes. This parameter considers the active processes which are not involved in the creation of the geosite, but the latter may be affected by such processes. The processes that can cause damage could have different origins such as geological, climatic and biological. Thus, it is important to identify the active natural processes in the study area that can cause degradation [13]. The processes of geological origin comprise gravity induced movements, water erosion and weathering. It is important to consider biological active processes related both to the animal world, such as trampling or burrowing, and the vegetation world, such as roots developments and surface growth by plants. The processes with climatic origin need a long-term collection of data and comprise temperature, humidity, precipitation, wind, flooding and meteo-marine factors. Moreover, it is important to assess if the natural extrinsic processes are operating as continuous or episodic. Active sites are in turn classified as active-continuous or active-episodic, considering that some processes are acting throughout the year and others just for short recurrent periods [73]. The value of 0 is given to the sites affected by no one extrinsic natural process, 1 and 2 respectively to the sites that are affected by episodic or constant natural processes; 3 is given to the sites that are affected by two or more extrinsic natural processes.
- Proximity. This parameter considers the proximity of the site to an area of possible degradation due to active natural processes. It is important to identify the conditions that make the geosite and its surrounding area at risk of degradation (e.g., coastal area with coastal erosion, volcanic area, slopes/landslides, etc.). The value of 0 is given to the sites in proximity to no area of possible degradation, 1 and 2 to the sites that are affected by 1 or 2 active processes in proximity of the sites, respectively; and 3 is given to the sites that are in proximity to an area with more than 2 possible processes of degradation.
- Economic interest. This parameter expresses the presence of geological elements having economic value. This parameter considers whether the geosites are actually or potentially of interest for economic exploitation (e.g., elements valuable for quarrying and mining).
- Legal protection. It evaluates the presence of legal protection instruments for the geosite. This parameter assesses whether the geosite is legally protected due to its geological value, if it is situated within a natural area or an area protected for other value such as a cultural or historical one.
- Human proximity. This parameter considers the proximity of the geosite to an area with human activities that can cause degradation. It measures the distance in meters to human activities that can potentially damage the site.
- Accessibility. Good accessibility to a site is a risk because the more people visit the site, the higher the risk that the site will be damaged.
- Population Density. The concentration of people living near a site increases the probability of human-induced deterioration.
- Physical protection. It evaluates the presence of physical barriers and structure to protect the sites. The protection limits the direct contact with the public that can deteriorate the site. Examples of physical protection are fences, stairs or walking paths.
- Degrading use. It refers to the incorrect public use of the geosite. Examples are the presence of waste (plastic battles, papers, cans) and vandalism.
- Control of access. This parameter evaluates the presence of physical barriers, direct controls—such as patrols surveillance—or indirect controls—such as cameras.
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coratza, P.; Bollati, I.M.; Panizza, V.; Brandolini, P.; Castaldini, D.; Cucchi, F.; Deiana, G.; Del Monte, M.; Faccini, F.; Finocchiaro, F.; et al. Advances in Geoheritage Mapping: Application to Iconic Geomorphological Examples from the Italian Landscape. Sustainability 2021, 13, 11538. [Google Scholar] [CrossRef]
- Reynard, E. The Assessment of Geomorphosites. In Geomorphosites; Reynard, E., Coratza, P., Regolini-Bissig, G., Eds.; Pfeil: Munchen, Germany, 2009; pp. 63–71. [Google Scholar]
- Brilha, J. Geoheritage: Inventories and Evaluation. In Geoheritage: Assessment, Protection, and Management; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 69–86. [Google Scholar]
- Coratza, P.; Hobléa, F. The Specificities of Geomorphological Heritage. In Geoheritage: Assessment, Protection, and Management; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 87–106. [Google Scholar]
- Mucivuna, V.C.; Garcia, M.G.M.; Reynard, E. Comparing quantitative methods on the evaluation of scientific value in geosites: Analysis from the Itatiaia National Park, Brazil. Geomorphology 2022, 396, 107988. [Google Scholar] [CrossRef]
- Lima, F.F.; Brilha, J.B.; Salamuni, E. Inventorying geological heritage in large territories: A methodological proposal applied to Brazil. Geoheritage 2010, 2, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Brilha, J. Património Geológico e Geoconservação: A Conservação da Natureza na sua Vertente Geológica; Palimage Editores: Viseu, Portugal, 2005. [Google Scholar]
- Pereira, P.; Pereira, D.; Caetano, M.I. Geomorphosite assessment in Monteshino Natural Park (Portugal). Geogr. Helv. 2007, 62, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Carcavilla, L.; López-Martínez, J.; Durán, J.J. Patrimonio Geológico y Geodiversidad: Investigación, Conservación, Gestión y Relación con los Espacios Naturales Protegidos; Instituto Geológico y Minero de España: Madrid, Spain, 2007. [Google Scholar]
- Fuertes-Gutiérrez, I.; Fernández-Martínez, E. Geosites inventory in the Leon Province (Northwestern Spain): A tool to introduce geoheritage into regional environmental management. Geoheritage 2010, 2, 57–75. [Google Scholar] [CrossRef]
- Fassoulas, C.; Mouriki, D.; Dimitriou-Nikolakis, P.; Iliopoulus, G. Quantitative assessment of geotopes as an effective tool for geoheritage management. Geoheritage 2012, 4, 177–193. [Google Scholar] [CrossRef]
- Bollati, I.M.; Crosa Lenz, B.; Caironi, V. A multidisciplinary approach for physical landscape analysis: Scientific value and risk of degradation of outstanding landforms in the glacial plateau of the Loana Valley (Central-Western Italian Alps). Ital. J. Geosci. 2020, 139, 233–251. [Google Scholar] [CrossRef]
- García-Ortiz, E.; Fuertes-Gutiérrez, I.; Fernández-Martínez, E. Concepts and terminology for the risk of degradation of geological heritage sites: Fragility and natural vulnerability, a case study. Proc. Geol. Assoc. 2014, 125, 463–479. [Google Scholar] [CrossRef]
- Brilha, J. Inventory and quantitative assessment of geosites and geodiversity sites: A review. Geoheritage 2016, 8, 119–134. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; 151p. [Google Scholar]
- IPCC. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Buendia, E.C., Masson-Delmotte, V., Pörtner, H.O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., Van Diemen, R., et al., Eds.; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Main, G.; Schembri, J.; Gauci, R.; Crawford, K.; Chester, D.; Duncan, A. The hazard exposure of the Maltese Islands. Nat. Hazards 2018, 92, 829–855. [Google Scholar] [CrossRef]
- Prosser, C.D.; Burek, C.V.; Evans, D.H.; Gordon, J.E.; Kirkbride, V.B.; Rennie, A.F.; Walmsley, C.A. Conserving geodiversity sites in a changing climate: Management challenges and responses. Geoheritage 2010, 2, 123–136. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Cazenave, A. Sea-Level Rise and Its Impact on Coastal Zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef]
- UNFCCC. The Seventh National Communication of Malta under the United Nations Framework Convention on Climate Change; Institute for Climate Change and Sustainable Development, University of Malta, Climate Change Unit, Malta Resources Authority: Marsa, Malta, 2017; 295p. [Google Scholar]
- Galassi, G.; Spada, G. Sea-level rise in the Mediterranean Sea by 2050: Roles of terrestrial ice melt, steric effects and glacial isostatic adjustment. Glob. Planet. Chang. 2014, 123, 55–66. [Google Scholar] [CrossRef]
- Gauci, R.; Schembri, J.A.; Inkpen, R. Traditional Use of Shore Platforms: Mapping the Artisanal Management of Coastal Salt Pans on the Maltese Islands (Central Mediterranean). In Traditional Wisdom: Before It’s Too Late; York, K., Ed.; SAGE Open Special Issue; Sage Publications: Thousand Oaks, CA, USA, 2017; Volume 7, pp. 1–16. [Google Scholar]
- Selmi, L.; Coratza, P.; Gauci, R.; Soldati, M. Geoheritage as a Tool for Environmental Management: A Case Study in Northern Malta (Central Mediterranean Sea). Resources 2019, 8, 168. [Google Scholar] [CrossRef] [Green Version]
- Coratza, P.; Bruschi, V.M.; Piacentini, D.; Saliba, D.; Soldati, M. Recognition and Assessment of Geomorphosites in Malta at the Il-Majjistral Nature and History Park. Geoheritage 2011, 3, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Coratza, P.; Galve, J.P.; Soldati, M.; Tonelli, C. Recognition and assessment of sinkholes as geosites: Lessons from the Island of Gozo (Malta). Qua Geor. 2012, 31, 22–35. [Google Scholar] [CrossRef] [Green Version]
- Coratza, P.; Gauci, R.; Schembri, J.A.; Soldati, M.; Tonelli, C. Bridging Natural and Cultural Values of Sites with Outstanding Scenery: Evidence from Gozo, Maltese Islands. Geoheritage 2016, 8, 91–103. [Google Scholar] [CrossRef]
- Gauci, R.; Schembri, J.A. (Eds.) Landscapes and Landforms of the Maltese Islands; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Malta Tourism Authority, MTA. Tourism in Malta, Facts and Figures. Malta Tourism Authority. 2019. Available online: https://www.mta.com.mt/en/file.aspx?f=34248 (accessed on 12 December 2021).
- Rizzo, A.; Vandelli, V.; Buhagiar, G.; Micallef, A.S.; Soldati, M. Coastal Vulnerability Assessment along the North-Eastern Sector of Gozo Island (Malta, Mediterranean Sea). Water 2020, 12, 1405. [Google Scholar] [CrossRef]
- Main, G.; Schembri, J.; Speake, J.; Gauci, R.; Chester, D. The city-island-state, wounding cascade, and multi-level vulnerability explored through the lens of Malta. Area 2021, 53, 272–282. [Google Scholar] [CrossRef]
- European Environment Agency, EEA. Air Quality in Europe 2017 Report; European Environment Agency: Copenhagen, Denmark, 2017; p. 88. [Google Scholar]
- NSO. Regional Statistics Malta; National Statistics Office, Lascaris: Valletta, Malta, 2021; p. 159. [Google Scholar]
- NSO. Regional Statistics Malta; National Statistics Office, Lascaris: Valletta, Malta, 2019; p. 158. [Google Scholar]
- Malta Tourism Authority, MTA. Tourism in Malta, Facts and Figures. Malta Tourism Authority. 2019. Available online: https://www.mta.com.mt/en/file.aspx?f=32328 (accessed on 10 March 2022).
- Pedley, H.M. The Calabrian Stage, Pleistocene highstand in Malta: A new marker for unravellying the Late Neogene and Quaternary history of the islands. J. Geol. Soc. 2011, 168, 913–925. [Google Scholar] [CrossRef]
- Baldassini, N.; Di Stefano, A. Stratigraphic features of the Maltese Archipelago: A synthesis. Nat. Hazards 2017, 86, 203–231. [Google Scholar] [CrossRef]
- Scerri, S. Sedimentary Evolution and Resultant Geological Landscapes. In Landscapes and Landforms of the Maltese Islands; Gauci, R., Schembri, J.A., Eds.; Springer: Cham, Switzerland, 2019; pp. 31–47. [Google Scholar]
- Pedley, H.M.; Waugh, B. Easter Field Meeting to the Maltese Islands. Proc. Geol. Assoc. 1976, 87, 343–358. [Google Scholar] [CrossRef]
- Prampolini, M.; Gauci, C.; Micallef, A.S.; Selmi, L.; Vandelli, V.; Soldati, M. Geomorphology of the north-eastern coast of Gozo (Malta, Mediterranean Sea). J. Maps 2018, 14, 402–410. [Google Scholar] [CrossRef]
- Gauci, R.; Scerri, S. A Synthesis of Different Geomorphological Landscapes on the Maltese Islands. In Landscapes and Landforms of the Maltese Islands; Gauci, R., Schembri, J.A., Eds.; Springer: Cham, Switzerland, 2019; pp. 49–65. [Google Scholar]
- Prampolini, M. Integration of Terrestrial and Marine Datasets for Geomorphological Analyses along the Northern Coasts of Malta (Central Mediterranean Sea). Ph.D. Dissertation, University of Modena and Reggio Emilia, Modena, Italy, 2016; 193p. [Google Scholar]
- Illies, J.H. Graben formation-The Maltese Islands-A casa history. Tectonophysics 1981, 73, 151–168. [Google Scholar] [CrossRef]
- Alexander, D. A review of the physical geography of Malta and its significance for tectonic geomorphology. Quat. Sci. Rev. 1988, 7, 41–53. [Google Scholar] [CrossRef]
- Schembri, P.J. Physical geography and ecology of the Maltese Islands: A brief overview. In Options Méditerranéennes, Malta: Food, Agriculture, Fisheries and the Environment; Busuttil, S., Lerin, F., Mizzi, L., Eds.; CIHEAM: Montpellier, France, 1993; pp. 27–39. [Google Scholar]
- Schembri, P.J. The Maltese Islands: Climate, Vegetation and Landscape. GeoJournal 1997, 41, 115–125. [Google Scholar] [CrossRef]
- Hughes, K.J. Persistent features from palaeo-landscape: The ancient tracks of the Maltese Islands. Geogr. J. 1999, 165, 62–78. [Google Scholar] [CrossRef] [Green Version]
- Pedley, H.M.; Clarke, M.H.; Galea, P. Limestone Isles in a Crystal Sea. The Geology of the Maltese Islands; PEG Ltd.: San Gwann, Malta, 2002. [Google Scholar]
- Magri, O. A geological and geomorphological review of the Maltese islands with special reference to the coastal zone. Territories 2006, 6, 7–26. [Google Scholar]
- Barbieri, M.; Biolchi, S.; Devoto, S.; Forte, E.; Furlani, S.; Gualtieri, A.; Mantovani, M.; Mocnik, A.; Padovani, V.; Pasuto, A.; et al. Multidisciplinary Geological Excursion in the Open-Air Laboratory of the Island of Malta, 11–18 November 2010 Field-Trip Guide; Dipartimento di Scienze della Terra, Università degli Studi di Modena e Reggio Emilia: Modena, Italy, 2010. [Google Scholar]
- Paskoff, R.; Sanlaville, P. Observations geomorphologiques sur le cotes de l’Archipel Maltaise. Z. Geomorph. NF 1978, 22, 310–328. [Google Scholar]
- Said, G.; Schembri, J.A. Malta. In Encyclopedia of the World’s Coastal Landforms; Bird, E.C.F., Ed.; Springer Science+Business Media B.V.: Dordrecht, Germany, 2010; pp. 751–759. [Google Scholar]
- Biolchi, S.; Furlani, S.; Devoto, S.; Gauci, R.; Castaldini, D.; Soldati, M. Geomorphological identification, classification and spatial distribution of coastal landforms of Malta (Mediterranean Sea). J. Maps 2016, 12, 87–99. [Google Scholar] [CrossRef] [Green Version]
- Devoto, S.; Biolchi, S.; Bruschi, V.M.; Furlani, S.; Mantovani, M.; Piacentini, D.; Pasuto, A.; Soldati, M. Geomorphological map of the NW Coast of the Island of Malta (Mediterranean Sea). J. Maps 2012, 8, 33–40. [Google Scholar] [CrossRef]
- Mantovani, M.; Devoto, S.; Forte, E.; Mocnik, A.; Pasuto, A.; Piacentini, D.; Soldati, M. A multidisciplinary approach for rock spreading and block sliding investigation in the northwestern coast of Malta. Landslides 2013, 10, 611–622. [Google Scholar] [CrossRef]
- Soldati, M.; Tonelli, C.; Galve, J.P. Geomorphological evolution of palaeosinkhole features in the Maltese archipelago (central Mediterranean Sea). Geogr. Fis. Dinam. Quat. 2013, 36, 189–198. [Google Scholar]
- Galve, J.P.; Tonelli, C.; Gutiérrez, F.; Lugli, S.; Vescogni, A.; Soldati, M. New insights into the genesis of the Miocene collapse structures of the Island of Gozo (Malta, central Mediterranean Sea). J. Geol. Soc. 2015, 172, 336–348. [Google Scholar] [CrossRef] [Green Version]
- Furlani, S.; Gauci, R.; Devoto, S.; Schembri, J.A. Filfla: A case study of the effect of target practice on coastal landforms. In Landscapes and Landforms of the Maltese Islands; Gauci, R., Schembri, J.A., Eds.; Springer: Cham, Switzerland, 2019; Volume 11, pp. 261–271. [Google Scholar]
- Calleja, I.; Tonelli, C. Dwejra and Maqluba: Emblematic sinkholes in the Maltese Islands. In Landscapes and Landforms of the Maltese Islands; Gauci, R., Schembri, J.A., Eds.; Springer: Cham, Switzerland, 2019; Volume 11, pp. 129–139. [Google Scholar]
- Angeletti, L.; Foglini, F.; Galve, J.P.; Micallef, A.; Pasuto, A.; Prampolini, M.; Soldati, M.; Taviani, M.; Tonelli, C. Linking coastal and seafloor morphological features along the eastern side of the Maltese archipelago. In Atti del Quarto Simposio Internazionale “Il Monitoraggio Costiero Mediterraneo: Problematiche e Tecniche di Misura”—Livorno, 12–14 June 2012; Benincasa, F., Ed.; CNR—Istituto di Biometeorologia: Firenze, Italy, 2012; pp. 237–246. [Google Scholar]
- Micallef, A.; Foglini, F.; Le Bas, T.; Angeletti, L.; Maselli, V.; Pasuto, A.; Taviani, M. The submerged palaeolandscape of the Maltese Islands: Morphology evolution and relation to Quaternary environmental change. Mar. Geol. 2013, 335, 129–147. [Google Scholar] [CrossRef]
- Prampolini, M.; Foglini, F.; Biolchi, S.; Devoto, S.; Angelini, S.; Soldati, M. Geomorphological mapping of terrestrial and marine areas, Northern Malta and Comino (central Mediterranean Sea). J. Maps 2017, 13, 457–469. [Google Scholar] [CrossRef]
- Cassar, J.; Torpiano, A.; Zammit, T.; Micallef, A. Proposal for the nomination of Lower Globigerina Limestone of the Maltese Islands as a “Global Heritage Stone Resource”. J. Int. Geo. 2017, 40, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Grima, R.; Farrugia, S. Landscapes, landforms and monuments in Neolithic Malta. In Landscapes and Landforms of the Maltese Islands; Gauci, R., Schembri, J.A., Eds.; Springer: Cham, Switzerland, 2019; Volume 26, pp. 79–90. [Google Scholar]
- Schembri, J.A.; Spiteri, S.C. By gentlemen for gentlemen—Ria coastal landforms and the fortified imprints of Valletta and its harbours. In Landscapes and Landforms of the Maltese Islands; Gauci, R., Schembri, J.A., Eds.; Springer: Cham, Switzerland, 2019; Volume 26, pp. 69–78. [Google Scholar]
- Sammut, S.; Gauci, R.; Inkpen, R.; Lewis, J.J.; Gibson, A. Selmun: A Coastal Limestone Landscape Enriched by Scenic Landforms, Conservation Status and Religious Significance. In Landscapes and Landforms of the Maltese Islands; Gauci, R., Schembri, J.A., Eds.; Springer: Cham, Switzerland, 2019; Volume 26, pp. 325–341. [Google Scholar]
- Selmi, L. Ricerche Geomorfologiche Finalizzate all’Individuazione di Geosite nel Nord di Malta. Ph.D. Thesis, Università degli Studi di Modena e Reggio Emilia, Modena, Italy, 2017. (Unpublished). [Google Scholar]
- Environment and Resource Authority (ERA). Natura 2000 in Malta. Available online: https://era.org.mt/topic/natura-2000-in-malta/ (accessed on 21 December 2021).
- Cappadonia, C.; Coratza, P.; Agnesi, V.; Soldati, M. Malta and Sicily Joined by Geoheritage Enhancement and Geotourism within the Framework of Land Management and Development. Geosciences 2018, 8, 253. [Google Scholar] [CrossRef] [Green Version]
- Santucci, V.L.; Kenworthy, J.P.; Mims, A. Monitoring in situ paleontological resources. In Geological Monitoring; Young, R., Norby, L., Eds.; Geological Society of America: Boulder, CO, USA, 2009; pp. 189–204. [Google Scholar]
- Gordon, J.E. Geoheritage, Geotourism and the Cultural Landscape: Enhancing the Visitor Experience and Promoting Geoconservation. Geosciences 2018, 8, 136. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Cortes, A.; Carcavilla, L.; Díaz-Martínez, E.; Vegas, J. Inventario de Lugares de Interés Geológico de la Cordillera Ibérica. Informe Final; Instituto Geológico y Minero de España (Servicio de Documentación del IGME): Madrid, Spain, 2012. [Google Scholar]
- Fuertes-Gutiérrez, I.; Fernández-Martínez, E. Mapping geosites for geoheritage management: A methodological proposal for the Regional Park of Picos de Europa (León, Spain). Environ. Manag. 2012, 50, 789–806. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.F. New keywords in the geosciences—Some conceptual and scientific issues. Rev. Inst. Geol. 2016, 37, 1–12. [Google Scholar] [CrossRef] [Green Version]
- MacFadyen, C.C.J. The vandalizing effects of irresponsible core sampling: A call for a new code of conduct. Geol. Today 2010, 26, 146–151. [Google Scholar] [CrossRef]
- Druguet, E.; Passchier, C.W.; Pennacchioni, G.; Carreras, J. Geoethical education: A critical issue for geoconservation. Episodes 2013, 36, 11–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galea, P. Central Mediterranean Tectonics—A key Player in the Geomorphology of the Maltese Islands. In Landscapes and Landforms of the Maltese Islands; Gauci, R., Schembri, J.A., Eds.; Springer: Cham, Switzerland, 2019; pp. 19–30. [Google Scholar]
- Farrugia, M.T. Coastal Erosion along Northern Malta: Geomorphological processes and risks. Geogr. Fis. Dinam. Quat. 2008, 31, 149–160. [Google Scholar]
- Panzera, F.; D’Amico, S.; Lotteri, A.; Galea, P.; Lombardo, G. Seismic site response of unstable steep slope using noise measurements: The case study of Xemxija Bay area, Malta. Nat. Hazards Earth Syst. Sci. 2012, 12, 3421–3431. [Google Scholar] [CrossRef] [Green Version]
- Piacentini, D.; Devoto, S.; Mantovani, M.; Pasuto, A.; Prampolini, M.; Soldati, M. Landslide susceptibility modeling assisted by Persistent Scatterers Interferometry (PSI): An example from the northwestern coast of Malta. Nat. Hazards 2015, 78, 681–697. [Google Scholar] [CrossRef] [Green Version]
- Mantovani, M.; Devoto, S.; Piacentini, D.; Prampolini, M.; Soldati, M.; Pasuto, A. Advanced SAR interferometric analysis to support geomorphological interpretation of slow-moving coastal landslides (Malta Mediterranean Sea). Remote Sens. 2016, 8, 443. [Google Scholar] [CrossRef] [Green Version]
- Soldati, M.; Devoto, S.; Foglini, F.; Forte, E.; Mantovani, M.; Pasuto, A.; Piacentini, D.; Prampolini, M. An integrated approach for landslide hazard assessment on the NW coast of Malta. In Proceedings of the International Conference: Georisks in the Mediterranean and Their Mitigation, Valletta, Malta, 20–21 July 2015; Galea, P., Borg, R.P., Farrugia, D., Agius, M.R., D’Amico, S., Torpiano, A., Bonello, M., Eds.; Gutemberg Press Ltd.: Tarxien, Malta, 2015; pp. 160–167. [Google Scholar]
- Soldati, M.; Barrows, T.T.; Prampolini, M.; Fifield, L.K. Cosmogenic exposure dating constraints for coastal landslide evolution on the Island of Malta (Mediterranean Sea). J. Coast. Conserv. 2018, 22, 831–844. [Google Scholar] [CrossRef] [Green Version]
- Fuertes-Gutiérrez, I.; García-Ortiz, E.; Fernández-Martínez, E. Anthropic threats to geological heritage: Characterization and management: A case study in the dinosaur tracksites of La Rioja (Spain). Geoheritage 2016, 8, 135–153. [Google Scholar] [CrossRef]
- Gül, M.; Salihoğlu, R.; Dinçer, F.; Darbaş, G. Coastal geology of Iztuzu Spit (Dalyan, Muğla, SW Turkey). J. Afr. Earth Sci. 2019, 151, 173–183. [Google Scholar] [CrossRef]
- Causon-Deguara, J.; Gauci, R. Evidence of extreme wave events from boulder deposits on the south-east coast of Malta (Central Mediterranean). Nat. Hazards 2017, 86, 543–568. [Google Scholar] [CrossRef]
- Satariano, B.; Gauci, R. Landform Loss and Its Effect on Health and Wellbeing: The collapse of the Azure Window (Gozo) and the Resultant Reactions of the Media and the Maltese Community. In Landscapes and Landforms of the Maltese Islands; Gauci, R., Schembri, J.A., Eds.; Springer: Cham, Switzerland, 2019; pp. 289–303. [Google Scholar]
- IPCC. IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX); IPCC, Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2012. [Google Scholar]
- Petrakis, S.; Alexandrakis, G.; Poulos, S. Recent and future trends of beach zone evolution in relation to its physical characteristics: The case of the Almiros Bay (Island of Crete, South Aegean Sea). Glob. NEST J. 2014, 16, 104–113. [Google Scholar]
- Antonioli, F.; Anzidei, M.; Amorosi, A.; Presti, V.L.; Mastronuzzi, G.; Deiana, G.; Vecchio, A. Sea-level rise and potential drowning of the Italian coastal plains: Flooding risk scenarios for 2100. Quat. Sci. Rev. 2017, 158, 29–43. [Google Scholar] [CrossRef] [Green Version]
- MRA, Malta Resources Authority. 2021. Available online: http://mra.org.mt/climate-change/ (accessed on 12 December 2021).
- Gül, M.; Küçükuysal, C.; Çetin, E. Coastal Erosion Threat on the Kızkumu Spit Geotourism Site (SW Turkey): Natural and Anthropogenic Factors. Geoheritage 2020, 12, 54. [Google Scholar] [CrossRef]
- NRA. Malta National Risk Assessment Report; European Commission Submission, Epsilon-Adi Consortium: San Gwann, Malta, 2015. [Google Scholar]
- Anon. Measures to Avert Rock Collapse at Ghar Lapsi. Times of Malta. 2013. Available online: http://www.timesofmalta.com/articles/view/20130515/local/measures-to-avert-rock-collapse-danger-in-ghar-lapsi.469853 (accessed on 18 February 2022).
- Climate Change Committee for Adaptation, Malta. National Climate Change Adaptation Strategy—Onsultation Report. 2010. Available online: https://mra.org.mt/climate-change/adaptation-to-climate-change/ (accessed on 20 January 2022).
- National Climate Change Adaptation Strategy. 2010. Available online: https://environment.gov.mt/en/Documents/Downloads/maltaClimateChangeAdaptationStrategy/nationalClimateChangeAdaptationStrategyConsultationReport.pdf (accessed on 15 January 2022).
Term | Definition |
---|---|
Natural vulnerability | The sensitivity of a geosite to be damaged or destroyed by natural processes not involved in its creation. |
Anthropogenic vulnerability | The sensitivity of a geosite to be damaged or destroyed by human activities related to its economic value due to its geological characteristics (mining, quarrying, collection, etc.). |
Public use | The susceptibility of a geosite to damage due to its location and its current or possible use (vandalism, no control of access, no physical protection, etc.). |
Fragility | The sensibility of a geosite to damage by processes involved in its creation and directly related to its geological characteristics. |
Criteria | Parameters | Indicators | Points |
---|---|---|---|
Natural Vulnerability | Active processes | no active processes affect the geosite | 0 |
one active process affects the geosite episodically | 1 | ||
one active process affects the geosite continuously or seasonally | 2 | ||
two or more active processes affect the geosite | 3 | ||
Proximity | no possibility of degradation | 0 | |
one possible active process in proximity of the geosite | 1 | ||
two possible active processes in proximity of the geosite | 2 | ||
more than two active processes in proximity of the geosite | 3 | ||
Anthropogenic Vulnerability | Economic interest | no geological elements with economic interest | 0 |
the geosite has one geological element with economic interest | 1 | ||
the geosite has two geological elements with economic interest | 2 | ||
the geosite has more than two geological elements with economic interest | 3 | ||
Private interest | no geological elements of private interest | 0 | |
the geosite has one geological element collectable for private interest | 1 | ||
the geosite has two geological elements collectable for private interest | 2 | ||
the geosite has more than two geological elements collectable for private interest | 3 | ||
Public Use | Legal protection | the geosite is protected for its geological heritage | 0 |
the geosite is inside a protected natural area | 1 | ||
the geosite is inside an area protected for other values (historical, cultural, etc.) | 2 | ||
the geosite is not in a protected area | 3 | ||
Human proximity | the geosite is located less than 100 m from a potential degradation activity | 3 | |
the geosite is located less than 500 m from a potential degradation activity | 2 | ||
the geosite is located less than 1 km from a potential degradation activity | 1 | ||
the geosite is located more than 1 km from a potential degradation activity | 0 | ||
Accessibility | the geosite is located less than 100 m from a paved road and bus parking space | 3 | |
the geosite is located less than 100 m from a paved road | 2 | ||
the geosite is located less than 100 m from a gravel road or between 100 and 500 m from a paved road | 1 | ||
the geosite is located more than 100 m from a gravel road or more than 500 m from a paved road/no direct access | 0 | ||
Density of population | the geosite is located in a municipality with less than 100 inhabitants/km2 | 0 | |
the geosite is located in a municipality with 100–250 inhabitants/km2 | 1 | ||
the geosite is located in a municipality with 250–1000 inhabitants/km2 | 2 | ||
the geosite is located in a municipality with more than 1000 inhabitants/km2 | 3 | ||
Physical protection | the geosite is not protected at all | 3 | |
geosite with structure for tourists but without physical protection of the geoheritage | 2 | ||
geosite with physical protection but without structure for tourists | 1 | ||
geosite with physical protection of geoheritage features and structure for tourists | 0 | ||
Degrading use | no degradation from public use | 0 | |
one element of degradation | 1 | ||
two elements of degradation | 2 | ||
more than two elements of degradation | 3 | ||
Control of access | no control at all | 3 | |
the geosite is monitored by one method of control | 2 | ||
the geosite is monitored by two method of control | 1 | ||
the geosite is monitored by more than two methods of control | 0 |
Criteria | Partial Score | Total Score | Total Score on Degradation Risk | Risk Level | |
Natural Vulnerability | 0–6 | 0–33 | 0–7 | low | |
Anthropogenic Vulnerability | 0–6 | >7 ≤ 15 | medium | ||
Public Use | 0–21 | >15 ≤ 25 | high | ||
>25 | very high |
Vulnerability | Public Use | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Natural Vulnerability | Anthropogenic Vulnerability | ||||||||||||||
Geosite | Active Processes | Proximity | Total Natural Vulnerability 0–6 | Economic Interest | Illegal Collecting | Total Anthropogenic Vulnerability 0–6 | Legal Protection | Human Proximity | Accessibility | Density of Population | Physical Protection | Degradation Public use | Control of Access | Total Public Use 0–21 | Total Degradation Risk 0–33 |
MT5 | 3 | 1 | 4 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 3 | 7 | 11 |
MT9 | 3 | 1 | 4 | 0 | 0 | 0 | 1 | 0 | 2 | 2 | 3 | 2 | 3 | 13 | 17 |
MT19 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 2 | 3 | 0 | 3 | 11 | 11 |
MT22 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 3 | 2 | 3 | 0 | 3 | 15 | 15 |
MT23 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 2 | 3 | 0 | 3 | 10 | 10 |
MT24 | 2 | 1 | 3 | 0 | 0 | 0 | 1 | 0 | 1 | 2 | 3 | 1 | 3 | 11 | 14 |
MT26 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 2 | 3 | 0 | 3 | 10 | 10 |
MT29 | 3 | 1 | 4 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 3 | 0 | 3 | 9 | 13 |
MT31 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 2 | 3 | 0 | 3 | 9 | 10 |
MT32 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 3 | 0 | 3 | 9 | 10 |
MT39 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 3 | 0 | 3 | 9 | 10 |
MT49 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 3 | 1 | 3 | 9 | 9 |
MT50 | 3 | 1 | 4 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 3 | 1 | 3 | 9 | 13 |
MT53 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 3 | 0 | 3 | 8 | 8 |
MT54 | 3 | 1 | 4 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 3 | 0 | 3 | 8 | 12 |
MT68 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 3 | 1 | 3 | 10 | 11 |
MT70 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 3 | 1 | 3 | 10 | 11 |
MT74 | 3 | 0 | 3 | 0 | 0 | 0 | 1 | 0 | 3 | 2 | 2 | 1 | 2 | 11 | 14 |
MT76 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 3 | 2 | 2 | 0 | 3 | 11 | 11 |
GZ1 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 1 | 2 | 2 | 1 | 2 | 11 | 11 |
GZ5 | 0 | 1 | 1 | 0 | 0 | 0 | 3 | 0 | 3 | 2 | 3 | 1 | 2 | 14 | 15 |
GZ7 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 3 | 1 | 3 | 1 | 3 | 12 | 13 |
GZ10 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 3 | 1 | 3 | 1 | 3 | 12 | 12 |
GZ16 | 3 | 1 | 4 | 0 | 0 | 0 | 3 | 0 | 1 | 2 | 3 | 0 | 3 | 12 | 16 |
GZ28 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 2 | 3 | 1 | 3 | 12 | 12 |
CM14 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 3 | 0 | 3 | 8 | 9 |
CM19 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 3 | 7 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selmi, L.; Canesin, T.S.; Gauci, R.; Pereira, P.; Coratza, P. Degradation Risk Assessment: Understanding the Impacts of Climate Change on Geoheritage. Sustainability 2022, 14, 4262. https://doi.org/10.3390/su14074262
Selmi L, Canesin TS, Gauci R, Pereira P, Coratza P. Degradation Risk Assessment: Understanding the Impacts of Climate Change on Geoheritage. Sustainability. 2022; 14(7):4262. https://doi.org/10.3390/su14074262
Chicago/Turabian StyleSelmi, Lidia, Thais S. Canesin, Ritienne Gauci, Paulo Pereira, and Paola Coratza. 2022. "Degradation Risk Assessment: Understanding the Impacts of Climate Change on Geoheritage" Sustainability 14, no. 7: 4262. https://doi.org/10.3390/su14074262
APA StyleSelmi, L., Canesin, T. S., Gauci, R., Pereira, P., & Coratza, P. (2022). Degradation Risk Assessment: Understanding the Impacts of Climate Change on Geoheritage. Sustainability, 14(7), 4262. https://doi.org/10.3390/su14074262