Land-Use Impact on Water Quality of the Opak Sub-Watershed, Yogyakarta, Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Water Quality and Geographic Information
2.3. Land-Use Classification
2.4. Statistical Analysis
3. Results and Discussion
3.1. Temporal Analysis of the Opak Sub-Watershed’s Water Quality
3.2. Spatial Analysis of the Opak Sub-Watershed’s Water Quality
3.3. Land Use Impact to Water Quality
3.4. Principal Component Analysis (PCA) of Pollution Source
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Permatasari, P.A.; Setiawan, Y.; Khairiah, R.N.; Effendi, H. The Effect of Land Use Change on Water Quality: A Case Study in Ciliwung Watershed. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Shanghai, China, 19–22 October 2017; IOP Publishing: Bogor, Indonesia, 2017; Volume 54, p. 012026. [Google Scholar]
- Brontowiyono, W. Sustainable Water Resources Management with Special Reference to Rainwater Harvesting—Case Study of Karta-ManTul; Universitat Karlsruhe: Java, Indonesia, 2008. [Google Scholar]
- Statistics of Daerah Istimewa Yogyakarta. Provinsi Daerah Istimewa Yogyakarta Dalam Angka 2021 [Daerah Istimewa Yogyakarta Province in Figures 2021]; Statistics of Daerah Istimewa Yogyakarta: Yogyakarta, Indonesia, 2021. [Google Scholar]
- Mahzum, M.M. Water Resources Availability Analysis and Brantas Sub-Watershed Conservation Effort the Upper of The Batu City Area; Sepuluh Nopember Institute of Technology Surabaya: Surabaya, Indonesia, 2015. [Google Scholar]
- Kementrian Lingkungan Hidup dan Kehutanan. Petunjuk Teknis Restorasi Kualitas Air (Technical Instruction for Water Quality Restoration); Kementrian Lingkungan Hidup dan Kehutanan: Jakarta, Indonesia, 2017. [Google Scholar]
- Universitas Gadjah Mada 119 Sumber Mata Air Di Kulon Progo Terancam Hilang [119 Springs in Kulon Progo Are in Danger of Losing]. Available online: https://www.ugm.ac.id/id/berita/340-119-sumber-mata-air-di-kulon-progo-terancam-hilang (accessed on 12 January 2022).
- Budianto, A. Lingkungan Rusak, Puluhan Mata Air Di Kota Bandung Kritis [Damaged Environment, Dozens of Springs in Bandung City Are Critical]. Available online: https://jabar.inews.id/berita/lingkungan-rusak-puluhan-mata-air-di-kota-bandung-kritis (accessed on 1 February 2022).
- Tahiru, A.A.; Doke, D.A.; Baatuuwie, B.N. Effect of Land Use and Land Cover Changes on Water Quality in the Nawuni Catchment of the White Volta Basin, Northern Region, Ghana. Appl. Water Sci. 2020, 10, 198. [Google Scholar] [CrossRef]
- Camara, M.; Jamil, N.R.; Bin Abdullah, A.F. Impact of Land Uses on Water Quality in Malaysia: A Review. Ecol. Processes 2019, 8, 10. [Google Scholar] [CrossRef]
- Hua, A.K. Land Use Land Cover Changes in Detection of Water Quality: A Study Based on Remote Sensing and Multivariate Statistics. J. Environ. Public Health 2017, 2017, 7515130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, T. Changes in Land Use Land Cover (LULC), Surface Water Quality and Modelling Surface Discharge in Beaver Creek Watershed, Northeast Tennessee and Southwest Virginia; East Tennessee State University: East Tennessee, TN, USA, 2020. [Google Scholar]
- Tripathi, M.; Singal, S.K. Use of Principal Component Analysis for Parameter Selection for Development of a Novel Water Quality Index: A Case Study of River Ganga India. Ecol. Indic. 2019, 96, 430–436. [Google Scholar] [CrossRef]
- Lee, J.Y.; Yang, J.S.; Kim, D.K.; Han, M.Y. Relationship between Land Use and Water Quality in a Small Watershed in South Korea. Water Sci. Technol. 2010, 62, 2607–2615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khaledian, Y.; Ebrahimi, S.; Basatnia, N.; Zeratpisheh, M.; Ghafarpour, A. Evaluation Land Use Changes and Anthropogenic Influences on Surface Water Quality by Principal Component Analysis, Northern Iran. In Proceedings of the 1st International Conference on Environmental Crisis and Its Solutions, Kish Island, Iran, 13–14 February 2013. [Google Scholar]
- Bahar, M.M.; Ohmori, H.; Yamamuro, M. Relationship between River Water Quality and Land Use in a Small River Basin Running through the Urbanizing Area of Central Japan. Limnology 2008, 9, 19–26. [Google Scholar] [CrossRef]
- Maghfiroh, M.; Novianti, H.; Lukman; Nurtjahya, E. Bacterial Indicators Reveal Water Quality Status of Rangkui River, Bangka Island, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2019, 380, 12008. [Google Scholar] [CrossRef]
- Nugraha, W.D. Analisis Pengaruh Hidrolika Sungai Terhadap Transport BOD Dan DO Dengan Menggunakan Software QUAL2E (Studi Kasus Di Sungai Kaligarang, Semarang). J. Presipitasi 2007, 2, 66–70. [Google Scholar] [CrossRef]
- Indriyani, K.; Hasibuan, H.; Gozan, M. Impacts of Land Use and Land Use Change in River Basin to Water Quality of Cirarab River, Indonesia. In Proceedings of the 1st International Conference on Environmental Science and Sustainable Development ICESSD 2019, Jakarta, Indonesia, 22–23 October 2019; Saiya, H.G., WeziaSulthonudin, I.B., Putra, G.A.Y., Astuti, D., Eds.; European Alliance for Innovation (EAI): Jakarta, Indonesia, 2020. [Google Scholar]
- Suharyo, Y. Analisis Hubungan Tata Guna Lahan Terhadap Kualitas Air Parameter Kimia (BOD, COD, Amonia) Di Daerah Aliran Sungai Opak, Yogyakarta [Analysis of the Relationship between Land Use and Water Quality Chemical Parameters (BOD, COD, Ammonia) in the Opak River; Universitas Islam Indonesia: Yogyakarta, Indonesia, 2019. [Google Scholar]
- Hamid, N. Monitoring Bakteri Escherichia Coli Pada Air Sumur Gali Di Sekitar Sungai Code (Studi Kasus: Kelurahan Tegalpanggung Kec. Danurejan Yogyakarta) [Monitoring Escherichia Coli Bacteria in Dug Well Water around the Code River (Case Study: Tegalpanggung, Danu)]; Universitas Islam Indonesia: Yogyakarta, Indonesia, 2007. [Google Scholar]
- Munawar, M. Study of the Water Quality of the Code River, Special Region of Yogyakarta on the Basis of Differences in Land Use; Universitas Gadjah Mada: Yogyakarta, Indonesia, 2011. [Google Scholar]
- Pratama, M.A.; Immanuel, Y.D.; Marthanty, D.R. A Multivariate and Spatiotemporal Analysis of Water Quality in Code River, Indonesia. Sci. World J. 2020, 2020, 8897029. [Google Scholar] [CrossRef] [PubMed]
- Ujianti, R.M.D.; Anggoro, S.; Bambang, A.N.; Purwanti, F. Water Quality of the Garang River, Semarang, Central Java, Indonesia Based on the Government Regulation Standard. J. Phys. Conf. Ser. 2018, 1025, 12037. [Google Scholar] [CrossRef] [Green Version]
- Taufiq, A.; Effendi, A.J.; Iskandar, I.; Hosono, T.; Hutasoit, L.M. Controlling Factors and Driving Mechanisms of Nitrate Contamination in Groundwater System of Bandung Basin, Indonesia, Deduced by Combined Use of Stable Isotope Ratios, CFC Age Dating, and Socioeconomic Parameters. Water Res. 2019, 148, 292–305. [Google Scholar] [CrossRef]
- Pemerintah Daerah Daerah Istimewa Yogyakarta. Rencana Kerja Pembangunan Daerah Provinsi Daerah Istimewa Yogyakarta 2016 [Regional Development Work Plan of Special Region of Yogyakarta Province 2016]; Pemerintah Daerah Daerah Istimewa Yogyakarta: Yogyakarta, Indonesia, 2015. [Google Scholar]
- Dinas Lingkungan Hidup Kabupaten Bantul. Laporan Akhir Konservasi Sungai Winongo 2020 [Final Report of Winongo River Conservation 2020]; Dinas Lingkungan Hidup Kabupaten Bantul: Bantul, Indonesia, 2020. [Google Scholar]
- Kartiko, H. Estimasi Sumber Pencemar Dan Beban Pencemar Sungai Winongo (Sub DAS Bagian Barat-Hilir) [Estimation of Pollution Sources and Contaminant Loads of The Winongo River (West-Downstream Sub-Watershed)]; Universitas Islam Indonesia: Yogyakarta, Indonesia, 2019. [Google Scholar]
- Prananda, E.G. Perencanaan Flood Early Warning System Di Sungai Winongo (Simulasi HEC-RAS) [Flood Early Warning System Planning in The Winongo River (HEC-RAS Simulation)]; Atma Jaya University: Yogyakarta, Indonesia, 2017. [Google Scholar]
- Despensary, A. Kajian Neraca Air: Studi Kasus Di Daerah Aliran Sungai Winongo Dan Gajahwong Daerah Istimewa Yogyakarta [Water Balance Study: A Case Study in the Winongo and Gajahwong Watersheds, Special Region of Yogyakarta]; Universitas Gadjah Mada: Yogyakarta, Indonesia, 2006. [Google Scholar]
- Statistics of Daerah Istimewa Yogyakarta Jumlah Curah Hujan Dan Hari Hujan Menurut Bulan Di D.I. Yogyakarta, 2019 [Amount of Precipitation and Number of Rainy Days by Month in D.I. Yogyakarta, 2019]. Available online: https://yogyakarta.bps.go.id/statictable/2020/06/15/93/jumlah-curah-hujan-dan-hari-hujan-menurut-bulan-di-d-i-yogyakarta-2019.html (accessed on 23 March 2021).
- Mawardi, I. Upaya Meningkatkan Daya Dukung Sumberdaya Air Pulau Jawa [Efforts to Increase the Carrying Capacity of Java’s Water Resources]. J. Teknol. Lingkung. 2008, 9, 98–107. [Google Scholar] [CrossRef] [Green Version]
- Mawardi, I. Kerusakan Daerah Aliran Sungai Dan Penurunan Daya Dukung Sumberdaya Air Di Pulau Jawa Serta Upaya Penanganannya [Damage to Watersheds and Decrease in Carrying Capacity of Water Resources in Java Island and Their Handling Efforts]. J. Hidrosfir Indones. 2010, 5, 1–11. [Google Scholar]
- Zulfahmi, Z.; Syam AS, N.; Jufriadi, J. Dampak Sedimentasi Sungai Tallo Terhadap Kerawanan Banjir Di Kota Makassar [Impact of Tallo River Sedimentation on Flood Vulnerability in Makassar City]. Plano Madani 2016, 5, 180–191. [Google Scholar] [CrossRef]
- Brontowiyono, W.; Kasam, K.; Ribut, L.; Ike, A. Strategi Penurunan Pencemaran Limbah Domestik Di Sungai Code DIY [Domestic Waste Pollution Reduction Strategy in Code DIY River]. J. Sains Teknol. Lingkung. 2013, 5, 36–47. [Google Scholar] [CrossRef] [Green Version]
- Susanti, P.D.; Miardini, A. The Impact of Land Use Change on Water Pollution Index of Kali Madiun Sub-Watershed. Forum Geogr. 2017, 31, 128–137. [Google Scholar] [CrossRef] [Green Version]
- Vandith, V.A.; Setiyawan, A.S.; Soewondo, P.; Putri, D.W. The Characteristics of Domestic Wastewater from Office Buildings in Bandung, West Java, Indonesia. Indones. J. Urban Environ. Technol. 2018, 1, 199–214. [Google Scholar] [CrossRef] [Green Version]
- Gurning, L.F.P.; Nuraini, R.A.T.; Suryono, S. Kelimpahan Fitoplankton Penyebab Harmful Algal Bloom Di Perairan Desa Bedono, Demak [Abundance of Phytoplankton Causes Harmful Algal Bloom in the Waters of Bedono Village, Demak]. J. Mar. Res. 2020, 9, 251–260. [Google Scholar] [CrossRef]
- Yogaswara, D. Distribusi Dan Siklus Nutrient Di Perairan Estuari Serta Pengendaliannya [Distribution and Cycle of Nutrients in Estuary Waters and Their Control]. Oseana 2020, 45, 28–39. [Google Scholar] [CrossRef]
- Nugroho, S.; Akbar, S.; Vusvitasari, R. Kajian Hubungan Koefisien Korelasi Pearson (r), Spearman-Rho (ρ), Kendall-Tau (τ), Gamma (G), Dan Somers (Dxy) [Study of Correlation between Pearson (r), Spearman-Rho (ρ), Kendall-Tau (τ), Gamma (G), and Somers (Dxy) Coefficients]. J. Gradien 2008, 4, 372–381. [Google Scholar]
- Ashoor, A.S.; Naji, A.A.K.K. Integrated Network of Pearson Correlation Coefficients, Kendall Tau, Spearman Rho and Its Impact on Disease, Health Indicators and Mortality Ratings in Babil Province BT. In Proceedings of the First International Conference on Mathematical Modeling and Computational Science, Pattaya, Thailand, 4 May 2021; Peng, S.-L., Hao, R.-X., Pal, S., Eds.; Springer: Singapore, 2021; pp. 83–96. [Google Scholar]
- Temizhan, E.; Mirtagioglu, H.; Mendes, M. Which Correlation Coefficient Should Be Used for Investigating Relations between Quantitative Variables? Am. Acad. Sci. Res. J. Eng. Technol. Sci. 2022, 85, 265–277. [Google Scholar]
- Bi, H.; Ni, Z.; Tian, J.; Jiang, C.; Sun, H.; Lin, Q. Influence of Lignin on Coal Gangue Pyrolysis and Gas Emission Based on Multi-Lump Parallel Reaction Model and Principal Component Analysis. Sci. Total Environ. 2022, 820, 153083. [Google Scholar] [CrossRef] [PubMed]
- Jansson, N.F.; Allen, R.L.; Skogsmo, G.; Tavakoli, S. Principal Component Analysis and K-Means Clustering as Tools during Exploration for Zn Skarn Deposits and Industrial Carbonates, Sala Area, Sweden. J. Geochem. Explor. 2022, 233, 106909. [Google Scholar] [CrossRef]
- Han, Y.; Song, G.; Liu, F.; Geng, Z.; Ma, B.; Xu, W. Fault Monitoring Using Novel Adaptive Kernel Principal Component Analysis Integrating Grey Relational Analysis. Process. Saf. Environ. Prot. 2022, 157, 397–410. [Google Scholar] [CrossRef]
- Hauben, M.; Hung, E.; Hsieh, W.-Y. An Exploratory Factor Analysis of the Spontaneous Reporting of Severe Cutaneous Adverse Reactions. Ther. Adv. Drug Saf. 2016, 8, 4–16. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Li, X.; Wang, Y.; Chang, J.; Liu, X. Trace Element Contamination in Urban Topsoil in China during 2000–2009 and 2010–2019: Pollution Assessment and Spatiotemporal Analysis. Sci. Total Environ. 2021, 758, 143647. [Google Scholar] [CrossRef]
- Constantin, C. Principal Component Analysis—A Powerful Tool in Computing Marketing Information. Bull. Transilv. Univ. Braşov. Ser. V Econ. Sci. 2014, 7, 27. [Google Scholar]
- Statistics D.I. Yogyakarta Curah Hujan per Bulan 2019 [Rainfall per Month 2019]. Available online: https://yogyakarta.bps.go.id/indicator/151/152/1/curah-hujan-per-bulan.html (accessed on 23 March 2021).
- Ling, T.Y.; Gerunsin, N.; Soo, C.L.; Nyanti, L.; Sim, S.F.; Grinang, J. Seasonal Changes and Spatial Variation in Water Quality of a Large Young Tropical Reservoir and Its Downstream River. J. Chem. 2017, 2017, 8153246. [Google Scholar] [CrossRef] [Green Version]
- Paul, M.J.; Coffey, R.; Stamp, J.; Johnson, T. A Review of Water Quality Responses to Air Temperature and Precipitation Changes 1: Flow, Water Temperature, Saltwater Intrusion. JAWRA J. Am. Water Resour. Assoc. 2019, 55, 824–843. [Google Scholar] [CrossRef]
- Tabari, H. Climate Change Impact on Flood and Extreme Precipitation Increases with Water Availability. Sci. Rep. 2020, 10, 13768. [Google Scholar] [CrossRef]
- Puspita, I.; Ibrahim, L.; Hartono, D. Pengaruh Perilaku Masyarakat Yang Bermukim Di Kawasan Bantaran Sungai Terhadap Penurunan Kualitas Air Sungai Karang Anyar Kota Tarakan (Influence of The Behavior of Citizens Residing in Riverbanks to The Decrease of Water Quality in The River of Karang). J. Mns. Lingkung. 2016, 23, 249–258. [Google Scholar] [CrossRef] [Green Version]
- Raharjo, I.; Zulkarnain, I.; Suprapto, S. Pengaruh Curah Hujan Terhadap Kualitas Air Sungai Way Kuripan Sebagai Sumber Air Baku Perusahaan Daerah Air Minum (PDAM) Way Rilau [The Effect of Rainfall on the Water Quality of the Way Kuripan River as a Source of Raw Water for the Way Rilau Regional Dr. J. Ilm. Tek. Pertan.-TekTan 2018, 5, 77–85. [Google Scholar] [CrossRef]
- Napsiah, N. Tindakan Warga Merapi Pascaerupsi Menjaga Daerah Tangkapan Air [The Actions of Merapi Residents After the Eruption to Protect the Catchment Area]. J. Penelit. Kesejaht. Sos. 2016, 15, 329–336. [Google Scholar] [CrossRef]
- Muñoz, H.; Orozco, S.; Vera, A.; Suárez, J.; García, E.; Neria, M.; Jiménez, J. Relación Entre Oxígeno Disuelto, Precipitación Pluvial y Temperatura: Río Zahuapan, Tlaxcala, México [Relationship between Dissolved Oxygen, Rainfall and Temperature: Zahuapan River, Tlaxcala, Mexico]. Tecnol. Cienc. Agua 2015, 6, 59–74. [Google Scholar]
- Liu, M.; Zhang, Y.; Shi, K.; Zhang, Y.; Zhou, Y.; Zhu, M.; Zhu, G.; Wu, Z.; Liu, M. Effects of Rainfall on Thermal Stratification and Dissolved Oxygen in a Deep Drinking Water Reservoir. Hydrol. Processes 2020, 34, 3387–3399. [Google Scholar] [CrossRef]
- Valappil, N.K.M.; Viswanathan, P.M.; Hamza, V. Chemical Characteristics of Rainwater in the Tropical Rainforest Region in Northwestern Borneo. Environ. Sci. Pollut. Res. 2020, 27, 36994–37010. [Google Scholar] [CrossRef]
- Zhi, W.; Feng, D.; Tsai, W.-P.; Sterle, G.; Harpold, A.; Shen, C.; Li, L. From Hydrometeorology to River Water Quality: Can a Deep Learning Model Predict Dissolved Oxygen at the Continental Scale? Environ. Sci. Technol. 2021, 55, 2357–2368. [Google Scholar] [CrossRef] [PubMed]
- Kurniawati, P.; Gusrianti, R.; Dwisiwi, B.B.; Purbaningtias, T.E.; Wiyantoko, B. Verification of Spectrophotometric Method for Nitrate Analysis in Water Samples. AIP Conf. Proc. 2017, 1911, 20012. [Google Scholar] [CrossRef] [Green Version]
- Susilowati, S.; Sutrisno, J.; Masykuri, M.; Maridi, M. Dynamics and Factors That Affects DO-BOD Concentrations of Madiun River. AIP Conf. Proc. 2018, 2049, 20052. [Google Scholar] [CrossRef]
- Anggraini, N.; Herdiansyah, H. COD Values for Determining BOD5 Dilution Factor in Faecal Sludge Waste—Case Study on the Duri Kosambi Faecal Sludge Treatment Plant in DKI Jakarta Province. AIP Conf. Proc. 2019, 2120, 40038. [Google Scholar] [CrossRef]
- Ling, T.Y.; Lee, T.Z.E.; Nyanti, L. Phosphorus in Batang Ai Hydroelectric Dam Reservoir, Sarawak, Malaysia. World Appl. Sci. J. 2013, 28, 1348–1354. [Google Scholar] [CrossRef]
- Ling, T.Y.; Gerunsin, N.; Soo, C.L.; Lee, N.; Sim, S.F.; Grinang, J. Nutrient Level of a Young Tropical Hydroelectric Dam Reservoir in Sarawak, Malaysia. Borneo J. Resour. Sci. Technol. 2018, 8, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Sawyer, C.; McCarty, P.; Parkin, G. Chemistry for Environmental Engineering and Science, 5th ed.; McGraw-Hill Education: New York, NY, USA, 2002. [Google Scholar]
- Zhu, X.; Burger, M.; Doane, T.A.; Horwath, W.R. Ammonia Oxidation Pathways and Nitrifier Denitrification Are Significant Sources of N2O and NO under Low Oxygen Availability. Proc. Natl. Acad. Sci. USA 2013, 110, 6328–6333. [Google Scholar] [CrossRef] [Green Version]
- Kleerebezem, R.; Lücker, S. Cyclic Conversions in the Nitrogen Cycle. Front. Microbiol. 2021, 12, 622504. [Google Scholar] [CrossRef]
- Soler-Jofra, A.; Pérez, J.; van Loosdrecht, M.C.M. Hydroxylamine and the Nitrogen Cycle: A Review. Water Res. 2021, 190, 116723. [Google Scholar] [CrossRef]
- Weiner, E.R. Nutrients and Odors: Nitrogen, Phosphorus, and Sulfur. In Applications of Environmental Aquatic Chemistry: A Practical Guide; CRC Press: Boca Raton, FL, USA, 2013; pp. 133–180. [Google Scholar]
- Abdel-Ghani, N.T.; Elchaghaby, G.A. Influence of Operating Conditions on the Removal of Cu, Zn, Cd and Pb Ions from Wastewater by Adsorption. Int. J. Environ. Sci. Technol. 2007, 4, 451–456. [Google Scholar] [CrossRef] [Green Version]
- Oladoye, P.O. Natural, Low-Cost Adsorbents for Toxic Pb(II) Ion Sequestration from (Waste)Water: A State-of-the-Art Review. Chemosphere 2022, 287, 132130. [Google Scholar] [CrossRef]
- Muniz, J.N.; Duarte, K.G.; Ramos Braga, F.H.; Lima, N.S.; Silva, D.F.; Firmo, W.C.A.; Batista, M.R.V.; Silva, F.M.A.M.; Miranda, R.d.C.M.; Silva, M.R.C. Limnological Quality: Seasonality Assessment and Potential for Contamination of the Pindaré River Watershed, Pre-Amazon Region, Brazil. Water 2020, 12, 851. [Google Scholar] [CrossRef] [Green Version]
- Yadav, N.; Singh, S.; Goyal, S.K. Effect of Seasonal Variation on Bacterial Inhabitants and Diversity in Drinking Water of an Office Building, Delhi. Air Soil Water Res. 2019, 12, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Egberongbe, H.O.; Bankole, M.O.; Popoola, T.O.S.; Olowofeso, O. Seasonal Variation of Enteric Bacteria Population in Surface Water Sources among Rural Communities of Ijebu North, Ogun State, Nigeria. Agro-Science 2021, 20, 81–85. [Google Scholar] [CrossRef]
- Lafta Alzurfi, S.K.; Katia, I.I. Structure of Bacterial Communities Associated with Some Aquatic Plants. IOP Conf. Ser. Earth Environ. Sci. 2021, 790, 12030. [Google Scholar] [CrossRef]
- Abdi, R.; Endreny, T.; Nowak, D. A Model to Integrate Analysis of Urban River Thermal Cooling in River Restoration. J. Environ. Manag. 2020, 258, 110023. [Google Scholar] [CrossRef] [PubMed]
- Aslam, A.; Rana, I.A.; Bhatti, S.S. The Spatiotemporal Dynamics of Urbanisation and Local Climate: A Case Study of Islamabad, Pakistan. Environ. Impact Assess. Rev. 2021, 91, 106666. [Google Scholar] [CrossRef]
- Siddiqui, A.; Kushwaha, G.; Nikam, B.; Srivastav, S.K.; Shelar, A.; Kumar, P. Analysing the Day/Night Seasonal and Annual Changes and Trends in Land Surface Temperature and Surface Urban Heat Island Intensity (SUHII) for Indian Cities. Sustain. Cities Soc. 2021, 75, 103374. [Google Scholar] [CrossRef]
- Kinouchi, T.; Yagi, H.; Miyamoto, M. Increase in Stream Temperature Related to Anthropogenic Heat Input from Urban Wastewater. J. Hydrol. 2007, 335, 78–88. [Google Scholar] [CrossRef]
- Nagpal, H.; Spriet, J.; Murali, M.K.; McNabola, A. Heat Recovery from Wastewater—A Review of Available Resource. Water 2021, 13, 1274. [Google Scholar] [CrossRef]
- Hughes, J.; Cowper-Heays, K.; Olesson, E.; Bell, R.; Stroombergen, A. Impacts and Implications of Climate Change on Wastewater Systems: A New Zealand Perspective. Clim. Risk Manag. 2021, 31, 100262. [Google Scholar] [CrossRef]
- Li, X.; Niu, J.; Xie, B. The Effect of Leaf Litter Cover on Surface Runoff and Soil Erosion in Northern China. PLoS ONE 2014, 9, e107789. [Google Scholar] [CrossRef] [Green Version]
- Tan, Z.; Leung, L.R.; Li, H.-Y.; Cohen, S. Representing Global Soil Erosion and Sediment Flux in Earth System Models. J. Adv. Model. Earth Syst. 2022, 14, e2021MS002756. [Google Scholar] [CrossRef]
- Assaye, H.; Nyssen, J.; Poesen, J.; Lemma, H.; Meshesha, D.T.; Wassie, A.; Adgo, E.; Fentie, D.; Frankl, A. Event-Based Run-off and Sediment Yield Dynamics and Controls in the Subhumid Headwaters of the Blue Nile, Ethiopia. Land Degrad. Dev. 2022, 33, 565–580. [Google Scholar] [CrossRef]
- Jourgholami, M.; Sohrabi, H.; Venanzi, R.; Tavankar, F.; Picchio, R. Hydrologic Responses of Undecomposed Litter Mulch on Compacted Soil: Litter Water Holding Capacity, Runoff, and Sediment. CATENA 2022, 210, 105875. [Google Scholar] [CrossRef]
- Winnarsih, W.; Emiyarti, W.; Afu, L.O.A. Distribusi Total Suspended Solid Permukaan Di Perairan Teluk Kendari [Distribution of Total Suspended Solid Surfaces in Kendari Bay]. J. Sapa Laut (J. Ilmu Kelaut.) 2016, 1, 54–59. [Google Scholar] [CrossRef]
- Butler, B.A.; Ford, R.G. Evaluating Relationships between Total Dissolved Solids (TDS) and Total Suspended Solids (TSS) in a Mining-Influenced Watershed. Mine Water Environ. 2018, 37, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Paudel, B.; Montagna, P.A.; Adams, L. The Relationship between Suspended Solids and Nutrients with Variable Hydrologic Flow Regimes. Reg. Stud. Mar. Sci. 2019, 29, 100657. [Google Scholar] [CrossRef]
- Yogafanny, E. Pengaruh Aktifitas Warga Di Sempadan Sungai Terhadap Kualitas Air Sungai Winongo [The Influence of Community Activities on the River Border on the Water Quality of the Winongo River]. J. Sains Teknol. Lingkung. 2015, 7, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Anku, W.W.; Mamo, M.A.; Govender, P.P. Phenolic Compounds in Water: Sources, Reactivity, Toxicity and Treatment Methods. In Phenolic Compounds—Natural Sources, Importance and Applications; Soto-Hernandez, M., Tenango, M.P., García-Mateos, R., Eds.; IntechOpen Book Series; IntechOpen: London, UK, 2017; pp. 419–443. [Google Scholar]
- World Health Organization. Guidelines for Safe Recreational Water Environments. Volume 2, Swimming Pools and Similar Environments; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- U.S. Environmental Protection Agency. Summaries of EPA Water Pollution Reporting Categories Used in the ATTAINS Data System. Available online: https://19january2017snapshot.epa.gov/sites/production/files/2016-02/documents/160112parent_plain_english_descriptions_finalattainsnames.pdf (accessed on 12 February 2022).
- Rodrigues, C.; Cunha, M.Â. Assessment of the Microbiological Quality of Recreational Waters: Indicators and Methods. Euro-Mediterr. J. Environ. Integr. 2017, 2, 25. [Google Scholar] [CrossRef] [Green Version]
- Suramas, L.Y.; Daud, A.; Birawida, A.B. An Analysis of Mercury (Hg) Content in Drinking Water with Renal Dysfunction in the Traditional Gold Miners in TahiIte Village, District of Rarowatu, Bombana Regency. Indian J. Public Health Res. Dev. 2019, 10, 798–803. [Google Scholar] [CrossRef]
- Ekarini, F.D.; Rafsanjani, S.; Rahmawati, S.; Asmara, A.A. Groundwater Mapping of Total Coliform Contamination in Sleman, Yogyakarta, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2021, 933, 12047. [Google Scholar] [CrossRef]
- Awuy, S.C.; Sumampouw, O.J.; Boky, H.B. Kandungan Escherichia Coli Pada Air Sumur Gali Dan Jarak Sumur Dengan Septic Tank Di Kelurahan Rap-Rap Kabupaten Minahasa Utara Tahun 2018 [Escherichia Coli Content in Dug Well Water and Distance from Wells to Septic Tanks in Rap-Rap Village, North Minaha. J. KESMAS 2018, 7, 1–6. [Google Scholar]
- Hamida, F.; Aliya, L.S.; Syafriana, V.; Pratiwi, D. Escherichia Coli Resisten Antibiotik Asal Air Keran Di Kampus ISTN [Antibiotic-Resistant Escherichia Coli from Tap Water at ISTN Kampus Campus]. J. Kesehat. 2019, 12, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Maradesa, S.; Lawalata, H.J.; Tengker, A.C.C. Analisis Kandungan Bakteri Escherichia Coli Pada Air Sumur Gali Di Kecamatan Lirung Kabupaten Kepulauan Talaud [Analysis of Escherichia Coli Bacteria Content in Dug Well Water in Lirung District, Talaud Islands Regency]. JSME J. Sains Mat. Edukasi 2020, 8, 159–166. [Google Scholar]
- Kusuma, F.I. Water Quality Characteristics of the Winongo River, Opak Watershed, after Passing over the Urban Area of The Special Region of Yogyakarta Year 2012–2014; University of Gadjah Mada: Yogyakarta, Indonesia, 2014. [Google Scholar]
- Kudubun, R.; Kisworo, K.; Rahardjo, D. Pengaruh Tata Guna Lahan, Tipe Vegetasi Riparian, Dan Sumber Pencemar Terhadap Kualitas Air Sungai Winongo Di Daerah Istimewa Yogyakarta [The Influence of Land Use, Riparian Vegetation Type, and Pollutant Sources on the Water Quality of the Winongo River]. In Proceedings of the Prosiding Seminar Nasional Biologi di Era Pandemi COVID-19, Makassar, Indonesia, 4 October 2020; UIN Alauddin Makassar: Makassar, Indonesia, 2020; pp. 392–400. [Google Scholar]
- Widagda, B.L.A.; Nurrochmad, F.; Kamulyan, B. Pengaruh Limbah Rumah Tangga Terhadap Kualitas Air Sungai Gajahwong Code Dan Winongo Di Yogyakarta [Effect of Household Waste on Water Quality of Gajahwong Code and Winongo Rivers in Yogyakarta]. In Proceedings of the Prosiding Seminar Nasional Teknik Lingkungan Kebumian (Satu Bumi) Ke-II; UPN Veteran Yogyakarta: Yogyakarta, Indonesia, 2020; pp. 241–252. [Google Scholar]
- Wardhana, P.N.; Astuti, S.A.Y.; Kurnia, D. Pengaruh Perubahan Tutupan Lahan Terhadap Debit Banjir Di DAS Winongo Daerah Istimewa Yogyakarta [The Effect of Land Cover Changes on Flood Discharge in the Winongo Watershed, Yogyakarta Special Region]. J. Ilm. Tek. Sipil 2018, 22, 157–164. [Google Scholar] [CrossRef]
- Wantzen, K.M.; Yule, C.M.; Mathooko, J.M.; Pringle, C.M. Organic Matter Processing in Tropical Streams. In Aquatic Ecology; Dudgeon, D., Ed.; Academic Press: London, UK, 2008; pp. 43–64. ISBN 978-0-12-088449-0. [Google Scholar]
- AminiTabrizi, R.; Wilson, R.M.; Fudyma, J.D.; Hodgkins, S.B.; Heyman, H.M.; Rich, V.I.; Saleska, S.R.; Chanton, J.P.; Tfaily, M.M. Controls on Soil Organic Matter Degradation and Subsequent Greenhouse Gas Emissions Across a Permafrost Thaw Gradient in Northern Sweden. Front. Earth Sci. 2020, 8, 557961. [Google Scholar] [CrossRef]
- Ren, K.; Pan, X.; Zeng, J.; Jiao, Y. Distribution and Source Identification of Dissolved Sulfate by Dual Isotopes in Waters of the Babu Subterranean River Basin, SW China. J. Radioanal. Nucl. Chem. 2017, 312, 317–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kale, A.; Bandela, N.; Kulkarni, J.; Sahoo, S.K.; Kumar, A. Hydrogeochemistry and Multivariate Statistical Analysis of Groundwater Quality of Hard Rock Aquifers from Deccan Trap Basalt in Western India. Environ. Earth Sci. 2021, 80, 288. [Google Scholar] [CrossRef]
- Medici, G.; West, L.J. Groundwater Flow Velocities in Karst Aquifers; Importance of Spatial Observation Scale and Hydraulic Testing for Contaminant Transport Prediction. Environ. Sci. Pollut. Res. 2021, 28, 43050–43063. [Google Scholar] [CrossRef] [PubMed]
- Popa, P.; Timofti, M.; Voiculescu, M.; Dragan, S.; Trif, C.; Georgescu, L.P. Study of Physico-Chemical Characteristics of Wastewater in an Urban Agglomeration in Romania. Sci. World J. 2012, 2012, 549028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rathnayake, S.; Unrine, J.M.; Judy, J.; Miller, A.-F.; Rao, W.; Bertsch, P.M. Multitechnique Investigation of the PH Dependence of Phosphate Induced Transformations of ZnO Nanoparticles. Environ. Sci. Technol. 2014, 48, 4757–4764. [Google Scholar] [CrossRef]
- Fang, C.; Liu, H.; Li, G. International Progress and Evaluation on Interactive Coupling Effects between Urbanization and the Eco-Environment. J. Geogr. Sci. 2016, 26, 1081–1116. [Google Scholar] [CrossRef]
- Moersidik, S.S.; Hartono, D.M. Multivariate Analysis as an Approach to Determine Dominant Parameter in Water Quality Management. Lingkung. Trop. 2009, 3, 23–32. [Google Scholar]
- Winiarska-Mieczan, A.; Kwiecień, M. The Effect of Exposure to Cd and Pb in the Form of a Drinking Water or Feed on the Accumulation and Distribution of These Metals in the Organs of Growing Wistar Rats. Biol. Trace Elem. Res. 2016, 169, 230–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kar, I.; Patra, A.K. Tissue Bioaccumulation and Toxicopathological Effects of Cadmium and Its Dietary Amelioration in Poultry—A Review. Biol. Trace Elem. Res. 2021, 199, 3846–3868. [Google Scholar] [CrossRef]
- Roberts, T.L. Cadmium and Phosphorous Fertilizers: The Issues and the Science. Procedia Eng. 2014, 83, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Casalí, J.; Giménez, R.; Díez, J.; Álvarez-Mozos, J.; Del Valle de Lersundi, J.; Goñi, M.; Campo, M.A.; Chahor, Y.; Gastesi, R.; López, J. Sediment Production and Water Quality of Watersheds with Contrasting Land Use in Navarre (Spain). Agric. Water Manag. 2010, 97, 1683–1694. [Google Scholar] [CrossRef]
- Yan, B.; Fang, N.F.; Zhang, P.C.; Shi, Z.H. Impacts of Land Use Change on Watershed Streamflow and Sediment Yield: An Assessment Using Hydrologic Modelling and Partial Least Squares Regression. J. Hydrol. 2013, 484, 26–37. [Google Scholar] [CrossRef]
- Aldaya, M.M.; Rodriguez, C.I.; Fernandez-Poulussen, A.; Merchan, D.; Beriain, M.J.; Llamas, R. Grey Water Footprint as an Indicator for Diffuse Nitrogen Pollution: The Case of Navarra, Spain. Sci. Total Environ. 2020, 698, 134338. [Google Scholar] [CrossRef]
Points | Latitude | Longitude |
---|---|---|
Point 1 | −7.886111111 | 110.5116667 |
Point 2 | −7.677833333 | 110.3763056 |
Point 3 | −7.776944444 | 110.3573889 |
Point 4 | −7.789777778 | 110.3573889 |
Point 5 | −7.808361111 | 110.3537222 |
Point 6 | −7.840333333 | 110.3403333 |
Point 7 | −7.912755555 | 110.3470278 |
Point 8 | −7.978722222 | 110.3134167 |
Parameters | Months/Year | Unit | Year (Average Value) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | |||
Precipitation | Feb/March | mm/month | 369 | 337 | 182 | 323 | 349 | 337 | 337 | 317 |
Sept/Oct | mm/month | 92 | 2 | NA * | 324 | 60 | 20 | NA * | 44 | |
Temperature | Feb/March | °C | 26.7 | 26.5 | 26.1 | 26.7 | 26.2 | 26.2 | 26.4 | 26.7 |
Sept/Oct | °C | 26.4 | 26.3 | 26.2 | 26.7 | 26.4 | 26.4 | 26.1 | 26.3 | |
Relative humidity | Feb/March | % | 87.5 | 85.5 | 88.0 | 89.3 | 87.3 | 86.8 | 87.5 | 87.6 |
Sept/Oct | % | 80.5 | 76.7 | 77.1 | 86.0 | 82.5 | 81.0 | 77.3 | 81.1 |
Parameter | Upstream | Middle Stream | Downstream | ||||||
---|---|---|---|---|---|---|---|---|---|
VA | AB | AG | VA | AB | AG | VA | AB | AG | |
Temperature | |||||||||
pH | |||||||||
TDS | |||||||||
TSS | |||||||||
DO | |||||||||
BOD5 (*) | 0.886 | −0.936 | |||||||
COD | |||||||||
Chlorine | |||||||||
Nitrate | |||||||||
Nitrite | |||||||||
Sulfide (*) | 0.876 | −0.742 | 0.865 | −0.718 | |||||
Ammonia (*) | −0.821 | −0.871 | |||||||
Detergent (*) | −0.712 | ||||||||
Phenol (*) | 0.713 | −0.816 | |||||||
Phosphate | |||||||||
Oil & grease | |||||||||
Fe | |||||||||
Mn (*) | −0.748 | −0.766 | |||||||
Cd (*) | 0.807 | −0.833 | 0.837 | −0.907 | |||||
Zn (*) | 0.738 | 0.723 | |||||||
Cu (*) | −0.792 | ||||||||
Pb (*) | 0.765 | −0.748 | 0.752 | −0.775 | |||||
Color | |||||||||
E. coli | |||||||||
Total coliform |
Parameter | Co1 | Co2 | Co3 | Co4 | Co5 | Co6 |
---|---|---|---|---|---|---|
Temperature | −0.707 | |||||
pH | −0.718 | |||||
TDS | 0.742 | |||||
DO | −0.556 | |||||
Nitrate | 0.828 | |||||
Nitrite | 0.818 | |||||
Ammonia | −0.806 | |||||
Detergent | 0.511 | |||||
Phenol | 0.560 | |||||
Phosphate | 0.742 | |||||
Oil and grease | 0.536 | |||||
Fe | 0.567 | |||||
Mn | 0.837 | |||||
Cd | 0.589 | |||||
Zn | −0.628 | |||||
Cu | 0.864 | |||||
Pb | 0.815 | |||||
Color | 0.724 | |||||
E. coli | 0.765 | |||||
Total coliform | 0.788 | |||||
Eigenvalue | 4.279 | 3.162 | 2.094 | 1.734 | 1.439 | 1.156 |
%Variance explained | 21.393 | 15.809 | 10.468 | 8.671 | 7.194 | 5.778 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brontowiyono, W.; Asmara, A.A.; Jana, R.; Yulianto, A.; Rahmawati, S. Land-Use Impact on Water Quality of the Opak Sub-Watershed, Yogyakarta, Indonesia. Sustainability 2022, 14, 4346. https://doi.org/10.3390/su14074346
Brontowiyono W, Asmara AA, Jana R, Yulianto A, Rahmawati S. Land-Use Impact on Water Quality of the Opak Sub-Watershed, Yogyakarta, Indonesia. Sustainability. 2022; 14(7):4346. https://doi.org/10.3390/su14074346
Chicago/Turabian StyleBrontowiyono, Widodo, Adelia Anju Asmara, Raudatun Jana, Andik Yulianto, and Suphia Rahmawati. 2022. "Land-Use Impact on Water Quality of the Opak Sub-Watershed, Yogyakarta, Indonesia" Sustainability 14, no. 7: 4346. https://doi.org/10.3390/su14074346
APA StyleBrontowiyono, W., Asmara, A. A., Jana, R., Yulianto, A., & Rahmawati, S. (2022). Land-Use Impact on Water Quality of the Opak Sub-Watershed, Yogyakarta, Indonesia. Sustainability, 14(7), 4346. https://doi.org/10.3390/su14074346