The Effects of Aerated Irrigation on Soil Respiration and the Yield of the Maize Root Zone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Treatments
2.3. Measurement of Soil Respiration, Water Content, Oxygen Content, Bacterial Biomass, Root Biomass and Maize Growth
2.4. Data Analysis
3. Results
3.1. Diurnal Patterns of Soil Respiration, Temperature and Oxygen Concentration
3.2. Seasonal Variation in Various Soil Parameters Due to Aerated Irrigation
3.2.1. Soil Respiration Rate
3.2.2. Soil Temperature
3.2.3. Soil Oxygen Content
3.2.4. Soil Water Content
3.2.5. Soil Bacterial Biomass
3.2.6. Root Biomass
3.3. Effects of Aerated Irrigation on the Growth of Maize
3.3.1. Plant Height, Stem Thickness and Leaf Area
3.3.2. Maize Yield
3.4. Correlation Analysis between Soil Respiration Rate and Soil Environmental Factors under Different Treatments
4. Discussion
4.1. Variation in Various Soil Parameters and Fruit Growth
4.2. Relationships of Soil Respiration with Water Content, Oxygen Content, Bacterial Biomass and Root Biomass
4.3. Recommendation and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, S.K.; Wu, P.T.; Wang, Y.B.; Zhao, X.N.; Liu, J.; Zhang, X.H. The impacts of interannual climate variability and agricultural inputs on water footprint of crop production in an irrigation district of China. Sci. Total Environ. 2013, 444, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Bresler, E. Trickle-drip irrigation: Principles and application to soil-water management. Adv. Agron. 1977, 29, 343–393. [Google Scholar]
- Camp, C.R. Subsurface drip irrigation: A review. Trans. ASAE 1998, 41, 1353. [Google Scholar] [CrossRef]
- Marouelli, W.A.; Silva, W.L. Drip line placement depth for processing tomatoes crop. Hortic. Bras. 2002, 20, 206–210. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y. Response Mechanism of Greenhouse Tomato Growth and Root Zone Soil Microenvironment to Aerated Irrigation. Ph.D. Thesis, Northwest A&F University, Xianyang, China, 2020. (In Chinese). [Google Scholar]
- Ben-noah, I.; Friedman, S.P. Oxygation of clayey soils by adding hydrogen peroxide to the irrigation solution: Lysimetric experiments. Rhizosphere 2016, 2, 51–61. [Google Scholar] [CrossRef]
- Klaring, H.P.; Zude, M. Sensing of tomato plant response to hypoxia in the root environment. Sci. Hortic. 2009, 122, 17–25. [Google Scholar] [CrossRef]
- Or, D.; Smets, B.F.; Wraith, J.M.; Dechesne, A.; Friedman, S.P. Physical constraints affecting bacterial habitats and activity in unsaturated porous media-a review. Adv. Water Resour. 2007, 30, 1505–1527. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, H.; Zou, H.; Sun, H.; Wang, H.; Wang, C.; Li, H. Changes in respiration rate of red loam soil under aerated irrigation and its relationship with soil water oxygen. J. Trop. Crops 2022, 43, 110–118. (In Chinese) [Google Scholar]
- Pendergast, L.; Bhattarai, S.P.; Midmore, D.J. Benefits of oxygation of subsurface drip-irrigation water for cotton in a Vertosol. Crop Pasture Sci. 2014, 64, 1171–1181. [Google Scholar] [CrossRef]
- Rao, X. Effect of Oxygen Increase on Soil Fertility and Cotton Growth in Xinjiang Drip Irrigated Cotton Field. Ph.D. Thesis, Xinjiang Agric. Univ., Urumqi, China, 2017. (In Chinese). [Google Scholar]
- Bhattarai, S.P.; Balsys, R.J.; Wassink, D.; Midmore, D.J.; Torabi, M. The total air budget in oxygenated water flowing in a drip tape irrigation pipe. Int. J. Multiph. Flow 2013, 52, 121–130. [Google Scholar] [CrossRef]
- Dhungel, J.; Bhattarai, S.P.; Midmore, D.J. Aerated water irrigation (oxygation) benefits to pineapple yield, water use efficiency and crop health. Adv. Hortic. Sci. 2012, 26, 3–16. [Google Scholar]
- Pietikäinen, J.; Pettersson, M.; Bääth, E. Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiol. Ecology. 2005, 52, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Li, H.; Wang, C.; Wang, H.; Sun, H. Design of underground fixed infiltration system. Agric. Mech. Res. 2020, 42, 130–134. [Google Scholar]
- Du, Y.; Niu, W.; Gu, X.; Zhang, Q.; Cui, B.; Zhao, Y. Crop yield and water use efficiency under aerated irrigation: A meta-analysis. Agric. Water Manag. 2018, 210, 158–164. [Google Scholar] [CrossRef]
- Bhattarai, S.P.; Pendergast, L.; Midmore, D.J. Root aeration improves yield and water use efficiency of tomato in heavy clay and saline soils. Sci. Hortic. 2006, 108, 278–288. [Google Scholar] [CrossRef]
- Chen, H.; Hou, H.; Wang, X.; Zhu, Y.; Qaisar, S.; Wang, Y.; Cai, H. The effects of aeration and irrigation regimes on soil CO2 and N2O emissions in a greenhouse tomato production system. J. Integr. Agric. 2018, 17, 449–460. [Google Scholar] [CrossRef]
- Yu, Z. Study on the Influence of Water, Fertilizer and Gas Coupling on the Growth of Corn. Ph.D. Thesis, Heilongjiang Bayi Agric. Univ., Daqing, China, 2020. (In Chinese). [Google Scholar]
- Bhattarai, S.P.; Midmore, D.J.; Su, N. Sustainable irrigation to balance supply of soil water, oxygen, nutrients and agrochemicals. Sustain. Agric. Rev. 2010, 5, 253–286. [Google Scholar]
- Zhu, Y.; Cai, H.; Song, L.; Chen, H. Oxygation improving soil aeration around tomato root zone in greenhouse. Trans. Chin. Soc. Agric. Eng. 2017, 21, 163–172. (In Chinese) [Google Scholar]
- Li, Y.; Niu, W.; Wang, J.; Liu, L.; Zhang, M.; Xu, J. Effects of artificial soil aeration volume and frequency on soil enzyme activity and microbial abundance when cultivating greenhouse tomato. Soil Sci. Soc. Am. J. 2016, 80, 1208–1221. [Google Scholar] [CrossRef]
- Ben-Noah, I.; Friedman, S.P. Aeration of clayey soils by injecting air through subsurface drippers: Lysimetric and field experiments. Agric. Water Manag. 2016, 176, 222–233. [Google Scholar]
- Liu, X.; Liu, Z.; Lei, H.; Zang, M.; Liu, H.; Yang, H.; Li, D. Comparison of growth and yield of spring wheat with different oxygenated irrigation methods. J. Irrig. Drain. Mach. Eng. 2017, 35, 813–819. [Google Scholar]
- Chen, H.; Hou, H.J.; Hu, H.W.; Shang, Z.H.; Zhu, Y.; Cai, H.J.; Qaisar, S. Aeration of different irrigation levels affects net global warming potential and carbon footprint for greenhouse tomato systems. Sci. Hortic. 2018, 242, 10–19. [Google Scholar] [CrossRef]
- Chen, H.; Hou, H.J.; Cai, H.; Zhu, Y. Characterization of soil N2O emissions from aerated irrigated greenhouse tomato plots. J. Agric. Eng. 2016, 32, 111–117. (In Chinese) [Google Scholar]
- Li, Y.; Niu, W.; Xu, J.; Wang, J.; Zhang, M.; Lv, W. Root morphology of greenhouse produced muskmelon under sub-surface drip irrigation with supplemental soil aeration. Sci. Hortic. 2016, 201, 287–294. [Google Scholar] [CrossRef]
- Gaertig, T.; Schack-Kirchner, H.; Hildebrand, E.E.; Wilpert, K. The impact of soil aeration on oak decline in southwestern Germany. For. Ecol. Manag. 2002, 159, 15–25. [Google Scholar] [CrossRef]
- Watson, G.W.; Kelsey, P. The impact of soil compaction on soil aeration and fine root density of Quercus palustris. Urban For. Urban Green. 2006, 4, 69–74. [Google Scholar] [CrossRef]
- Zang, M. Research on Soil-Crop Response Mechanism under Water-Fertilizer-Gas Coupled Drip Irrigation. Ph.D. Thesis, North China Univ. Water Conserv. Hydropower, Zhengzhou, China, 2020. (In Chinese). [Google Scholar]
- Buchmann, N. Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biol. Biochem. 2000, 32, 1625–1635. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Z.; Wan, S. Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Glob. Change Biol. 2009, 15, 184–195. [Google Scholar] [CrossRef]
- Chen, W.; Jia, X.; Zha, T.; Wu, B.; Zhang, Y.; Li, C.; Chen, G. Soil respiration in a mixed urban forest in China in relation to soil temperature and water content. Eur. J. Soil Biol. 2013, 54, 63–68. [Google Scholar] [CrossRef]
- Cui, B.; Niu, W.; Du, Y.; Zhang, Q. Effect of nitrogen application and aerated irrigation on soil environment and yield in the root zone of cucumber. Water-Sav. Irrig. Univ. 2020, 4, 27–32. (In Chinese) [Google Scholar]
- Muñoz-Rojas, M.; Lewandrowski, W.; Erickson, T.E.; Dixon, K.W.; Merritt, D.J. Soil respiration dynamics in fire affected semi-arid ecosystems: Effects of vegetation type and environmental factors. Sci. Total Environ. 2016, 572, 1385–1394. [Google Scholar] [CrossRef]
- Zhang, C. Diurnal Dynamic Characteristics and Driving Factors of Soil Respiration in a Typical Steppe of Inner Mongolia. Ph.D. Thesis, Inner Mongolia Univ., Hohhot, China, 2021. (In Chinese). [Google Scholar]
- Bhattarai, S.P.; Huber, S.; Midmore, D.J. Aerated subsurface irrigation water gives growth and yield benefits to zucchini, vegetable soybean and cotton in heavy clay soils. Ann. Appl. Biol. 2004, 144, 285–298. [Google Scholar] [CrossRef]
- Hou, H.; Chen, H.; Cai, H. CO2 and N2O emissions from Lou soils of greenhouse tomato fields under aerated irrigation. Atmos. Environ. 2016, 132, 69–76. [Google Scholar] [CrossRef]
- Bhattarai, S.P.; Su, N.; Midmore, D.J. Oxygation unlocks yield potentials of crops in oxygen-limited soil environments. Adv. Agron. 2005, 88, 313–377. [Google Scholar]
- Weltecke, K.; Gaertig, T. Influence of soil aeration on rooting and growth of the Beuys-trees in Kassel, Germany. Urban For. Urban Green. 2012, 11, 329–338. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, C.; Li, J.; Liu, S.; Wang, H. Optimal design of oxygenated irrigation system. Agric. Mech. Res. 2019, 41, 106–110. [Google Scholar]
- Wolf, B. The Fertile Triangle: The Interrelationship of Air, Water, and Nutrients in Maximizing Soil Productivity; CRC Press: New York, NY, USA, 1999. [Google Scholar]
- Li, W.; Wang, J.; Zhang, X.; Shi, S.; Cao, W. Effect of degradation and rebuilding of artificial grasslands on soil respiration and carbon and nitrogen pools on an alpine meadow of the Qinghai-Tibetan Plateau. Ecol. Eng. 2018, 111, 134–142. [Google Scholar]
- Liu, Y.; Han, S.; Zhou, Y.; Li, X. Soil and root respiration under llevated CO2 concentrations during seedling growth of pinus sylvestris var.sylvestriformis. Pedosphere 2007, 17, 660–665. [Google Scholar] [CrossRef]
- Arredondo, T.; Delgado-Balbuena, J.; Huber-Sannwald, E.; García-Moya, E.; Loescher, H.W.; Aguirre-Gutiérrez, C.; Rodriguez-Robles, U. Does precipitation affects soil respiration of tropical semiarid grasslands with different plant cover types. Agric. Ecosyst. Environ. 2018, 251, 218–225. [Google Scholar] [CrossRef]
- Hursh, A.; Ballantyne, A.; Cooper, L.; Maneta, M.; Kimball, J.; Watts, J. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale. Glob. Change Biol. 2017, 23, 2090–2103. [Google Scholar] [CrossRef]
- Gunina, A.; Ogneva, O.; Chen, C.; Esfandbod, M.; Rezaei Rashti, M.; Kuzyakov, Y. Changed by fire: Linking C and energy fluxes by microbial decomposition of soil organic matter after frequent forest burning events. EGU Gen. Assem. 2019, 21, 122–126. [Google Scholar]
- Hou, M.M.; Chen, J.N.; Ling, Z.Y.; Wang, J.W.; Li, J.T.; Hong, J.L.; Lv, W.W.; Jin, Q.; Zhong, F.L. Coupling effect and mechanism of drip irrigation and microbial organic fertilizer on facility soil respiration. J. Agric. Eng. 2019, 35, 104–112. [Google Scholar]
- Wang, W.; Guo, J.X. The contribution of root respiration to soil CO2 efflux in Puccinellia tenuiflora dominated community in a semi-arid meadow steppe. Chin. Sci. Bull. 2006, 516, 697–703. [Google Scholar] [CrossRef]
- Han, G.; Zhou, G.; Xu, Z.; Yang, Y.; Liu, J.; Shi, K. Biotic and abiotic factors controlling the spatial and temporal variation of soil respiration in an agricultural ecosystem. Soil Biol. Biochem. 2007, 39, 418–425. [Google Scholar] [CrossRef]
- Xiao, H.; Li, Z.; Chang, X.; Huang, B.; Niu, X. The mineralization and sequestration of organic carbon in relation to agricultural soil erosion. Geoderma 2018, 329, 73–81. [Google Scholar] [CrossRef]
Soil Depth/(cm) | Soil Bulk Density/ (g·cm−3) | The Organic Matter/ (g·kg−1) | N/(mg·kg−1) | P/(mg·kg−1) | K/(mg·kg−1) |
---|---|---|---|---|---|
0–20 | 1.58 | 20.17 | 90.29 | 38.51 | 87.98 |
20–40 | 1.61 | 17.16 | 76.12 | 29.66 | 70.17 |
40–60 | 1.63 | 15.65 | 65.15 | 33.85 | 76.38 |
60–80 | 1.70 | 12.78 | 62.12 | 31.66 | 68.98 |
80–100 | 1.73 | 10.42 | 60.09 | 27.78 | 71.97 |
Technical Parameter | Unit | Test Range | Precision | Resolution |
---|---|---|---|---|
Water content | % | 0–100% | ≤3% | 0.1% |
pH | - | 0–14 | ±0.5 | 0.1 |
Indicators/ Year | Rs/μmol m−2·s−1 | Ts/°C | Ws/% | ||||
---|---|---|---|---|---|---|---|
AI | CK | AI | CK | AI | CK | ||
Spring/ Summer 2020 | Maximum | 6.12 | 5.28 | 32.0 | 31.4 | 55.1 | 58.6 |
Minimum | 1.59 | 1.57 | 23.0 | 22.2 | 15.3 | 14.6 | |
Mean | 3.07 ± 1.28 | 2.62 ± 1.03 | 28.11 ± 3.44 | 27.66 ± 3.22 | 28.41 ± 10.95 | 30.47 ± 11.14 | |
Fall/ Winter 2020 | Maximum | 5.3 | 4.12 | 31.9 | 31.0 | 54.1 | 56.0 |
Minimum | 1.54 | 1.54 | 26.2 | 25.8 | 14.0 | 16.0 | |
Mean | 2.89 ± 1.05 | 2.48 ± 0.74 | 28.83 ± 1.42 | 28.50 ± 1.28 | 24.32 ± 8.80 | 27.14 ± 9.93 | |
Spring/ Summer 2021 | Maximum | 5.12 | 5.12 | 31.5 | 31.8 | 45.7 | 48.7 |
Minimum | 1.5 | 1.35 | 22.7 | 22.3 | 16.0 | 16.0 | |
Mean | 3.10 ± 1.02 | 2.63 ± 1.34 | 27.81 ± 2.46 | 27.64 ± 2.63 | 25.16 ± 6.59 | 26.50 ± 7.73 | |
Fall/ Winter 2021 | Maximum | 5.1 | 4.21 | 30.6 | 30.6 | 58.7 | 59.4 |
Minimum | 1.58 | 1.54 | 20.6 | 19.6 | 15.6 | 16.4 | |
Mean | 2.55 ± 0.85 | 2.21 ± 0.66 | 27.38 ± 3.16 | 27.14 ± 3.23 | 30.82 ± 8.63 | 32.62 ± 9.82 | |
Indicators/ Year | Os/% | Bs/109·g−1 | Rb/g | ||||
AI | CK | AI | CK | AI | CK | ||
Spring/ Summer 2020 | Maximum | 16.6 | 16.4 | 6.0 | 4.5 | 36.85 | 30.59 |
Minimum | 10.8 | 10.0 | 1.0 | 0.5 | 0.00 | 0.00 | |
Mean | 14.43 ± 1.33 | 12.01 ± 1.24 | 3.80 ± 1.52 | 2.61 ± 1.44 | 17.87 ± 15.28 | 15.34 ± 13.42 | |
Fall/Winter 2020 | Maximum | 18.2 | 15.6 | 6.0 | 5.0 | 36.80 | 31.20 |
Minimum | 11.0 | 10.4 | 1.5 | 0.5 | 0.00 | 0.00 | |
Mean | 14.67 ± 1.56 | 11.72 ± 1.12 | 3.99 ± 1.31 | 2.89 ± 1.08 | 20.17 ± 15.01 | 17.54 ± 13.16 | |
Spring/Summer 2021 | Maximum | 17.5 | 15.4 | 5.5 | 5.0 | 37.32 | 33.40 |
Minimum | 11.0 | 10.5 | 1.0 | 0.5 | 0.00 | 0.00 | |
Mean | 14.88 ± 1.58 | 12.51 ± 1.26 | 4.08 ± 1.35 | 3.02 ± 1.22 | 17.71 ± 15.28 | 15.03 ± 13.38 | |
Fall/Winter 2021 | Maximum | 17.2 | 16.4 | 6.5 | 4.5 | 36.45 | 31.41 |
Minimum | 11.0 | 9.5 | 1.0 | 0.5 | 0.00 | 0.00 | |
Mean | 14.52 ± 1.49 | 12.14 ± 1.49 | 4.06 ± 1.53 | 2.83 ± 1.06 | 18.53 ± 15.35 | 15.56 ± 13.35 |
Year | Plant Height/cm | Stem Thickness/mm | Leaf Area/cm2 | ||||
---|---|---|---|---|---|---|---|
AI | CK | AI | CK | AI | CK | ||
Spring/ Summer 2020 | Maximum | 231 | 221 | 34.9 | 30.1 | 4910.71 | 4521.63 |
Minimum | 182 | 191 | 28.9 | 26.5 | 4491.02 | 4012.31 | |
Mean | 216.43 ± 18.72 | 201.43 ± 11.10 | 31.01 ± 2.10 | 28.37 ± 1.56 | 4778.65 ± 166.13 | 4300.55 ± 209.36 | |
Difference analysis | No | * | ** | ||||
Fall/ Winter 2020 | Maximum | 236 | 248 | 32.1 | 30.5 | 4967.23 | 4411.21 |
Minimum | 198 | 184 | 28.7 | 21.9 | 4413.62 | 3987.45 | |
Mean | 218.33 ± 15.04 | 220 ± 21.00 | 30.32 ± 1.19 | 27.17 ± 2.96 | 4656.65 ± 212.51 | 4208.43 ± 157.80 | |
Difference analysis | No | * | ** | ||||
Spring/ Summer 2020 | Maximum | 250 | 232 | 32.4 | 31 | 4975.06 | 4413.68 |
Minimum | 182 | 188 | 27.8 | 22.6 | 4432.56 | 3874.25 | |
Mean | 219.33 ± 25.30 | 212.67 ± 14.28 | 29.97 ± 1.79 | 27.13 ± 3.08 | 4807.84 ± 191.83 | 4173.38 ± 177.20 | |
Difference analysis | No | No | ** | ||||
Fall/ Winter 2020 | Maximum | 243 | 245 | 31.5 | 28.5 | 4971.23 | 4521.09 |
Minimum | 200 | 186 | 28.2 | 23.3 | 4219.64 | 4025.33 | |
Mean | 221.17 ± 15.22 | 212 ± 21.82 | 29.58 ± 1.24 | 25.27 ± 2.18 | 4600.92 ± 271.35 | 4233.65 ± 1989.93 | |
Difference analysis | No | ** | * |
Year | Maize Yield (kg/ha) | Weight Per Fruit(g) | |||
---|---|---|---|---|---|
AI | CK | AI | CK | ||
Spring/ Summer 2020 | Maximum | 22,400 | 21,450 | 300.5 | 312.5 |
Minimum | 20,654 | 17,750 | 292.6 | 294.6 | |
Mean | 21,359.67 ± 919.85 | 19,933.33 ± 1938.00 | 297.77 ± 4.48 | 302.4 ± 9.17 | |
Difference analysis | * | * | |||
Fall/ Winter 2020 | Maximum | 24,069 | 22,300 | 324.9 | 324.5 |
Minimum | 18,090 | 15,600 | 298.2 | 300.1 | |
Mean | 21,391 ± 3037.80 | 19,366.67 ± 3426.85 | 312.6 ± 13.47 | 308.27 ± 14.06 | |
Difference analysis | ** | No | |||
Spring/ Summer 2021 | Maximum | 29,202 | 24,600 | 300.5 | 312.5 |
Minimum | 21,111 | 18,500 | 292.6 | 294.6 | |
Mean | 25,604.33 ± 4119.19 | 21,246.67 ± 3094.92 | 297.77 ± 4.48 | 302.4 ± 9.17 | |
Difference analysis | * | No | |||
Fall/ Winter 2021 | Maximum | 23,069 | 21,200 | 324.9 | 324.5 |
Minimum | 19,014 | 17,230 | 298.2 | 300.1 | |
Mean | 21,057.67 ± 2027.69 | 18,663.33 ± 2203.01 | 312.6 ± 13.47 | 308.27 ± 14.06 | |
Difference analysis | ** | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Wang, C.; Zou, H.; Wang, H.; Li, H.; Sun, H.; Yu, D. The Effects of Aerated Irrigation on Soil Respiration and the Yield of the Maize Root Zone. Sustainability 2022, 14, 4378. https://doi.org/10.3390/su14084378
Yu Z, Wang C, Zou H, Wang H, Li H, Sun H, Yu D. The Effects of Aerated Irrigation on Soil Respiration and the Yield of the Maize Root Zone. Sustainability. 2022; 14(8):4378. https://doi.org/10.3390/su14084378
Chicago/Turabian StyleYu, Zhenzhen, Chun Wang, Huafen Zou, Hongxuan Wang, Hailiang Li, Haitian Sun, and Deshui Yu. 2022. "The Effects of Aerated Irrigation on Soil Respiration and the Yield of the Maize Root Zone" Sustainability 14, no. 8: 4378. https://doi.org/10.3390/su14084378
APA StyleYu, Z., Wang, C., Zou, H., Wang, H., Li, H., Sun, H., & Yu, D. (2022). The Effects of Aerated Irrigation on Soil Respiration and the Yield of the Maize Root Zone. Sustainability, 14(8), 4378. https://doi.org/10.3390/su14084378