Cloud Cover Forecast Based on Correlation Analysis on Satellite Images for Short-Term Photovoltaic Power Forecasting
Abstract
:1. Introduction
1.1. Motivation and Aims
1.2. Literature Survey
1.3. Contributions and Organization of the Paper
- Correlation analysis between satellite images with respect to time and space.
- Extraction of the cloud value of the target area in the correlation-based satellite image.
- Presentation of methodology for data performance comparison.
2. Characteristics of Dataset
2.1. Meteorological Data
2.2. Satellite Image
2.3. Photovoltaic Data
3. Methodology
3.1. Image Processing
3.2. Correlation Analysis
3.3. Prediction Process
3.4. Forecasting Model with ANN
4. Simulation Result
4.1. Performance Evaluation Metric and Equipment
4.2. Simulation Results
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IRENA. Renewable Capacity Statistics 2021; International Renewable Energy Agency (IRENA): Abu Dhabi, Saudi Arabia, 2021. [Google Scholar]
- Čonka, Z.; Kolcun, M.; Morva, G. Impact of Renewable Energy Sources on Power System Stability. Power Electr. Eng. 2014, 32, 25–28. [Google Scholar] [CrossRef] [Green Version]
- IEA. System Integration of Renewables; IEA: Brussels, Belgium, 2018. [Google Scholar]
- Wang, Y.; Wang, J.; Zhao, G.; Dong, Y. Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: A case study of China. Energy Policy 2012, 48, 284–294. [Google Scholar] [CrossRef]
- Ahmad, T.; Zhang, H.; Yan, B. A review on renewable energy and electricity requirement forecasting models for smart grid and buildings. Sustain. Cities Soc. 2020, 5, 102052. [Google Scholar] [CrossRef]
- Wang, H.; Lei, Z.; Zhang, X.; Zhou, B.; Peng, J. A review of deep learning for renewable energy forecasting. Energy Convers. Manag. 2019, 198, 111799. [Google Scholar] [CrossRef]
- Yona, A.; Senjyu, T.; Saber, A.Y.; Funabashi, T.; Sekine, H.; Kim, C.-H. Application of neural network to 24-hour-ahead generating power forecasting for PV system. In Proceedings of the IEEE Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 20–24 July 2008; pp. 1–6. [Google Scholar]
- Capizzi, G.; Napoli, C.; Bonanno, F. Innovative Second-Generation Wavelets Construction with Recurrent Neural Networks for Solar Radiation Forecasting. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 1805–1815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, S.; Weng, W.; Chen, J.; Liu, W.; Yu, G.; Cao, J. Forecast of solar irradiance using chaos optimization neural networks. In Proceedings of the Asia-Pacific Power and Energy Engineering Conference, Wuhan, China, 27–31 March 2009; pp. 1–4. [Google Scholar]
- Dumitru, C.-D.; Gligor, A.; Enachescu, C. Solar Photovoltaic Energy Production Forecast Using Neural Networks. Procedia Technol. 2016, 22, 808–815. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Hu, L.; Zhen, Z.; Wang, F.; Qiu, G.; Li, Y.; Yao, L.; Shafie-Khah, M.; Catalao, J.P.S.P.S. Frequency-Domain Decomposition and Deep Learning Based Solar PV Power Ultra-Short-Term Forecasting Model. IEEE Trans. Ind. Appl. 2021, 57, 3282–3295. [Google Scholar] [CrossRef]
- Shi, J.; Lee, W.J.; Liu, Y.; Yang, Y.; Wang, P. Forecasting power output of photovoltaic systems based on weather classification and support vector machines. In Proceedings of the 2011 IEEE Industry Applications Society Annual Meeting, Orlando, FL, USA, 9–13 October 2011; pp. 1–6. [Google Scholar]
- Cortes, C.; Vapnik, V. Support vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Drucker, H.; Burges, C.J.C.; Kaufman, L.; SMola, A.; Vapnik, V. Support vector regression machines. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 1997; Volume 9, 155p. [Google Scholar]
- Deng, N.Y.; Tian, Y.J. New Data Mining Method-Support Vector Machine; Science Press: Beijing, China, 2004; p. 75. [Google Scholar]
- Lahouar, A.; Mejri, A.; Slama, J.B.H. Importance based selection method for day-ahead photovoltaic power forecast using random forests. In Proceedings of the International Conference on Green Energy Conversion Systems (GECS), Hammamet, Tunisia, 23–25 March 2017; pp. 1–7. [Google Scholar]
- Huang, C.J.; Kuo, P.H. Multiple-Input Deep Convolutional Neural Network Model for Short-Term Photovoltaic Power Forecasting. IEEE Access 2019, 7, 74822–74834. [Google Scholar] [CrossRef]
- Yang, H.-T.; Huang, C.-M.; Huang, Y.-C.; Pai, Y.-S. A Weather-Based Hybrid Method for 1-Day Ahead Hourly Forecasting of PV Power Output. IEEE Trans. Sustain. Energy 2014, 5, 917–926. [Google Scholar] [CrossRef]
- Hossain, M.S.; Mahmood, H. Short-Term Photovoltaic Power Forecasting Using an LSTM Neural Network and Synthetic Weather Forecast. IEEE Access 2020, 8, 172524–172533. [Google Scholar] [CrossRef]
- Sangrody, H.; Zhou, N.; Zhang, Z. Similarity-Based Models for Day-Ahead Solar PV Generation Forecasting. IEEE Access 2020, 8, 104469–104478. [Google Scholar] [CrossRef]
- Yu, Y.; Cao, J.; Zhu, J. An LSTM Short-Term Solar Irradiance Forecasting Under Complicated Weather Conditions. IEEE Access 2019, 7, 145651–1456669. [Google Scholar] [CrossRef]
- Rajagukguk, R.A.; Ramadhan, R.A.; Lee, H.-J. A Review on Deep Learning Models for Forecasting Time Series Data of Solar Irradiance and Photovoltaic Power. Energies 2020, 13, 6623. [Google Scholar] [CrossRef]
- Ahmed, R.; Sreeram, V.; Mishra, Y.; Arif, M. A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization. Renew. Sustain. Energy Rev. 2020, 124, 109792. [Google Scholar] [CrossRef]
- Escrig, H.; Batlles, F.; Alonso, J.; Baena, F.; Bosch, J.; Salbidegoitia, I.; Burgaleta, J. Cloud detection, classification and motion estimation using geostationary satellite imagery for cloud cover forecast. Energy 2013, 55, 853–859. [Google Scholar] [CrossRef]
- Yang, D.; Jirutitijaroen, P.; Walsh, W.M. Hourly solar irradiance time series forecasting using cloud cover index. Sol. Energy 2012, 86, 3531–3543. [Google Scholar] [CrossRef]
Date | Time | Solar Irradiance (Mokpo) | Cloud Cover (Mokpo) | Visible Image | Infrared Image |
---|---|---|---|---|---|
1 January 2017 | 7 AM | 0.00 | 10 | - | 111 |
8 AM | 0.00 | 8 | - | 119 | |
9 AM | 0.11 | 7 | 123 | 119 | |
10 AM | 0.47 | 6 | 165 | 123 | |
11 AM | 0.78 | 6 | 114 | 108 | |
12 PM | 1.34 | 2 | 103 | 106 | |
1 PM | 1.53 | 0 | 84 | 104 | |
2 PM | 1.46 | 0 | 94 | 104 | |
3 PM | 1.23 | 0 | 88 | 105 | |
4 PM | 0.82 | 0 | 83 | 109 | |
5 PM | 0.38 | 0 | 17 | 111 | |
6 PM | 0.00 | 0 | - | 111 | |
1 April 2017 | 7 AM | 0.01 | 9 | 130 | 171 |
8 AM | 0.07 | 8 | 192 | 128 | |
9 AM | 0.28 | 7 | 184 | 121 | |
10 AM | 0.66 | 6 | 182 | 119 | |
11 AM | 1.34 | 6 | 144 | 101 | |
12 PM | 2.05 | 5 | 113 | 114 | |
1 PM | 2.55 | 4 | 93 | 161 | |
2 PM | 1.67 | 5 | 83 | 132 | |
3 PM | 2.15 | 3 | 77 | 229 | |
4 PM | 1.87 | 0 | 82 | 246 | |
5 PM | 1.28 | 0 | 82 | 238 | |
6 PM | 0.64 | 0 | 51 | 190 | |
1 July 2017 | 7 AM | 0.09 | 10 | 191 | 195 |
8 AM | 0.33 | 10 | 220 | 180 | |
9 AM | 0.46 | 10 | 230 | 195 | |
10 AM | 0.57 | 10 | 235 | 196 | |
11 AM | 0.82 | 10 | 226 | 201 | |
12 PM | 1.05 | 10 | 241 | 129 | |
1 PM | 1.29 | 10 | 207 | 166 | |
2 PM | 0.93 | 10 | 191 | 207 | |
3 PM | 1.22 | 10 | 205 | 169 | |
4 PM | 0.90 | 10 | 193 | 176 | |
5 PM | 0.68 | 10 | 173 | 150 | |
6 PM | 0.49 | 10 | 137 | 98 | |
1 October 2017 | 7 AM | 0.00 | 10 | 186 | 226 |
8 AM | 0.04 | 10 | 227 | 251 | |
9 AM | 0.07 | 10 | 241 | 250 | |
10 AM | 0.14 | 10 | 241 | 235 | |
11 AM | 0.21 | 10 | 247 | 245 | |
12 PM | 0.25 | 10 | 243 | 225 | |
1 PM | 0.52 | 10 | 242 | 171 | |
2 PM | 0.53 | 10 | 239 | 205 | |
3 PM | 0.34 | 10 | 244 | 162 | |
4 PM | 0.23 | 10 | 208 | 183 | |
5 PM | 0.11 | 10 | 153 | 140 | |
6 PM | 0.02 | 10 | 41 | 224 |
15 min | 1 h | 2 h | 6 h | |
---|---|---|---|---|
Average Change | 5.65 | 9.22 | 12.23 | 19.04 |
Average Rate of Change | 2.2% | 3.6% | 4.8% | 7.5% |
15 min | 1 h | 2 h | 6 h | |
---|---|---|---|---|
Average Change | 2.86 | 14.34 | 21.59 | 38.08 |
Average Rate of Change | 1.1% | 5.6% | 8.5% | 14.9% |
Time | Infrared Image Max Correlation | Visible Image Max Correlation |
---|---|---|
8 AM | 0.9297 | 0.7609 |
9 AM | 0.8674 | 0.4473 |
10 AM | 0.7999 | 0.3809 |
11 AM | 0.7223 | 0.3673 |
12 PM | 0.6892 | 0.3793 |
1 PM | 0.6514 | 0.3785 |
2 PM | 0.6295 | 0.3602 |
3 PM | 0.6025 | 0.3520 |
4 PM | 0.5579 | 0.4192 |
5 PM | 0.5284 | 0.7097 |
Time | Forecast Accuracy Using Cloud Cover | Forecast Accuracy Using Visible Image | Forecast Accuracy Using Infrared Image | Forecast Accuracy Using Multivariable |
---|---|---|---|---|
8 AM | 41.916 | 19.836 | 38.649 | 16.350 |
9 AM | 69.344 | 53.646 | 70.176 | 38.340 |
10 AM | 69.288 | 82.349 | 92.286 | 54.447 |
11 AM | 71.993 | 94.801 | 101.22 | 64.013 |
12 PM | 69.872 | 106.72 | 110.46 | 66.215 |
1 PM | 78.210 | 108.72 | 110.55 | 68.881 |
Average RMSE | 66.771 | 77.679 | 87.224 | 51.374 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, Y.; Yoon, Y.; Cho, J.; Choi, S. Cloud Cover Forecast Based on Correlation Analysis on Satellite Images for Short-Term Photovoltaic Power Forecasting. Sustainability 2022, 14, 4427. https://doi.org/10.3390/su14084427
Son Y, Yoon Y, Cho J, Choi S. Cloud Cover Forecast Based on Correlation Analysis on Satellite Images for Short-Term Photovoltaic Power Forecasting. Sustainability. 2022; 14(8):4427. https://doi.org/10.3390/su14084427
Chicago/Turabian StyleSon, Yongju, Yeunggurl Yoon, Jintae Cho, and Sungyun Choi. 2022. "Cloud Cover Forecast Based on Correlation Analysis on Satellite Images for Short-Term Photovoltaic Power Forecasting" Sustainability 14, no. 8: 4427. https://doi.org/10.3390/su14084427
APA StyleSon, Y., Yoon, Y., Cho, J., & Choi, S. (2022). Cloud Cover Forecast Based on Correlation Analysis on Satellite Images for Short-Term Photovoltaic Power Forecasting. Sustainability, 14(8), 4427. https://doi.org/10.3390/su14084427