Fluorine-18 Fluorodeoxyglucose Isolation Using Graphene Oxide for Alternative Radiopharmaceutical Spillage Decontamination in PET Scan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Graphene Oxide
2.2. Isolation of 18F-FDG
3. Results and Discussions
3.1. Characterisation of GO Nanolayers
3.2. Kinetic Study
3.3. UV–Vis Spectrometry and Chemical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Payolla, B.; Massabni, A.F.; Orvig, C. Radiopharmaceuticals for Diagnosis in Nuclear Medicine: A short review. Eclet. Quim. 2019, 44, 11–19. [Google Scholar] [CrossRef]
- Jacobson, O.; Kiesewetter, D.; Chen, X. Fluorine-18 Radiochemistry, Labeling Strategies and Synthetic Routes. Bioconjugate Chem. 2014, 26, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Park, B.; Kitteringham, N. Effects of Fluorine Substitution on Drug Metabolism: Pharmacological and Toxicological Implications. Drug Metab. Rev. 1994, 26, 605–643. [Google Scholar] [CrossRef] [PubMed]
- Nawi, N.M.; Ahmad, N.S.; Abdullah, R.; Zainon, W.M.N.W.; Razab, M.K.A.A. Correlation of external dose rate with whole body clearance estimation in radioiodine therapy for rhTSH and THW patients. J. Radiat. Res. Appl. Sci. 2020, 13, 240–245. [Google Scholar] [CrossRef] [Green Version]
- Ramesha, G.; Vijaya Kumara, A.; Muralidhara, H.; Sampath, S. Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J. Colloid Interface Sci. 2011, 361, 270–277. [Google Scholar] [CrossRef]
- Jiang, W.; Chalich, Y.; Deen, M.J. Sensors for Positron Emission Tomography Applications. Sensors 2019, 19, 5019. [Google Scholar] [CrossRef] [Green Version]
- Shivanand, B.; Akchata, S.; Lavanya, K. Influence of decontaminating agents and swipe materials on laboratory simulated working surfaces wet spilled with sodium pertechnetate. Indian J. Nucl. Med. 2017, 32, 173–176. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.; Ojovan, M.; Jantzen, C. Radioactive Waste Management and Contaminated Site Clean-Up; Woodhead Publishing: Cambridge, UK, 2013; pp. 301–326. [Google Scholar]
- Fu, S.; Sun, Z.; Huang, P.; Li, Y.; Hu, N. Some Basic Aspects of Polymer Nanocomposites: A critical review. Nano Mater. Sci. 2019, 1, 2–30. [Google Scholar] [CrossRef]
- Smith, A.; LaChance, A.; Zeng, S.; Liu, B.; Sun, L. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater. Sci. 2019, 1, 31–47. [Google Scholar] [CrossRef]
- Sajjad, S.; Leghari, S.A.K.; Iqbal, A. Study of Graphene Oxide Structural Features for Catalytic, Antibacterial, Gas Sensing and Metals Decontamination Environmental Applications. ACS Appl. Mater. Interfaces 2017, 9, 43393–43414. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Z.; Pan, Z.; Liu, Y. Advanced Bioactive Nanomaterials for Biomedical Applications. Exploration 2021, 1, 20210089. [Google Scholar] [CrossRef]
- Novacek, M.; Jankovsky, O.; Luxa, J.; Sedmidubsky, D.; Pumera, M.; Fila, V.; Lhotka, M.; Klimova, K.; Matejkova, S.; Sofer, Z. Tuning of Graphene Oxide Composition by Multiple Oxidations for Carbon Dioxide Storage and Capture of Toxic Metals. J. Mater. Chem. A 2017, 5, 2739–2748. [Google Scholar] [CrossRef] [Green Version]
- Prasadh, S.; Suresh, S.; Wong, R. Osteogenic Potential of Graphene in Bone Tissue Engineering Scaffolds. Materials 2018, 11, 1430. [Google Scholar] [CrossRef] [Green Version]
- Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The Role of Graphene for Electrochemical Energy Storage. Nat. Mater. 2015, 14, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Ng, Y.H.; Ikeda, S.; Matsumura, M.; Amal, R. A Perspective on Fabricating Carbon-based Nanomaterials by Photocatalysis and their Applications. Energy Environ. Sci. 2012, 5, 9307–9318. [Google Scholar] [CrossRef]
- Wen, J.; Xu, Y.; Li, H.; Lu, A.; Sun, S. Recent Applications of Carbon Nanomaterials in Fluorescence Biosensing and Bioimaging. Chem. Commun. 2015, 51, 11346–11358. [Google Scholar] [CrossRef]
- Shtein, M.; Nadiv, R.; Buzaglo, M.; Kahil, K.; Regev, O. Thermally Conductive Graphene Polymer Composites: Size, Percolation and Synergy Effects. Chem. Mater. 2015, 27, 2100–2106. [Google Scholar] [CrossRef]
- Zunita, M.; Irawanti, R.; Koesmawati, T.A.; Lugitoa, G.; Wenten, I.G. Graphene Oxide (GO) Membrane in Removing Heavy Metals from Wastewater: A Review. Chem. Eng. Trans. 2020, 82, 415–420. [Google Scholar]
- Ng, L.Y.; Chua, H.Y.; Ng, C.Y. Incorporation of Graphene Oxide-based Nanocomposite in the Polymeric Membrane for Water and Wastewater Treatment: A review on Recent Development. J. Environ. Chem. Eng. 2021, 9, 105994. [Google Scholar] [CrossRef]
- Aunkor, M.T.H.; Raihan, T.; Prodhan, S.H.; Metselaar, H.S.C.; Malik, S.U.F.; Azad, A.K. Antibacterial Activity of Graphene Oxide Nanosheet Against Multidrug Resistant Superbugs Isolated from Infected Patients. R. Soc. Open Sci. 2020, 7, 200640. [Google Scholar] [CrossRef]
- Eigler, S.; Hirsch, A. Chemistry with Graphene and Graphene Oxide—Challenges for Synthetic Chemists. Angew. Chem. Int. Ed. 2014, 53, 7720–7738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabzehmeidani, M.M.; Mahnaee, S.; Ghaedi, M.; Heidari, H.; Roy, V.A.L. Carbon Based Materials: A review of Adsorbents for Inorganic and Organic Compounds. Mater. Adv. 2021, 2, 598–627. [Google Scholar] [CrossRef]
- Feltcorn, E. Technology Reference Guide for Radiologically Contaminated Surfaces; U.S. Environmental Protection Agency: Washington, DC, USA, 2006; pp. 11–18.
- Zhao, G.; Wen, T.; Yang, X.; Yang, S.; Liao, L.; Hu, J.; Shao, D.; Wang, X. Preconcentration of U(VI) Ions on Few-layered Graphene Oxide Nanosheets from Aqueous Solutions. Dalton Trans. 2012, 41, 6182–6188. [Google Scholar] [CrossRef]
- Rauwel, P.; Rauwel, E. Towards the Extraction of Radioactive Cesium-137 from Water via Graphene/CNT and Nanostructured Prussian Blue Hybrid Nanocomposites: A Review. Nanomaterials 2019, 9, 682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suksompong, T.; Thongmee, S.; Sudprasert, W. Efficacy of a Graphene Oxide/Chitosan Sponge for Removal of Radioactive Iodine-131 from Aqueous Solutions. Life 2021, 11, 721. [Google Scholar] [CrossRef] [PubMed]
- Romanchuk, A.Y.; Slesarev, A.S.; Kalmykov, S.N.; Kosynkin, D.V.; Tour, T.M. Graphene Oxide for Effective Radionuclide Removal. Phys. Chem. Chem. Phys. 2013, 15, 2321–2327. [Google Scholar] [CrossRef]
- Noor, A.M.; Yusoff, N.F.A.; Huang, N.M.; Kari, Z.A.; Razab, M.K.A.A.; Bakar, M.H.A.; Lee, S.W.; Abdullah, N.H. Facile Preparation of Graphene Oxide Silver Aerogel for Antibacterial. J. Trop. Resour. Sustain. Sci. 2018, 6, 41–44. [Google Scholar]
- Zin FA, M.; Noor, A.M.; Razab, M.K.A.A.; Abdullah, N.H.; Lee, S.W. Synthesis of Silver Graphene Oxide Nanocomposite Reinforced with Kenaf Cellulose Nanofibril Aerogel. AIP Conf. Proc. 2019, 2068, 020045-1–020045-6. [Google Scholar]
- Noor, A.M.; Zin, F.M.; Wei, L.S.; Huang, N.M.; Bakar, M.H.A.; Sajab, M.S.; Razab, M.K.A.A.; Abdullah, N.H.; Kari, Z.A. Laser Scribe Silver-reduced Graphene Oxide as Novel Bactericidal Filter. AIP Conf. Proc. 2019, 2068, 020026-1–020026-6. [Google Scholar]
- Zobir, S.A.M.; Rashid, S.A.; Tan, T. Recent Development on the Synthesis Techniques and Properties of Graphene Derivatives. In Synthesis, Technology and Applications of Carbon Nanomaterials; Rashid, S.A., Othman, R.N.I.R., Hussein, M.Z., Eds.; Matthew Deans: Oxford, UK, 2019; pp. 77–107. [Google Scholar]
- Razab, M.K.A.A.; Mansor, M.S.; Noor, A.M.; Latif, N.F.F.A.; Rozi, S.M.; Jaafar, K.N.; Jamaludin, F. Characterization of GO:I-131 for Radioactive Clinical Waste Water Management in Nuclear Medicine. Mater. Sci. Forum. 2020, 1010, 561–566. [Google Scholar] [CrossRef]
- Razab, M.K.A.A.; Mansor, M.S.; Noor, A.M.; Rozi, S.M.; Latif, N.F.F.A.; Jaafar, K.N.; Jamaludin, F. Preliminary Study of the Potential Graphene Oxide as Radioactive Clinical Wastewater Adsorbability in Nuclear Medicine. IOP Conf. Ser. Earth Environ. Sci. 2020, 96, 012037. [Google Scholar] [CrossRef]
- Díez-Pascual, A.; Sainz-Urruela, C.; Vallés, C.; Vera-López, S.; San Andrés, M. Tailorable Synthesis of Highly Oxidized Graphene Oxides via an Environmentally-Friendly Electrochemical Process. Nanomaterials 2020, 10, 239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, N.; Yang, D.; Zhang, G.; Chen, L.; Liu, D.; Cai, M.; Fan, X. The Effects of Graphene Stacking on the Performance of Methane Sensor: A First-Principles Study on the Adsorption, Band Gap and Doping of Graphene. Sensors 2018, 18, 422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamali, N.; Ghasemi, J.B.; Ziarani, G.M.; Moradian, S.; Badiei, A. Design, Synthesis, and Nanoengineered Modification of Spherical Graphene Surface by LDH for Removal of As(III) from Aqueous Solutions. Chin. J. Chem. Eng. 2022, in press. [CrossRef]
- Aliyev EFiliz, V.; Khan, M.M.; Lee, Y.J.; Abetz, C.; Abetz, V. Structural Characterization of Graphene Oxide: Surface Functional Groups and Fractionated Oxidative Debris. Nanomaterials 2019, 9, 1180. [Google Scholar] [CrossRef] [Green Version]
- Smajlagic, I.; Rowshanpour, R.; Milkin, L.; Dudding, T. Organofluorine Compounds in Fluorine-18 Positron Emission Tomography Imaging. Res. Rev. Health Care Open Acc. J. 2020, 5, 488–491. [Google Scholar]
- Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N.H.; Bose, S.; Lee, J.H. Recent Advances in Graphene Based Polymer Composites. Prog. Polym. Sci. 2010, 35, 1350–1375. [Google Scholar] [CrossRef]
- Jenkins, D. Nuclear Structure and Radioactive Decay. In Radiation Detection for Nuclear Physics; IOP Publishing: Bristol, UK, 2020; pp. 1–32. [Google Scholar]
- Alauddin, M.M. Positron Emission Tomography (PET) Imaging with 18F-based Radiotracers. Am. J. Nucl. Med. Mol. Imaging 2012, 2, 55–76. [Google Scholar]
- Yang, S.; Chen, Q.; Shi, M.; Zhang, Q.; Lan, S.; Maimaiti, T.; Li, Q.; Ouyang, P.; Tang, K.; Yang, S.T. Fast Identification and Quantification of Graphene Oxide in Aqueous Environment by Raman Spectroscopy. Nanomaterials 2020, 10, 770. [Google Scholar] [CrossRef] [Green Version]
- Zin, F.A.M.; Noor, A.M.; Lee, S.W.; Sajab, M.S.; Razab, M.K.A.A.; Abdullah, N.H.; Ishak, W.M.F.W.; Wong, K.N.S.S.; Zaudin, N.A.C. Graphene Oxide Silver Cellulose Alginate for Antibacterial. Mater. Sci. Forum. 2020, 1010, 590–595. [Google Scholar]
- Maslekar, N.; Zetterlund, P.B.; Kumar, P.V.; Agarwal, V. Mechanistic Aspects of the Functionalization of Graphene Oxide with Ethylene Diamine: Implications for Energy Storage Applications. ACS Appl. Nano Mater. 2021, 4, 3232–3240. [Google Scholar] [CrossRef]
- Lai, Q.; Zhu, S.; Luo, X.; Zou, M.; Huang, S. Ultraviolet-visible Spectroscopy of Graphene Oxides. AIP Adv. 2012, 2, 032146-1–032146-5. [Google Scholar] [CrossRef]
- Yu, L.; Yan, Q.; Ruzsinszky, A. Key Role of Antibonding Electron Transfer in Bonding on Solid Surfaces. Phys. Rev. Mater. 2019, 3, 092801. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razab, M.K.A.A.; Nawi, N.M.; Hadzuan, F.H.M.; Abdullah, N.H.; Muhamad, M.; Sunaiwi, R.; Ibrahim, F.; Zin, F.A.M.; Noor, A.M. Fluorine-18 Fluorodeoxyglucose Isolation Using Graphene Oxide for Alternative Radiopharmaceutical Spillage Decontamination in PET Scan. Sustainability 2022, 14, 4492. https://doi.org/10.3390/su14084492
Razab MKAA, Nawi NM, Hadzuan FHM, Abdullah NH, Muhamad M, Sunaiwi R, Ibrahim F, Zin FAM, Noor AM. Fluorine-18 Fluorodeoxyglucose Isolation Using Graphene Oxide for Alternative Radiopharmaceutical Spillage Decontamination in PET Scan. Sustainability. 2022; 14(8):4492. https://doi.org/10.3390/su14084492
Chicago/Turabian StyleRazab, Mohammad Khairul Azhar Abdul, Norazlina Mat Nawi, Fara Hana Mohd Hadzuan, Nor Hakimin Abdullah, Maimanah Muhamad, Rosidah Sunaiwi, Fathirah Ibrahim, Farah Amanina Mohd Zin, and An’amt Mohamed Noor. 2022. "Fluorine-18 Fluorodeoxyglucose Isolation Using Graphene Oxide for Alternative Radiopharmaceutical Spillage Decontamination in PET Scan" Sustainability 14, no. 8: 4492. https://doi.org/10.3390/su14084492
APA StyleRazab, M. K. A. A., Nawi, N. M., Hadzuan, F. H. M., Abdullah, N. H., Muhamad, M., Sunaiwi, R., Ibrahim, F., Zin, F. A. M., & Noor, A. M. (2022). Fluorine-18 Fluorodeoxyglucose Isolation Using Graphene Oxide for Alternative Radiopharmaceutical Spillage Decontamination in PET Scan. Sustainability, 14(8), 4492. https://doi.org/10.3390/su14084492