An Assessment of Trace Element Accumulation in Palm Oil Production
Abstract
:1. Introduction
2. Trace Elements in Soils of Elaeis guineensis Production
2.1. Sources of Trace Elements in Elaeis guineensis Plantation Soils
2.1.1. Geogenic Trace Elements
2.1.2. Anthropogenic Sources of Trace Elements in Soils
2.2. Measured Trace Element Concentrations in Soil
3. Trace Elements in Elaeis guineensis and Comparable Species
4. Trace Elements in Palm Oils
5. Trace Elements in Palm Kernel Expeller
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohd Din, A.; Rajanaidu, N.; Kushairi, A.; Tarmizi, A.H.; Noh, A.; Marhalil, M.; Zulkifli, Y.; Norziha, A.; Meilina, O.A.; Ravigadevi, S. Performance and yield potential of oil palm planting materials. Planter 2014, 90, 881–904. [Google Scholar]
- Index Mundi. Palm Oil Yield by Country in MT/ha. 2019. Available online: https://www.indexmundi.com/agriculture/?commodity=palm-oil&graph=yield (accessed on 13 June 2019).
- Statista. Consumption of Vegetable Oils Worldwide from 2013/2014 to 2019/2020, by Oil Type. 2020. Available online: https://www.statista.com/statistics/263937/vegetable-oils-global-consumption/ (accessed on 18 June 2020).
- Index Mundi. Palm Oil Area Harvested by Country in 1000 Ha. 2019. Available online: https://www.indexmundi.com/agriculture/?commodity=palm-oil&graph=area-harvested (accessed on 13 June 2019).
- Statista. Production Volume of Palm Oil Worldwide from 2012/13 to 2018/19. 2019. Available online: https://www.statista.com/statistics/613471/palm-oil-production-volume-worldwide/ (accessed on 13 June 2019).
- Index Mundi. Palm oil Production by Country in 1000 MT. 2019. Available online: https://www.indexmundi.com/agriculture/?commodity=palm-oil&graph=production (accessed on 13 June 2019).
- Szydłowska-Czerniak, A.; Trokowski, K.; Karlovits, G.; Szłyk, E. Spectroscopic determination of metals in palm oils from different stages of the technological process. J. Agric. Food Chem. 2013, 61, 2276–2283. [Google Scholar] [CrossRef] [PubMed]
- Index Mundi. Palm Kernel Meal Production by Country in 1000 MT. 2020. Available online: https://www.indexmundi.com/agriculture/?commodity=palm-kernel-meal&graph=production (accessed on 18 June 2020).
- Aderungboye, F.O. Diseases of the Oil Palm. Pans 1977, 23, 305–326. [Google Scholar] [CrossRef]
- MPOB. Chemical Fertiliser Ganocare™ as Preventive Treatment in Controlling Ganoderma Disease of Oil Palm; MPOB: Kajang, Malaysia, 2015. [Google Scholar]
- Ng, S.K. Nutrition and nutrient management of oil palm—New thrust for the future perspective. In Potassium for Sustainable Crop Production: International Symposium on the Role of Potassium; Pasricha, N.S., Bansal, S.K., Eds.; Potash Research Institute of India and International Potash Institute: New Dehli, India, 2002; pp. 415–429. [Google Scholar]
- Woittiez, L.S.; van Wijk, M.T.; Slingerland, M.; van Noordwijk, M.; Giller, K.E. Yield gaps in oil palm: A quantitative review of contributing factors. Eur. J. Agron. 2017, 83, 57–77. [Google Scholar] [CrossRef]
- Corley, R.H.V.; Tinker, P.B.H. The Oil Palm, 5th ed.; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Woittiez, L.S.; Turhina, S.; Deccy, D.; Slingerland, M.; VAN Noordwijk, M.; Giller, K.E. Fertiliser application practices and nutrient deficiencies in smallholder oil palm plantations in Indonesia. Exp. Agric. 2019, 55, 543–559. [Google Scholar] [CrossRef] [Green Version]
- Bivi, M.S.H.R.; Paiko, A.S.; Khairulmazmi, A.; Akhtar, M.; Idris, A.S. Control of basal stem rot disease in oil palm by supplementation of calcium, copper, and salicylic acid. Plant Pathol. J. 2016, 32, 396–406. [Google Scholar] [CrossRef] [Green Version]
- Otero, N.; Vitòria, L.; Soler, A.; Canals, À. Fertiliser characterisation: Major, trace and rare earth elements. Appl. Geochem. 2005, 20, 1473–1488. [Google Scholar] [CrossRef]
- CSIRO. Investigation into the Impacts of Contaminants in Mineral Fertilisers, Fertiliser Ingredients and Industrial Residues and the Derivation of Guidelines for Contaminants; CSIRO: Clayton, Australia, 2009. [Google Scholar]
- Jiao, W.; Chen, W.; Chang, A.C.; Page, A.L. Environmental risks of trace elements associated with long-term phosphate fertilizers applications: A review. Environ. Pollut. 2012, 168, 44–53. [Google Scholar] [CrossRef]
- Robinson, B.H.; Bolan, N.S.; Mahimairaja, S.; Clothier, B.E. Solubility, Mobility and Bioaccumulation of Trace Elements: Abiotic Processes in the Rhizosphere, in Trace Elements in the Environment: Biogeochemistry, Biotechnology, and Bioremediation; Prasad, M.N.V., Sajwan, K.S., Naidu, R., Eds.; CRC Press: Boca Raton, FL, USA, 2005; pp. 97–110. [Google Scholar]
- McLaughlin, M.J.; Hamon, R.E.; McLaren, R.G.; Speir, T.W.; Rogers, S.L. Review: A bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Aust. J. Soil Res. 2000, 38, 1037–1086. [Google Scholar] [CrossRef]
- Stacey, S.P.; McLaughlin, M.J.; Hettiarachchi, G.M. Fertilizer-borne trace element contaminants in soils. In Trace Elements in Soils; Hooda, P., Ed.; Blackwell: Oxford, UK, 2010; pp. 135–154. [Google Scholar]
- Woittiez, L.S.; Slingerland, M.; Rafik, R.; Giller, K.E. Nutritional imbalance in smallholder oil palm plantations in Indonesia. Nutr. Cycl. Agroecosyst. 2018, 111, 73–86. [Google Scholar] [CrossRef] [Green Version]
- Moss, B. Water pollution by agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 659–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dharma-Wardana, M.W.C. Fertilizer usage and cadmium in soils, crops and food. Environ. Geochem. Health 2018, 40, 2739–2759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oorts, K. Copper, in Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability; Alloway, B.J., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 367–394. [Google Scholar]
- Mason, B.H.; Moore, C.B. Principles of Geochemistry; Wiley: Hoboken, NJ, USA, 1982. [Google Scholar]
- Duplay, J.; Semhi, K.; Mey, M.; Messina, A.; Quaranta, G.; Huber, F.; Aubert, A. Geogenic versus anthropogenic geochemical influence on trace elements contents in soils from the Milazzo Peninsula. Geochemistry 2014, 74, 691–704. [Google Scholar] [CrossRef]
- Townsend, A.R.; Asner, G.P.; Cleveland, C.C. The biogeochemical heterogeneity of tropical forests. Trends Ecol. Evol. 2008, 23, 424–431. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, M.J.; Zarcinas, B.A.; Stevens, D.P.; Cook, N. Soil testing for heavy metals. Commun. Soil Sci. Plant Anal. 2000, 31, 1661–1700. [Google Scholar] [CrossRef]
- Sappa, G.; Barbieri, M.; Andrei, F. Assessment of trace elements natural enrichment in topsoil by some Italian case studies. SN Appl. Sci. 2020, 2, 1–19. [Google Scholar] [CrossRef]
- USDA. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; USDA: Washington, DC, USA, 1999. [Google Scholar]
- Davies, B.E. Deficiencies and toxicities of trace elements and micronutrients in tropical soils: Limitations of knowledge and future research needs. Environ. Toxicol. Chem. 1997, 16, 75–83. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soil and Plants, 3rd ed.; CRC Press: New York, NY, USA, 2001. [Google Scholar]
- Everett, K.R. Chapter 1 Histosols. In Developments in Soil Science; Wilding, L.P., Smeck, N.E., Hall, G.F., Eds.; Elsevier: Amsterdam, The Netherlands, 1983; pp. 1–53. [Google Scholar]
- Robinson, B.H.; Bañuelos, G.; Conesa, H.M.; Evangelou, M.W.H.; Schulin, R. The Phytomanagement of Trace Elements in Soil. Crit. Rev. Plant Sci. 2009, 28, 240–266. [Google Scholar] [CrossRef]
- Hooda, P. Trace Elements in Soils; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Woittiez, L.S.; Slingerland, M.; Giller, K.E. Yield Gaps in Indonesian Smallholder Plantations: Causes and Solutions. In Proceedings of the International Palm Oil Congress and Exhibition, Kuala Lumpur, Malaysia, 6–8 October 2015. [Google Scholar]
- Taylor, M.; Kim, N.; Smidt, G.; Busby, C.; McNally, S.; Robinson, B.; Kratz, S.; Schnug, E. Trace Element Contaminants and Radioactivity from Phosphate Fertiliser. In Phosphorus in Agriculture: 100% Zero; Schnug, E., De Kok, L.J., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 231–266. [Google Scholar]
- Hu, Z.; Haneklaus, S.; Sparovek, G.; Schnug, E. Rare Earth Elements in Soils. Commun. Soil. Sci. Plant Anal. 2006, 37, 1381–1420. [Google Scholar] [CrossRef]
- Santos, V.S.; Nardini, V.; Cunha, L.C.; Barbosa, F.; Teixeira, G.H.D.A. Identification of species of the Euterpe genus by rare earth elements using inductively coupled plasma mass spectrometry and linear discriminant analysis. Food Chem. 2014, 153, 334–339. [Google Scholar] [CrossRef]
- Oosterhuis, F.H.; Brouwer, F.M.; Wijnants, H.J. A Possible EU Wide Charge on Cadmium in Phosphate Fertilizers: Economic and Environmental Implications; Institute for Environmental Studies, Vrije Universiteit: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Foster, H.L.; Tayeb, D.M.T. The effect of different methods of placement and frequency of application of fertiliser to oil palm on an inland soil in Peninsula Malaysia. PORIM Bull. 1986, 12, 1–11. [Google Scholar]
- Goh, K.J.; Härdter, R.; Fairhurst, T. Fertilizing for maximum return. In The Oil Palm: Management for Large and Sustainable Yields; Fairhurst, T., Härdter, R., Eds.; Phosphate Institute of Canada, Potash & Phosphate Institute, International Potash Institute: Singapore, 2003; pp. 279–306. [Google Scholar]
- Maene, L.M.; Thong, K.C.; Ong, T.S.; Mokhtaruddin, A.M.; Pushparajah, E. Surface wash under mature oil palm. In 1979 Symposium on Water in Malaysian Agriculture; Pushparajah, E., Ed.; Malaysian Society of Soil Science: Kuala Lumpur, Malaysia, 1979; pp. 203–216. [Google Scholar]
- Molenaar, J.W.; Persch-Orth, M.; Lord, S.; Taylor, C.; Harms, J. Diagnostic Study on Indonesian Oil Palm Smallholders: Developing a Better Understanding of Their Performance and Potential; International Finance Corporation: Jakarta, Indonesia, 2013. [Google Scholar]
- Sutarta, E.S.; Winarna; Hidayat, F.; Syarovy, M. Soil management issues affecting oil palm development in Indonesia. In Proceedings of the International Conference on Oil Palm and the Environment, Medan, Indonesia, 6–8 May 2015; Webb, M.J., Nelson, P.N., Bessou, C., Caliman, J., Sutarta, E.S., Eds.; RSPO: Kuala Lumpur, Malaysia, 2015; p. 15. [Google Scholar]
- Kiwifruit Vine Health. KVH Information Sheet: Copper Spray Information; Kiwifruit Vine Health: Mount Maunganui, New Zealand, 2019. [Google Scholar]
- FAO. The oil palm. In Better Farming Series: FAO Economic and Social Development Series; FAO: Rome, Italy, 1990. [Google Scholar]
- Adiyoga, W.; De Putter, H. Pesticide use in shallot-hot pepper intercropping cultivation system in Brebes, Central Java. Acta Hortic. 2015, 1105, 229–334. [Google Scholar] [CrossRef]
- Schneider, M.; Keiblinger, K.M.; Paumann, M.; Soja, G.; Mentler, A.; Golestani-Fard, A.; Retzmann, A.; Prohaska, T.; Zechmeister-Boltenstern, S.; Wenzel, W.; et al. Fungicide application increased copper-bioavailability and impaired nitrogen fixation through reduced root nodule formation on alfalfa. Ecotoxicology 2019, 28, 599–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission. Commission Regulation. OJEU 2008, 889, 1–84.
- Fungicide Resistance Action Committee. FRAC Code List ©*2021: Fungal Control Agents Sorted by Cross Resistance Pattern and Mode of Action (Including Coding for FRAC Groups on Product Labels); Fungicide Resistance Action Committee: Brussels, Belgium, 2021. [Google Scholar]
- Morgan, R.K.; Taylor, E. Copper accumulation in vineyard soils in New Zealand. Environ. Sci. 2004, 1, 139–167. [Google Scholar] [CrossRef] [Green Version]
- Ash, C.; Vacek, O.; Jakšík, O.; Tejnecký, V.; Drábek, O. Elevated soil copper content in a bohemian vineyard as a result of fungicide application. Soil Water Res. 2012, 7, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Wightwick, A.M.; Mollah, M.R.; Partington, D.L.; Allinson, G. Copper fungicide residues in Australian vineyard soils. J. Agric. Food Chem. 2008, 56, 2457–2464. [Google Scholar] [CrossRef]
- Lewis, S.; Donkin, M.E.; Depledge, M.H. Hsp70 expression in Enteromorpha intestinalis (Chlorophyta) exposed to environmental stressors. Aquat. Toxicol. 2001, 51, 277–291. [Google Scholar] [CrossRef]
- Lizardi, N.; Aguilar, M.; Bravo, M.; Fedorova, T.A.; Neaman, A. Human health risk assessment from the consumption of vegetables grown near a copper smelter in Central Chile. J. Soil Sci. Plant Nutr. 2020, 20, 1472–1479. [Google Scholar] [CrossRef]
- Cole, B.; Craven, J. Impacts of oil plam activities in the Kokonda and Popondetta catchments: An initial environmental examination. Verl. Nicht Ermittelbar 2006, 1–25. Available online: https://aarhusclearinghouse.unece.org/resources/impacts-oil-palm-activities-kokoda-and-popondetta-catchments-initial-environmental (accessed on 17 June 2019).
- Azura, A.A.; Fauziah, C.I.; Samsuri, W. Cadmium and zinc concentrations in soils and oil palm tissues as affected by long-term application of phosphate rock fertilizers. Soil Sediment Contam. Int. J. 2012, 21, 586–603. [Google Scholar] [CrossRef]
- Orobator, P.; Ashiriba, H.; Aighewi, I. Assessment of Heavy Metals Concentration in Soils under Selected Oil Palm (Elaeis Guineensis) Plantations in Edo State, Nigeria. 2018, pp. 45–58. Available online: http://www.academix.ng/documents/papers/1524666819_6831.pdf (accessed on 20 June 2019).
- Senjobi, B.A.; Ogunkunle, A.O. Effect of different land use types and their implications on land degradation and productivity in Ogun State, Nigeria. J. Agric. Biotech. 2011, 3, 7–18. [Google Scholar]
- Uwumarongie-Ilori, E.G.; Aisueni, N.O.; Sulaiman-Ilobu, B.B.; Ekhator, F.; Eneje, R.C.; Efetie-Osie, A. Immobilisation effect of cow dung on lead and chromium in soil cultivated with oil palm. BEPLS 2012, 1, 74–80. [Google Scholar]
- Olafisoye, B.O.; Oguntibeju, O.O.; Osibote, O.A. An assessment of the bioavailability of metals in soils on oil palm plantations in Nigeria. Pol. J. Environ. Stud. 2016, 25, 1125–1140. [Google Scholar] [CrossRef]
- Golow, A.A.; Agyemang, O.; Ackah, M. Soil fertility analysis in two oil plam plantation towns in Assin, north district of the central region of Ghana. AJBAS 2010, 4, 1650–1655. [Google Scholar]
- Lim, T.K. Elaeis Guineensis Var. Pisifera, in Edible Medicinal and Non-Medicinal Plants: Volume 1, Fruits; Springer: Dordrecht, The Netherlands, 2012; pp. 393–395. [Google Scholar]
- Jiménez-Sánchez, G.; Philp, J. Chapter 11—Genomics and the Bioeconomy: Opportunities to Meet Global Challenges. In Genomics and Society; Kumar, D., Chadwick, R., Eds.; Academic Press: Oxford, UK, 2016; pp. 207–238. [Google Scholar]
- Singh, P.K.; Pratap, S.G.; Tandon, P.K. The mechanisms of trace element uptake and transport up to grains of crop plants. In Sustainable Solutions for Elemental Deficiency and Excess in Crop Plants; Mishra, K., Tandon, P.K., Srivastava, S., Eds.; Springer: Singapore, 2020; pp. 119–133. [Google Scholar]
- Aholoukpè, H.N.S.; Jourdan, C.; Amadji, G.; Chotte, J.; Dubos, B.; Flori, A.; Deleporte, P.; Blavet, D. Soil properties are affected by management of pruned fronds in palm plantations of smallholders in western Africa. In Proceedings of the International Conference on Oil Palm and the Environment, Shenzhen, China, 2–4 June 2015; Webb, M.J., Nelson, P.N., Bessou, C., Caliman, J., Sutarta, E.S., Eds.; Australian Centre for International Agricultural Research: Medan, Indonesia, 2015; p. 34. [Google Scholar]
- Tao, H.; Snaddon, J.L.; Slade, E.M.; Resti Wahyu, R.; Caliman, J.; Willis, K.J. Effects of empty fruit bunch (EFB) application on soil fauna feeding activity in oil palm plantations. In Proceedings of the International Conference on Oil Palm and the Environment, Medan, Indonesia, 7–8 November 2013; Webb, M.J., Nelson, P.N., Bessou, C., Caliman, J., Sutarta, E.S., Eds.; Australian Centre for International Agricultural Research: Medan, Indonesia, 2015; pp. 35–39. [Google Scholar]
- Kok, S.; Ong-Abdullah, M.; Ee, G.C.; Namasivayam, P. Comparison of nutrient composition in kernel of tenera and clonal materials of oil palm (Elaeis guineensis Jacq.). Food Chem. 2011, 129, 1343–1347. [Google Scholar] [CrossRef]
- Akpanabiatu, M.; Ekpa, O.; Mauro, A.; Rizzo, R. Nutrient composition of Nigerian palm kernel from the dura and tenera varieties of the oil palm (Elaeis guineensis). Food Chem. 2001, 72, 173–177. [Google Scholar] [CrossRef]
- Abdrabo, S.S.; Grindlay, G.; Gras, L.; Mora, J. Multi-element analysis of spanish date palm (Phoenix dactylifera L.) by inductively coupled plasma-based techniques. Discrimination using multivariate statistical analysis. Food Anal. Methods 2014, 8, 1268–1278. [Google Scholar] [CrossRef] [Green Version]
- Waheed, S.; Siddique, N. Siddique, Evaluation of dietary status with respect to trace element intake from dry fruits consumed in Pakistan: A study using instrumental neutron activation analysis. Int. J. Food Sci. Nutr. 2008, 60, 333–343. [Google Scholar] [CrossRef]
- Schauss, A.G.; Wu, X.; Prior, R.L.; Ou, B.; Patel, D.; Huang, D.; Kababick, J.P. Phytochemical and nutrient composition of the freeze-dried Amazonian palm berry, Euterpe oleraceae Mart. (acai). J. Agric. Food Chem. 2006, 54, 8598–8603. [Google Scholar] [CrossRef]
- Aldjain, I.M.; Al-Whaibi, M.H.; Al-Showiman, S.S.; Siddiqui, M.H. Determination of heavy metals in the fruit of date palm growing at different locations of Riyadh. Saudi J. Biol. Sci. 2011, 18, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Divrikli, U.; Mendil, D.; Tuzen, M.; Soylak, M.; Elci, L. Trace metal pollution from traffic in Denizli-Turkey during dry season. Biomed. Environ. Sci. 2006, 19, 254–261. [Google Scholar] [PubMed]
- White, P.J. Fatty Acids in Oilseeds (Vegetable Oils), in Fatty Acids in Foods and Their Health Implications; Chow, C.K., Ed.; Marcel Dekker: New York, NY, USA, 1992. [Google Scholar]
- Smart, G.A.; Sherlock, J.C. Chromium in foods and the diet. Food Addit. Contam. 1985, 2, 139–147. [Google Scholar] [CrossRef] [PubMed]
- WHO. Trace Elements in Human Nutrition and Health; WHO: Geneva, Switzerland, 1996. [Google Scholar]
- Alimon, A.R. The Nutritive Value of Palm Kernel Cake for Animal Feed. Palm Oil Dev. 2004, 40, 12–14. [Google Scholar]
- Rossi, M.; Gianazza, M.; Alamprese, C.; Stanga, F. The role of bleaching clays and synthetic silica in palm oil physical refining. Food Chem. 2003, 82, 291–296. [Google Scholar] [CrossRef]
- FAO. Codex Alimentarius; FAO: Rome, Italy, 1993. [Google Scholar]
- Chen, S.-S.; Lee, B.-Y.; Cheng, C.-C.; Chou, S.-S. Determination of arsenic in edible fats and oils by focused microwave digestion and atomic fluorescence spectrometer. J. Food Drug Anal. 2001, 9, 121–125. [Google Scholar] [CrossRef]
- Chen, S.S.; Cheng, C.C.; Chou, S.S. Determination of arsenic in edible fats and oils by direct graphite furnace atomic absorption spectrometry. J. Food Drug Anal. 2003, 11, 214–219. [Google Scholar]
- Thirunavukkarasu, O.; Viraraghavan, T.; Subramanian, K.; Tanjore, S. Organic arsenic removal from drinking water. Urban Water 2002, 4, 415–421. [Google Scholar] [CrossRef]
- FSANZ. Arsenic. 2020. Available online: https://www.foodstandards.gov.au/consumer/chemicals/arsenic/Pages/default.aspx#:~:text=Maximum%20levels%20for%20arsenic%20in%20food&text=A%20limit%20of%201mg%2Fkg,0.5%20mg%2Fkg%20for%20salt (accessed on 15 June 2020).
- Aigberua, A.O.; Ovuru, K.F.; Izah, S.C. Evaluation of selected heavy metals in palm oil sold in some markets in Yenagoa metropolis, Bayelsa State, Nigeria. EC Nutr. 2017, 11, 244–252. [Google Scholar]
- Asemave, K.; Ubwa, S.T.; Anhwange, B.A.; Gbaamende, A.G. Comparative evaluation of some metals in palm oil, groundnut oil and soybean oil from Nigeria. Int. J. Mod. Chem. 2012, 1, 28–35. [Google Scholar]
- Njoku, D.N.; Afuape, S.O.; Ebeniro, C.N. Growth and yield of a cassava as influenced by grain cowpea population density in southeastern Nigeria. Afr. J. Agric. Res. 2010, 5, 2778–2781. [Google Scholar]
- Nnorom, I.C.; Alagbaoso, J.E.; Amaechi, U.H.; Kanu, C.; Ewuzie, U. Determination of beneficial and toxic metals in fresh palm oil (Elaeis guineensis Jacq.) from south-eastern Nigeria: Estimation of dietary intake benefits and risks. J. Sci. Res. Rep. 2014, 3, 2216–2226. [Google Scholar] [CrossRef] [PubMed]
- Tyler, G. ICP-OES, ICP-MS and AAS techniques compared. In ICP Optical Emission Spectroscopy Technical Note; Jobin Yvon S.A.S Horiba Group: Longjumeau, France, 1995; Volume 5. [Google Scholar]
- Atasie, V.N.; Akinhanmi, T.F. Extraction, composition studies and physio-chemical characteristics of palm kernel oil. Pak. J. Nutr. 2009, 8, 800–803. [Google Scholar] [CrossRef] [Green Version]
- Obi, A.L.; Jonah, S.A.; Umar, I. Determination of trace elements in some Nigerian vegetable based oils by neutron activation analysis. J. Radioanal. Nucl. Chem. 2001, 249, 669–671. [Google Scholar]
- Adepoju-Bello, A.A.; Osagiede, S.A.; Oguntibeju, O.O. Evaluation of the concentration of some toxic metals in dietary red palm oil. J. Bioanal. Biomed. 2012, 4, 92–95. [Google Scholar]
- FAO. FAOSTAT: Crops. 2019. Available online: www.fao.org/faostat/en/#data/QC (accessed on 27 July 2021).
- Index Mundi. Palm kernel meal imports by country in 1000 MT. 2019. Available online: https://www.indexmundi.com/agriculture/?commodity=palm-kernel-meal&graph=imports (accessed on 27 July 2021).
- Sue, T.T. Quality and characteristics of Malaysian palm kernel cakes/expellers. Palm Oil Dev. 2004, 34, 1–3. [Google Scholar]
- Grace, N.D.; Knowles, S.O. Trace element supplementation of livestock in New Zealand: Meeting the challenges of free-range grazing systems. Veter Med. Int. 2012, 2012, 639472. [Google Scholar] [CrossRef]
- Hammid, A.A.; Kuntom, A.; Ismail, R.; Pardi, N. Arsenic in palm kernel expeller using microwave digestion and graphite furnace atomic absorption spectrophotometry method. Int. J. Basic Appl. Sci. 2013, 1, 641–649. [Google Scholar]
- Yeong, S. The nutritive value of palm kernel cake as a feedstuff for poultry. In Proceedings of the National Workshop on Oil Palm By-Product Utilization, Kuala Lumpur, Malaysia, 14–15 December 1981. [Google Scholar]
- National Research Council. Mineral Tolerance of Animals, 2nd ed.; National Academic Press: Washington, DC, USA, 2005. [Google Scholar]
- Hair-Bejo, M.; Davis, M.P.; Alimon, A.R.; Moonafizad, M. Chronic copper toxicosis: Utilization of palm kernel cake in sheep fed solely on concentrate diets. In Proceedings of the First Symposium on Integration of Livestock to Palm Oil Production, Kuala Lumpur, Malaysia, 22–27 May 1995. [Google Scholar]
- Morton, J.; Roberts, A. (Eds.) Fertiliser Use on New Zealand Sheep and Beef Farms, 5th ed.; Fertiliser Association of New Zealand: Wellington, New Zealand, 2018. [Google Scholar]
- European Union. Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on Undesirable Substances in Animal Feed—Council Statement; European Union: Luxembourg, 2002. [Google Scholar]
- Coup, M.R.; Campbell, A.G. The effect of excessive iron intake upon the health and production of dairy cows. N. Z. J. Agric. Res. 1964, 7, 624–638. [Google Scholar] [CrossRef]
Fertiliser (NPK Ratio) | Use (% of Farmers Surveyed) | Application Rate (kg ha−1 yr−1) | Approximate Mass Added (g ha−1 yr−1) | |||||
---|---|---|---|---|---|---|---|---|
F a | Cu a | Zn a | Cd b | Pb a | U a | |||
NPK Phonska (15–15–15) | 66 | 692 | 15,916 | 64 | 261 | 4.8–48 | 3.5 | 25 |
NPK Pelangi (15–15–15) | 9 | 756 | 17,388 | 70 | 285 | 5.2–52 | 3.8 | 27 |
Single super-phosphate (0–36–0) | 21 | 452 | 6396 | 26 | 94 | 7.5–75 | 9.04 | 24 |
Triple super-phosphate (0–46–0) | 7 | 400 | 8400 | 17 | 146 | 8.4–84 | 6.8 | 47 |
Rock phosphate (0–20–0) | 1 | 1000 | 29,856 | 22 | 245 | 9.2–92 | 12 | 92 |
Element | Concentration Range (mg kg−1) | Average Concentrations of Earth Materials a | ||||
---|---|---|---|---|---|---|
Soil (mg kg−1) | Earth’s Crust (mg kg−1) | Granite (mg kg−1) | Sandstones (mg kg−1) | Igneous Rocks (mg kg−1) | ||
V | 0.56–4.9 b | 100 | 135 | 17 | 20 | 135 |
Cr | 26–132 c | 100 | 100 | 20 | 35 | 100 |
Mn | 2.4–20.5 b 0.12–29 c 20.6–81 d | 850 | 950 | 195 | X0 h | 950 |
Co | 0.80–9.4 c 0.03–2.9 d | 8 | 25 | 2.4 | 0.3 | 25 |
Ni | 1.5–13 b 30.3–59 c | 40 | 75 | 1 | 2 | 75 |
Cu | 1.1–9.8 b 3.9–6.5 e 13–69 c 3.06–18 d | 20 | 55 | 13 | X h | 55 |
Zn | 2.09–25 b 4.8–6.2 e 12–107 c 0.85–6.8 d 11–99 f | 50 | 70 | 45 | 16 | 70 |
Mo | <0.01–1.05 d | 2 | 1.5 | 6.5 | 0.2 | 1.5 |
Cd | 0.22–2.0 b 0.32–4.3 c 0.45–5.2 f <1 g | 0.06 | 0.2 | 0.03 | 0.0X h | 0.08 |
Pb | 6.8–14 c | 10 | 13 | 48 | 7 | 13 |
Element | Mean Concentration Range in Malaysian Kernels (mg kg−1) | Mean Concentration Range in Nigerian Kernels (mg kg−1) | Mean Concentration in Land Plants (mg kg−1) a |
---|---|---|---|
Mn | 82–145 b | 410–610 c | 630 |
Fe | 43–52 b | 110–220 c | 140 |
Cu | 16–18 b | 17–26 c | 14 |
Zn | 25–36 b 4–13 d | 26–43 c | 100 |
Cd | 0.09–0.31 d | — | 0.6 |
Pb | — | ≤0.05 b | 2.7 |
Element | Mesocarp Concentration P. dactylifera (mg/kg−1) | Seed Concentration P. dactylifera (mg/kg−1) | Leaf Concentration P. dactylifera (mg/kg−1) | Mesocarp Concentration E. oleracea Mart. (mg/kg−1) | Mesocarp Concentration E. edulis Mart. (mg kg−1) |
---|---|---|---|---|---|
Li | <0.007–0.17 a | <0.007–0.017 a | — | — | — |
Al | 48.4 (2.6) b | — | — | — | — |
Cl | 3340 (280) b | — | — | — | — |
Sc | 0.028 (0.004) b | — | — | — | — |
V | <0.008–0.016 a | <0.008–0.021 a | — | — | — |
Cr | 0.49 (0.5) b | — | 0.18–0.99 c | — | — |
Mn | 1.0–7.0 a 7.5 (0.3) b | 2.4–11.5 a | 0.35–0.96 c | — | — |
Fe | 2.0–7.0 a 197 (10) b | 3.2–30.9 a | 1.6–9.4 c | — | — |
Co | 0.026–5.1 a 0.025 (0.003) b | 0.075–3.20 a | — | — | — |
Ni | 0.071–0.70 a | 0.15–0.69 a | 0.022–0.083 c | — | — |
Cu | 0.7–7.2 a | 1.3–8.4 a | 2.0–9.6 c | — | — |
Zn | 1.4–12.6 a 9.5 (0.5) b | 3.9–28 a | 0.6–3.5 c | — | — |
As | <0.04–0.051 a 1.9 (0.17) b | <0.04–0.089 a | — | 0.0095 d | — |
Se | <0.1–0.120 a 0.102 (0.013) b | <0.1–0.3 a | — | — | — |
Br | 3.2 (0.15) b | — | — | — | — |
Rb | 5.4 (0.5) b | — | — | — | — |
Sr | 1.1–14.8 a 13.9 (1.2) b | 0.21–5.2 a | — | — | — |
Mo | 0.18 (0.05) b | — | — | — | — |
Cd | <0.002–0.013 a 0.08–0.23 e | <0.002–0.012 a | 0.043–0.19 c | 0.0094 d | — |
La | 0.36 (0.04) b | — | — | 8.03–230 f | 17–199 f |
Ce | 0.47 (0.05) b | — | — | 20.1–575 f | 36–319 f |
Hg | 0.051 (0.003) b | — | — | 0.0016 d | — |
Pb | <0.02–0.14 a 0.84–2.3 e | <0.02–0.11 a | 0.22–1.98 c | 0.037 d | — |
Th | — | — | — | 0.99–179 f | 15–87 f |
Element | Concentration in Palm Kernel Oil (mg kg−1) | Concentration in Palm Oil (mg kg−1) |
---|---|---|
Al | 38.30 (0.58) a | 31.00 (0.56) a 1.9 b |
Cl | 22.21 (0.79) a | 29.60 (0.74) a |
V | 0.055 (0.009) a | 0.065 (0.007) a |
Cr | — | 2.3 b 0.101–0.298 c 0.021–0.033 d |
Mn | 1.45 (0.03) a | 0.94 (0.02) a 0.24–1.1 e 6.55–12.05 c |
Fe | 20.04 (0.20) f | 11 b 15–35 e 65–232 c 38.3–78.3 g 0.12 (0.0058) h 0.27–2.40 i |
Co | — | 0.000–0.064 e |
Ni | — | 0.000–0.79 e 0.15–0.81 c 0.044–0.068 d |
Cu | 6.0 (0.35) a | 1.4 (0.09) a 0.071 b 0.000–0.25 e 0.56–2.09 c 0.030 (0.001) h 0.03–0.05 i |
Zn | 2.82 (0.30) f | 0.45–1.6 e 3.6–14.6 c 0.05–0.24 g |
As | — | 0.001–0.0025 d 0.025 j <0.015 k |
Cd | — | 0.022 b 0.024–0.094 c 0.025–0.065 d |
Hg | — | 0–0.055 d |
Pb | — | 0.018 b 0.024–0.067 c 0.023–0.038 d 0.0060 (0.0003) h <0.005 i |
Element | Reported Concentration (mg kg−1) | MTL for Cattle Feed (mg kg−1) |
---|---|---|
Mn | 225 a 132–340 b | 2000 d |
Fe | 4.05 a 835–6130 b | 500 d |
Cu | 28.5 a 20.5–28.9 b | 40 d,e |
Zn | 77 a 40.5–50.0 b | 500 d |
As | 0.18–3.05 c | 4 f |
Se | 0.23–0.30 b | 5 d |
Mo | 0.70–0.79 b | 5 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thompson-Morrison, H.; Gaw, S.; Robinson, B. An Assessment of Trace Element Accumulation in Palm Oil Production. Sustainability 2022, 14, 4553. https://doi.org/10.3390/su14084553
Thompson-Morrison H, Gaw S, Robinson B. An Assessment of Trace Element Accumulation in Palm Oil Production. Sustainability. 2022; 14(8):4553. https://doi.org/10.3390/su14084553
Chicago/Turabian StyleThompson-Morrison, Hadee, Sally Gaw, and Brett Robinson. 2022. "An Assessment of Trace Element Accumulation in Palm Oil Production" Sustainability 14, no. 8: 4553. https://doi.org/10.3390/su14084553
APA StyleThompson-Morrison, H., Gaw, S., & Robinson, B. (2022). An Assessment of Trace Element Accumulation in Palm Oil Production. Sustainability, 14(8), 4553. https://doi.org/10.3390/su14084553