Models for Assessing Urban Ecosystem Services: Status and Outlooks
Abstract
:1. Introduction
2. The State of the Art of Urban Ecosystem Models
2.1. Classification of Modelling Techniques for Ecosystem Services
2.2. Applications of Process-Based Models in Specific Urban Ecosystem Service
2.3. Applications of Modelling Framework in Multiple Urban Ecosystem Services
3. Comparison of Current Products for Urban Ecosystem Services Modelling
3.1. InVEST Model
3.2. i-Tree
3.3. ARIES
3.4. SolVES
3.5. Other Products
4. Limitations of Existing Models and Outlooks for Urban Socio-Ecological Models
4.1. Limitations of Existing Models
4.2. New Perspectives of Socio-Ecosystem for Modelling
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holdren, J.P.; Ehrlich, P.R. Human population and the global environment. Am. Sci. 1974, 62, 282–292. [Google Scholar] [PubMed]
- Westman, W.E. How much are nature’s services worth? Science 1977, 197, 960–964. [Google Scholar] [CrossRef]
- Ehrlich, P. Extinction: The Causes Vand Consequences of the Disappearance of Species; Random House: New York, NY, USA, 1981. [Google Scholar]
- Daily, G.; Alexander, S.; Ehrlich, P.; Goulder, L.; Lubchenco, J.; Matson, P.; Mooney, H.; Postel, S.; Schneider, S.; Tilman, G. Ecosystem Services: Benefits Supplied to Human Societies by Natural Ecosystems. Iss. Ecol. 1997, 1, 1–18. [Google Scholar]
- Costanza, R. The values of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Nahlik, A.M.; Kentula, M.E.; Fennessy, M.S.; Landers, D.H. Where is the consensus? A proposed foundation for moving ecosystem service concepts into practice. Ecol. Econ. 2012, 77, 27–35. [Google Scholar] [CrossRef]
- Fisher, B.; Turner, R.K.; Morling, P. Defining and classifying ecosystem services for decision making. Ecol. Econ. 2009, 68, 643–653. [Google Scholar] [CrossRef] [Green Version]
- Millennium Ecosystem Assessments (MEA). Ecosystems and Human Well-Being: Current State and Trend; Hassan, R., Scholes, R., Ash, N., Eds.; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Economics of Ecosystems and Biodiversity (TEEB). TEEB Manual for Cities: Ecosystem Services in Urban Management; TEEB: Geneva, Switzerland, 2011. [Google Scholar]
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Grêt-Regamey, A.; Celio, E.; Klein, T.M.; Wissen Hayek, U. Understanding ecosystem services trade-offs with interactive procedural modeling for sustainable urban planning. Landsc. Urban Plan. 2013, 109, 107–116. [Google Scholar] [CrossRef]
- Jansson, Å. Reaching for a sustainable, resilient urban future using the lens of ecosystem services. Ecol. Econ. 2013, 86, 285–291. [Google Scholar] [CrossRef]
- Bukvareva, E.; Zamolodchikov, D.; Kraev, G.; Grunewald, K.; Narykov, A. Supplied, demanded and consumed ecosystem services: Prospects for national assessment in Russia. Ecol. Indic. 2017, 78, 351–360. [Google Scholar] [CrossRef]
- Luederitz, C.; Brink, E.; Gralla, F.; Hermelingmeier, V.; Meyer, M.; Niven, L.; Panzer, L.; Partelow, S.; Rau, A.-L.; Sasaki, R.; et al. A review of urban ecosystem services: Six key challenges for future research. Ecosyst. Serv. 2015, 14, 98–112. [Google Scholar] [CrossRef] [Green Version]
- Pickett, S.T.A.; Cadenasso, M.L.; Grove, J.M.; Boone, C.G.; Groffman, P.M.; Irwin, E.; Kaushal, S.S.; Marshall, V.; McGrath, B.P.; Nilon, C.H.; et al. Urban ecological systems: Scientific foundations and a decade of progress. J. Environ. Manag. 2011, 92, 331–362. [Google Scholar] [CrossRef] [PubMed]
- United Nations (UN). UN-Habitat World Cities Report 2016: Urbanization and Development–Emerging Futures; UN: Geneva, Switzerland, 2016. [Google Scholar]
- Bureau of Statistics of China. China Construction Statistical Yearbook; China Statistic Press: Beijing, China, 2016. [Google Scholar]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dominati, E.; Patterson, M.; Mackay, A. A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol. Econ. 2010, 69, 1858–1868. [Google Scholar] [CrossRef]
- Wilkerson, M.L.; Mitchell, M.G.; Shanahan, D.; Wilson, K.; Ives, C.D.; Lovelock, C.; Rhodes, J. The role of socio-economic factors in planning and managing urban ecosystem services. Ecosyst. Serv. 2018, 31, 102–110. [Google Scholar] [CrossRef]
- Martin, D.M.; Mazzotta, M.; Bousquin, J. Combining ecosystem services assessment with structured decision making to support ecological restoration planning. Environ. Manag. 2018, 62, 608–618. [Google Scholar] [CrossRef] [PubMed]
- Sacchelli, S.; Fabbrizzi, S.; Geri, F.; Ciolli, M. Place-Based Policy-Making and Community Security: A Decision Support System for Integrated Planning of Urban Ecosystem Services and Disservices. In Green Energy and Technology; Springer: Berlin/Heidelberg, Germany, 2018; pp. 95–104. [Google Scholar] [CrossRef]
- Mao, Q.; Huang, G.; Wu, J. Urban ecosystem services: A review. Chin. J. Appl. Ecol. 2015, 26, 1023–1033. [Google Scholar]
- Alam, M.; Dupras, J.; Messier, C. A framework towards a composite indicator for urban ecosystem services. Ecol. Indic. 2016, 60, 38–44. [Google Scholar] [CrossRef]
- Olander, L.P.; Johnston, R.J.; Tallis, H.; Kagan, J.; Maguire, L.A.; Polasky, S.; Urban, D.; Boyd, J.; Wainger, L.; Palmer, M. Benefit relevant indicators: Ecosystem services measures that link ecological and social outcomes. Ecol. Indic. 2017, 85, 1262–1272. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; Barton, D.N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 2012, 86, 235–245. [Google Scholar] [CrossRef]
- De Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Cuddington, K.; Fortin, M.-J.; Gerber, L.R.; Hastings, A.; Liebhold, A.; O’Connor, M.; Ray, C. Process-based models are required to manage ecological systems in a changing world. Ecosphere 2013, 4, 1–12. [Google Scholar] [CrossRef]
- Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES). The Methodological Assessment Report on Scenarios and Models of Biodiversity and Ecosystem Services; Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Bonn, Germany, 2016. [Google Scholar]
- Costanza, R.; Daly, L.; Fioramonti, L.; Giovannini, E.; Kubiszewski, I.; Mortensen, L.F.; Pickett, K.E.; Ragnarsdottir, K.V.; De Vogli, R.; Wilkinson, R. Modelling and measuring sustainable wellbeing in connection with the UN Sustainable Development Goals. Ecol. Econ. 2016, 130, 350–355. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Müller, F.; Windhorst, W. Landscapes’ capacities to provide ecosystem services-A concept for land-cover based assessments. Landsc. Online 2009, 15, 1–22. [Google Scholar] [CrossRef]
- De Groot, R.; Brander, L.; Van Der Ploeg, S.; Costanza, R.; Bernard, F.; Braat, L.; Christie, M.; Crossman, N.; Ghermandi, A.; Hein, L.; et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 2012, 1, 50–61. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, H.; Ou, W.; Guo, J. A land-cover-based approach to assessing ecosystem services supply and demand dynamics in the rapidly urbanizing Yangtze River Delta region. Land Use Pol. 2018, 72, 250–258. [Google Scholar] [CrossRef]
- Burkhard, B.; Müller, A.; Müller, F.; Grescho, V.; Anh, Q.; Arida, G.; Bustamante, J.V.; Van Chien, H.; Heong, K.; Escalada, M.; et al. Land cover-based ecosystem service assessment of irrigated rice cropping systems in southeast Asia—An explorative study. Ecosyst. Serv. 2015, 14, 76–87. [Google Scholar] [CrossRef]
- Li, T.; Lyu, Y.H. A review on the progress of modeling techniques in ecosystem services. Acta Ecol. Sin. 2018, 38, 5287–5296. [Google Scholar]
- Hauck, J.; Winkler, K.J.; Priess, J.A. Reviewing drivers of ecosystem change as input for environmental and ecosystem services modelling. Sustain. Water Qual. Ecol. 2015, 5, 9–30. [Google Scholar] [CrossRef]
- Kabaya, K.; Hashimoto, S.; Fukuyo, N.; Uetake, T.; Takeuchi, K. Investigating future ecosystem services through participatory scenario building and spatial ecological–economic modelling. Sustain. Sci. 2018, 14, 77–88. [Google Scholar] [CrossRef]
- Balbi, S.; Selomane, O.; Sitas, N.; Blanchard, R.; Kotzee, I.; O’Farrell, P.; Villa, F. Human dependence on natural resources in rapidly urbanising South African regions. Environ. Res. Lett. 2019, 14, 044008. [Google Scholar] [CrossRef]
- Martínez-López, J.; Bagstad, K.J.; Balbi, S.; Magrach, A.; Voigt, B.; Athanasiadis, I.; Pascual, M.; Willcock, S.; Villa, F. Towards globally customizable ecosystem service models. Sci. Total Environ. 2018, 650 Pt 2, 2325–2336. [Google Scholar] [CrossRef] [PubMed]
- Sven Erik Jorgensen, B.D.F. Fundamentals of Ecological Modelling: Applications in environmental management and research. Dev. Environ. Model. 2012, 4, 400. [Google Scholar]
- Melecis, V.; Klavins, M.; Laivins, M.; Rusina, S.; Springe, G.; Viksne, J.; Krisjane, Z.; Strake, S. Conceptual model of the long-term socio-ecological research platform of Engure Ecoregion, Latvia. Proc. Latvian Acad. Sci. Sect. B 2014, 68, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Lopes, R.; Videira, N. Modelling feedback processes underpinning management of ecosystem services: The role of participatory systems mapping. Ecosyst. Serv. 2017, 28, 28–42. [Google Scholar] [CrossRef]
- Machimura, T.; Miyauchi, T.; Kondo, S.; Furubayashi, T.; Matsui, T. Modified soil hydrological schemes for process-based ecosystem model Biome-BGC. Hydrol. Res. Lett. 2016, 10, 15–20. [Google Scholar] [CrossRef]
- Milesi, C.; Running, S.W.; Elvidge, C.D.; Dietz, J.B.; Tuttle, B.T.; Nemani, R.R. Mapping and Modeling the Biogeochemical Cycling of Turf Grasses in the United States. Environ. Manag. 2005, 36, 426–438. [Google Scholar] [CrossRef]
- Brown, M.E.; McGroddy, M.; Spence, C.; Flake, L.; Sarfraz, A.; Nowak, D.J.; Milesi, C. Modeling the Ecosystem Services Provided by Trees in Urban Ecosystems: Using Biome-BGC to Improve i-Tree Eco; National Aeronautics and Space Administration (NASA): Washington, DC, USA, 2012.
- Zhou, Z.X.; Li, J.; Zhang, W. Coupled urbanization and agricultural ecosystem services in Guanzhong-Tianshui Economic Zone. Environ. Sci. Pollut. Res. 2016, 23, 15407–15417. [Google Scholar] [CrossRef]
- Tripathi, P.; Patel, N.R.; Kushwaha, S.P.S. Estimating net primary productivity in tropical forest plantations in India using satellite-driven ecosystem model. Geocarto Int. 2017, 33, 988–999. [Google Scholar] [CrossRef]
- Tanhuanpää, T.; Kankare, V.; Setälä, H.; Yli-Pelkonen, V.; Vastaranta, M.; Niemi, M.T.; Raisio, J.; Holopainen, M. Assessing above-ground biomass of open-grown urban trees: A comparison between existing models and a volume-based approach. Urban For. Urban Green. 2017, 21, 239–246. [Google Scholar] [CrossRef] [Green Version]
- Bottalico, F.; Travaglini, D.; Chirici, G.; Garfì, V.; Giannetti, F.; De Marco, A.; Fares, S.; Marchetti, M.; Nocentini, S.; Paoletti, E.; et al. A spatially-explicit method to assess the dry deposition of air pollution by urban forests in the city of Florence, Italy. Urban For. Urban Green. 2017, 27, 221–234. [Google Scholar] [CrossRef]
- Jeanjean, A.P.R.; Monks, P.S.; Leigh, R.J. Modelling the effectiveness of urban trees and grass on PM2.5 reduction via dispersion and deposition at a city scale. Atmos. Environ. 2016, 147, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Janhäll, S. Review on urban vegetation and particle air pollution—Deposition and dispersion. Atmos. Environ. 2015, 105, 130–137. [Google Scholar] [CrossRef]
- Fusaro, L.; Mereu, S.; Salvatori, E.; Agliari, E.; Fares, S.; Manes, F. Modeling ozone uptake by urban and peri-urban forest: A case study in the Metropolitan City of Rome. Environ. Sci. Pollut. Res. 2017, 25, 8190–8205. [Google Scholar] [CrossRef]
- Glenis, V.; Kutija, V.; Kilsby, C. A fully hydrodynamic urban flood modelling system representing buildings, green space and interventions. Environ. Model. Softw. 2018, 109, 272–292. [Google Scholar] [CrossRef] [Green Version]
- Marques, G.F.; de Souza, V.B.; Moraes, N.V. The economic value of the flow regulation environmental service in a Brazilian urban watershed. J. Hydrol. 2017, 554, 406–419. [Google Scholar] [CrossRef]
- Chang, Y.-T.; Lee, Y.-C.; Huang, S.-L. Integrated spatial ecosystem model for simulating land use change and assessing vulnerability to flooding. Ecol. Model. 2017, 362, 87–100. [Google Scholar] [CrossRef]
- Zölch, T.; Henze, L.; Keilholz, P.; Pauleit, S. Regulating urban surface runoff through nature-based solutions–An assessment at the micro-scale. Environ. Res. 2017, 157, 135–144. [Google Scholar] [CrossRef]
- Chen, H.; Xu, J.; Zhang, K.; Guo, S.; Lv, X.; Mu, X.; Yang, L.; Song, Y.; Hu, X.; Ma, Y.; et al. New insights into the DPSIR model: Revealing the dynamic feedback mechanism and efficiency of ecological civilization construction in China. J. Clean. Prod. 2022, 348, 131377. [Google Scholar] [CrossRef]
- Nassl, M.; Löffler, J. Ecosystem services in coupled social–ecological systems: Closing the cycle of service provision and societal feedback. Ambio 2015, 44, 737–749. [Google Scholar] [CrossRef] [Green Version]
- Lafortezza, R.; Sanesi, G. Nature-based solutions: Settling the issue of sustainable urbanization. Environ. Res. 2018, 172, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Malekmohammadi, B.; Jahanishakib, F. Vulnerability assessment of wetland landscape ecosystem services using driver-pressure-state-impact-response (DPSIR) model. Ecol. Indic. 2017, 82, 293–303. [Google Scholar] [CrossRef]
- Lu, W.; Xu, C.; Wu, J.; Cheng, S. Ecological effect assessment based on the DPSIR model of a polluted urban river during restoration: A case study of the Nanfei River, China. Ecol. Indic. 2018, 96, 146–152. [Google Scholar] [CrossRef]
- Leenhardt, P.; Stelzenmüller, V.; Pascal, N.; Probst, W.N.; Aubanel, A.; Bambridge, T.; Charles, M.; Clua, E.; Féral, F.; Quinquis, B.; et al. Exploring social-ecological dynamics of a coral reef resource system using participatory modeling and empirical data. Mar. Policy 2017, 78, 90–97. [Google Scholar] [CrossRef]
- Ingram, R.J.; Oleson, K.L.; Gove, J.M. Revealing complex social-ecological interactions through participatory modeling to support ecosystem-based management in Hawai’i. Mar. Policy 2018, 94, 180–188. [Google Scholar] [CrossRef]
- Xi, X.; Poh, K.L. A Novel Integrated Decision Support Tool for Sustainable Water Resources Management in Singapore: Synergies Between System Dynamics and Analytic Hierarchy Process. Water Resour. Manag. 2014, 29, 1329–1350. [Google Scholar] [CrossRef]
- You, S.; Kim, M.; Lee, J.; Chon, J. Coastal landscape planning for improving the value of ecosystem services in coastal areas: Using system dynamics model. Environ. Pollut. 2018, 242, 2040–2050. [Google Scholar] [CrossRef]
- Tan, Y.; Jiao, L.; Shuai, C.; Shen, L. A system dynamics model for simulating urban sustainability performance: A China case study. J. Clean. Prod. 2018, 199, 1107–1115. [Google Scholar] [CrossRef]
- Cavender-Bares, J.; Polasky, S.; King, E.; Balvanera, P. A sustainability framework for assessing trade-offs in ecosystem services. Ecol. Soc. 2015, 20, 17. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Liu, Y.; Wang, H.; Yang, J.; Zhou, X. Research on the coordinated development of greenization and urbanization based on system dynamics and data envelopment analysis—A case study of Tianjin. J. Clean. Prod. 2018, 214, 195–208. [Google Scholar] [CrossRef]
- Elsawah, S.; Pierce, S.A.; Hamilton, S.H.; van Delden, H.; Haase, D.; Elmahdi, A.; Jakeman, A.J. An overview of the system dynamics process for integrated modelling of socio-ecological systems: Lessons on good modelling practice from five case studies. Environ. Model. Softw. 2017, 93, 127–145. [Google Scholar] [CrossRef]
- Elsawah, S.; Guillaume, J.; Filatova, T.; Rook, J.; Jakeman, A. A methodology for eliciting, representing, and analysing stakeholder knowledge for decision making on complex socio-ecological systems: From cognitive maps to agent-based models. J. Environ. Manag. 2015, 151, 500–516. [Google Scholar] [CrossRef] [PubMed]
- Verhoog, R.; Ghorbani, A.; Dijkema, G.P. Modelling socio-ecological systems with MAIA: A biogas infrastructure simulation. Environ. Model. Softw. 2016, 81, 72–85. [Google Scholar] [CrossRef]
- Miyasaka, T.; Le, Q.B.; Okuro, T.; Zhao, X.; Takeuchi, K. Agent-based modeling of complex social–ecological feedback loops to assess multi-dimensional trade-offs in dryland ecosystem services. Landsc. Ecol. 2017, 32, 707–727. [Google Scholar] [CrossRef] [Green Version]
- Bitterman, P.; Bennett, D.A. Constructing stability landscapes to identify alternative states in coupled social-ecological agent-based models. Ecol. Soc. 2016, 21, 21. [Google Scholar] [CrossRef] [Green Version]
- Schulze, J.; Mueller, B.; Groeneveld, J.; Grimm, V. Agent-Based Modelling of Social-Ecological Systems: Achievements, Challenges, and a Way Forward. Jasss J. Artif. Soc. Soc. Simul. 2017, 20, 8. [Google Scholar] [CrossRef] [Green Version]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST 3.2.0 User’s Guide; The Natural Capital Project; Stanford University: Stanford, CA, USA, 2018. [Google Scholar]
- He, C.; Zhang, D.; Huang, Q.; Zhao, Y. Assessing the potential impacts of urban expansion on regional carbon storage by linking the LUSD-urban and InVEST models. Environ. Model. Softw. 2016, 75, 44–58. [Google Scholar] [CrossRef]
- Jiang, W.; Deng, Y.; Tang, Z.; Lei, X.; Chen, Z. Modelling the potential impacts of urban ecosystem changes on carbon storage under different scenarios by linking the CLUE-S and the InVEST models. Ecol. Model. 2017, 345, 30–40. [Google Scholar] [CrossRef]
- Li, C.; Zhao, J.; Thinh, N.X.; Xi, Y. Assessment of the Effects of Urban Expansion on Terrestrial Carbon Storage: A Case Study in Xuzhou City, China. Sustainability 2018, 10, 647. [Google Scholar] [CrossRef] [Green Version]
- Tao, Y.; Li, F.; Liu, X.; Zhao, D.; Sun, X.; Xu, L. Variation in ecosystem services across an urbanization gradient: A study of terrestrial carbon stocks from Changzhou, China. Ecol. Model. 2015, 318, 210–216. [Google Scholar] [CrossRef]
- Sharps, K.; Masante, D.; Thomas, A.; Jackson, B.; Redhead, J.; May, L.; Prosser, H.; Cosby, B.; Emmett, B.; Jones, L. Comparing strengths and weaknesses of three ecosystem services modelling tools in a diverse UK river catchment. Sci. Total Environ. 2017, 584–585, 118–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costanza, R.; de Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA). i-Tree Support. In i-Tree Eco User’s Manual; USDA Forest Service: Washington, DC, USA, 2017. [Google Scholar]
- Baró, F.; Chaparro, L.; Gómez-Baggethun, E.; Langemeyer, J.; Nowak, D.J.; Terradas, J. Contribution of Ecosystem Services to Air Quality and Climate Change Mitigation Policies: The Case of Urban Forests in Barcelona, Spain. AMBIO 2014, 43, 466–479. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.; Miller, P.A.; Nowak, D.J. Assessing urban vacant land ecosystem services: Urban vacant land as green infrastructure in the City of Roanoke, Virginia. Urban For. Urban Green. 2015, 14, 519–526. [Google Scholar] [CrossRef]
- Kiss, M.; Takács, Á.; Pogácsás, R.; Gulyás, Á. The role of ecosystem services in climate and air quality in urban areas: Evaluating carbon sequestration and air pollution removal by street and park trees in Szeged (Hungary). Morav. Geogr. Rep. 2015, 23, 36–46. [Google Scholar] [CrossRef] [Green Version]
- Endreny, T.; Santagata, R.; Perna, A.; De Stefano, C.; Rallo, R.; Ulgiati, S. Implementing and managing urban forests: A much needed conservation strategy to increase ecosystem services and urban wellbeing. Ecol. Model. 2017, 360, 328–335. [Google Scholar] [CrossRef]
- Villa, F.; Bagstad, K.J.; Voigt, B.; Johnson, G.W.; Portela, R.; Honzák, M.; Batker, D. A Methodology for Adaptable and Robust Ecosystem Services Assessment. PLoS ONE 2014, 9, e91001. [Google Scholar] [CrossRef]
- Bagstad, K.J.; Johnson, G.; Voigt, B.; Villa, F. Spatial dynamics of ecosystem service flows: A comprehensive approach to quantifying actual services. Ecosyst. Serv. 2013, 4, 117–125. [Google Scholar] [CrossRef]
- Bagstad, K.J.; Semmens, D.J.; Ancona, Z.H.; Sherrouse, B.C. Evaluating alternative methods for biophysical and cultural ecosystem services hotspot mapping in natural resource planning. Landsc. Ecol. 2016, 32, 77–97. [Google Scholar] [CrossRef]
- Zank, B.; Bagstad, K.J.; Voigt, B.; Villa, F. Modeling the effects of urban expansion on natural capital stocks and ecosystem service flows: A case study in the Puget Sound, Washington, USA. Landsc. Urban Plan. 2016, 149, 31–42. [Google Scholar] [CrossRef]
- Sherrouse, B.C.; Semmens, D.J. Social Values for Ecosystem Services, Version 3.0 (SolVES 3.0): Documentation and User Manual; US Department of the Interior: Washington, DC, USA, 2015.
- Bagstad, K.J.; Cohen, E.; Ancona, Z.H.; McNulty, S.; Sun, G. The sensitivity of ecosystem service models to choices of input data and spatial resolution. Appl. Geogr. 2018, 93, 25–36. [Google Scholar] [CrossRef]
- Lin, Y.-P.; Lin, W.-C.; Li, H.-Y.; Wang, Y.-C.; Hsu, C.-C.; Lien, W.-Y.; Anthony, J.; Petway, J.R. Integrating Social Values and Ecosystem Services in Systematic Conservation Planning: A Case Study in Datuan Watershed. Sustainability 2017, 9, 718. [Google Scholar] [CrossRef] [Green Version]
- Qin, K.; Li, J.; Liu, J.; Yan, L.; Huang, H. Setting conservation priorities based on ecosystem services-A case study of the Guanzhong-Tianshui Economic Region. Sci. Total Environ. 2019, 650, 3062–3074. [Google Scholar] [CrossRef]
- Sun, F.; Xiang, J.; Tao, Y.; Tong, C.; Che, Y. Mapping the social values for ecosystem services in urban green spaces: Integrating a visitor-employed photography method into SolVES. Urban For. Urban Green. 2018, 38, 105–113. [Google Scholar] [CrossRef]
- Boumans, R.; Roman, J.; Altman, I.; Kaufman, L. The Multiscale Integrated Model of Ecosystem Services (MIMES): Simulating the interactions of coupled human and natural systems. Ecosyst. Serv. 2015, 12, 30–41. [Google Scholar] [CrossRef]
- Stehfest, E.; van Vuuren, D.; Kram, T.; Bouwman, L.; Alkemade, R.; Bakkenes, M.; Biemans, H.; Bouwman, A.; den Elzen, M.; Janse, J.; et al. Integrated Assessment of Global Environmental Change with IMAGE3.0 Model Description and Policy Applications; Netherlands Environmental Assessment Agency (PBL): Amsterdam, The Netherlands, 2014. [Google Scholar]
- Longcore, T.; Li, C.; Wilson, J.P. Applicability of Citygreen Urban Ecosystem Analysis Software to a Densely Built Urban Neighborhood. Urban Geogr. 2004, 25, 173–186. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Fu, B.; Lü, Y.; Zheng, Z. SAORES: A spatially explicit assessment and optimization tool for regional ecosystem services. Landsc. Ecol. 2014, 30, 547–560. [Google Scholar] [CrossRef] [Green Version]
- Bolte, J. ENVISION: A Guide to Application Development; Oregon State University: Corvallis, OR, USA, 2014; Available online: http://envision.bioe.orst.edu (accessed on 5 March 2022).
- Bagstad, K.J.; Semmens, D.J.; Winthrop, R. Comparing approaches to spatially explicit ecosystem service modeling: A case study from the San Pedro River, Arizona. Ecosyst. Serv. 2013, 5, 40–50. [Google Scholar] [CrossRef]
- EcoMetrix Solutions Group. EcoMetrix Method Development Overview. 2013. Available online: https://www.ecometrixsolutions.com/assets/ecometrix_method_oct20132.pdf (accessed on 5 March 2022).
- Nemec, K.T.; Raudsepp-Hearne, C. The use of geographic information systems to map and assess ecosystem services. Biodivers. Conserv. 2012, 22, 1–15. [Google Scholar] [CrossRef]
- Nelson, E.J.; Daily, G.C. Modelling ecosystem services in terrestrial systems. F1000 Biol. Rep. 2010, 2, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haase, D.; Larondelle, N.; Andersson, E.; Artmann, M.; Borgström, S.; Breuste, J.; Gomez-Baggethun, E.; Gren, A.; Hamstead, Z.; Hansen, R.; et al. A quantitative review of urban ecosystem service assessments: Concepts, models, and implementation. Ambio 2014, 43, 413–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inostroza, L.; Barrera, F.D.L. Ecosystem Services and Urbanisation. A Spatially Explicit Assessment in Upper Silesia, Central Europe; IOP Conference Series: Materials Science and Engineering; Institute of Physics (IOP): London, UK, 2019. [Google Scholar]
- Han, H.; Dong, Y. Assessing and mapping of multiple ecosystem services in Guizhou Province, China. Trop. Ecol. 2017, 58, 331–346. [Google Scholar]
- Lupp, G.; Förster, B.; Kantelberg, V.; Markmann, T.; Naumann, J.; Honert, C.; Koch, M.; Pauleit, S. Assessing the Recreation Value of Urban Woodland Using the Ecosystem Service Approach in Two Forests in the Munich Metropolitan Region. Sustainability 2016, 8, 1156. [Google Scholar] [CrossRef] [Green Version]
- Steenberg, J.; Millward, A.A.; Nowak, D.J.; Robinson, P.; Ellis, A. Forecasting Urban Forest Ecosystem Structure, Function, and Vulnerability. Environ. Manag. 2016, 59, 373–392. [Google Scholar] [CrossRef]
- Van Wensem, J.; Calow, P.; Dollacker, A.; Maltby, L.; Olander, L.; Tuvendal, M.; Van Houtven, G. Identifying and assessing the application of ecosystem services approaches in environmental policies and decision making. Integr. Environ. Assess. Manag. 2016, 13, 41–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Kang, J. Comparison of Ecological Risk among Different Urban Patterns Based on System Dynamics Modeling of Urban Development. J. Urban Plan. Dev. 2017, 143, 04016034. [Google Scholar] [CrossRef]
- Walker, A.P.; Zaehle, S.; Medlyn, B.E.; De Kauwe, M.G.; Asao, S.; Hickler, T.; Parton, W.; Ricciuto, D.M.; Wang, Y.P.; Norby, R.J. Predicting long-term carbon sequestration in response to CO2 enrichment: How and why do current ecosystem models differ? Glob. Biogeochem. Cycl. 2015, 29, 476–495. [Google Scholar] [CrossRef]
- Yuan, L.; Shin, K.; Managi, S. Subjective Well-being and Environmental Quality: The Impact of Air Pollution and Green Coverage in China. Ecol. Econ. 2018, 153, 124–138. [Google Scholar] [CrossRef]
- Sattler, C.; Loft, L.; Mann, C.; Meyer, C. Methods in ecosystem services governance analysis: An introduction. Ecosyst. Serv. 2018, 34, 155–168. [Google Scholar] [CrossRef]
- Campbell, L.K.; Svendsen, E.S.; Sonti, N.F.; Johnson, M.L. A social assessment of urban parkland: Analyzing park use and meaning to inform management and resilience planning. Environ. Sci. Policy 2016, 62, 34–44. [Google Scholar] [CrossRef]
- Suárez, M.; Gómez-Baggethun, E.; Benayas, J.; Tilbury, D. Towards an Urban Resilience Index: A Case Study in 50 Spanish Cities. Sustainability 2016, 8, 774. [Google Scholar] [CrossRef] [Green Version]
- Frantzeskaki, N.; Kabisch, N.; McPhearson, T. Advancing urban environmental governance: Understanding theories, practices and processes shaping urban sustainability and resilience. Environ. Sci. Policy 2016, 62, 1–6. [Google Scholar] [CrossRef]
- Herrero-Jáuregui, C.; Arnaiz-Schmitz, C.; Reyes, M.F.; Telesnicki, M.; Agramonte, I.; Easdale, M.H.; Schmitz, M.F.; Aguiar, M.; Gómez-Sal, A.; Montes, C. What do We Talk about When We Talk about Social-Ecological Systems? A Literature Review. Sustainability 2018, 10, 2950. [Google Scholar] [CrossRef] [Green Version]
- Dennis, M.; James, P. Urban Social-ecological Innovation: Implications for Adaptive Natural Resource Management. Ecol. Econ. 2018, 150, 153–164. [Google Scholar] [CrossRef] [Green Version]
- Schirpke, U.; Candiago, S.; Egarter Vigl, L.; Jäger, H.; Labadini, A.; Marsoner, T.; Meisch, C.; Tasser, E.; Tappeiner, U. Integrating supply, flow and demand to enhance the understanding of interactions among multiple ecosystem services. Sci. Total Environ. 2019, 651, 928–941. [Google Scholar] [CrossRef]
- Dade, M.C.; Mitchell, M.G.; McAlpine, C.A.; Rhodes, J.R. Assessing ecosystem service trade-offs and synergies: The need for a more mechanistic approach. AMBIO 2018, 48, 1116–1128. [Google Scholar] [CrossRef]
- Kolosz, B.W.; Athanasiadis, I.N.; Cadisch, G.; Dawson, T.P.; Giupponi, C.; Honzák, M.; Martinez-Lopez, J.; Marvuglia, A.; Mojtahed, V.; Ogutu, K.B.Z.; et al. Conceptual advancement of socio-ecological modelling of ecosystem services for re-evaluating Brownfield land. Ecosyst. Serv. 2018, 33, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Jiang, P.; Yang, J.; Jin, J.; Yang, J. Simulating PM2.5 removal in an urban ecosystem based on the social-ecological model framework. Ecosyst. Serv. 2021, 47, 101234. [Google Scholar] [CrossRef]
- Pan, H.; Zhang, L.; Cong, C.; Deal, B.; Wang, Y. A dynamic and spatially explicit modeling approach to identify the ecosystem service implications of complex urban systems interactions. Ecol. Indic. 2019, 102, 426–436. [Google Scholar] [CrossRef]
- Fremier, A.K.; Declerck, F.A.J.; Bosque-Pérez, N.A.; Estrada-Carmona, N.; Hill, R.; Joyal, T.; Keesecker, L.; Klos, P.Z.; Martínez-Salinas, A.; Niemeyer, R.; et al. Understanding Spatiotemporal Lags in Ecosystem Services to Improve Incentives. Bioscience 2013, 63, 472–482. [Google Scholar] [CrossRef]
- Mehring, M.; Ott, E.; Hummel, D. Ecosystem services supply and demand assessment: Why social-ecological dynamics matter. Ecosyst. Serv. 2018, 30, 124–125. [Google Scholar] [CrossRef]
- Lafuite, A.-S.; Loreau, M. Time-delayed biodiversity feedbacks and the sustainability of social-ecological systems. Ecol. Model. 2017, 351, 96–108. [Google Scholar] [CrossRef]
- Rova, S.; Meire, P.; Müller, F.; Simeoni, M.; Pranovi, F. A Petri net modeling approach to explore the temporal dynamics of the provision of multiple ecosystem services. Sci. Total Environ. 2018, 655, 1047–1061. [Google Scholar] [CrossRef]
- Qiao, X.; Gu, Y.; Zou, C.; Xu, D.; Wang, L.; Ye, X.; Yang, Y.; Huang, X. Temporal variation and spatial scale dependency of the trade-offs and synergies among multiple ecosystem services in the Taihu Lake Basin of China. Sci. Total Environ. 2019, 651, 218–229. [Google Scholar] [CrossRef]
- Berrouet, L.; Machado, J.; Villegas-Palacio, C. Vulnerability of socio—Ecological systems: A conceptual Framework. Ecol. Indic. 2018, 84, 632–647. [Google Scholar] [CrossRef]
- Leviston, Z.; Walker, I.; Green, M.; Price, J. Linkages between ecosystem services and human wellbeing: A Nexus Webs approach. Ecol. Indic. 2018, 93, 658–668. [Google Scholar] [CrossRef]
- Evans, N.M. Ecosystem Services: On Idealization and Understanding Complexity. Ecol. Econ. 2018, 156, 427–430. [Google Scholar] [CrossRef]
Name | Type | Module | Calculation Method | Data Requirement | Scale | Remarks |
---|---|---|---|---|---|---|
InVEST | Correlative and process-based | Carbon | Carbon density estimation | Land use/land cover map, carbon pool data | Multiple scales: local to national | Latest Version 3.6.0 |
Crop production | Percentile or regression | Land use/land cover map, crop table, aggregate result polygon | ||||
Water yield | Water balance equation | Precipitation, reference evaporation, depth to root restricting layer, plant available water fraction, land use, watersheds, biophysical table and seasonal constant | ||||
Water purification | Nutrient delivery ratio model | DEM, land use map, nutrient runoff proxy, watersheds, biophysical table, threshold flow accumulation | ||||
Habitat quality | Spatial distance calculation | Current, baseline and future land cover maps, folder containing threat maps, threats data, accessibility to threats data, sensitivity of land cover types to threats, half-saturation constant | ||||
Recreation | PUD calculation and regression | Area of Interest map, start and end year | ||||
i-Tree Eco | Process-based | Carbon | Biomass accumulation | Field data: Species, canopy, tree cover, tree density, health condition, leaf area, leaf biomass, DBH and other survey information Species database: Allometric growth equation for each species Location database: City information, hourly pollution data, hourly weather data | Local to individual | Latest Version 6 |
Air Quality (including VOC) | Dry deposition model | |||||
Avoided Runoff | Water balance equation | |||||
Energy Effects | Cooling effect | |||||
Structure and value | Proxy evaluation | |||||
ARIES | Expert-based and process-based | Carbon storage and sequestration | Linking process-based models, agent-based models and artificially intelligent engine with multiple criteria ranking algorithm | Land cover map, tree canopy, vegetation types, slope map, soil attributes, population and carbon pool data | Multiple scales: local to national | |
Stormwater regulation | Precipitation, actual evapotranspiration, average runoff, tree canopy, vegetation types, slope map, land use map | |||||
Water and soil retention | Precipitation, average runoff, average soil losses, soil attributes, tree canopy, vegetation types, land use map | |||||
Water yield | Precipitation, soil infiltration, actual evapotranspiration, average runoff, vegetation types, slope map, land use map | |||||
Recreation | Species abundance, DEM, hydrological data, other spatial data for public facilities, population density | |||||
Aesthetics and neighborhood | Land cover map, distance to city, water quality, road maps, real estate values | |||||
SOLVES | Correlative | Ecosystem Services Social-Values Model | Choosing stakeholders group and determining kernel density surfaces | Environmental data, survey data, other spatial data, social-value allocation amounts | Local to regional | Especially for aesthetics, biodiversity and recreation |
Value Mapping Model | Maxent maximum entropy modeling | |||||
Value Transfer Mapping Model | Statistical Model generated by Maxent | |||||
MIMES | Process-based | Carbon storage and sequestration | CENTURY/Biome-BGM | Biosphere: Genetic kingdom, surface changes, carbon and water limits, etc. Lithosphere: Soil attribute, soil features, etc. Atmosphere: Climate condition Hydrology: Watersheds, hydrological information, etc. Anthroposphere: Human capital, built capital, economic production, knowledge and culture preference | Global | |
Storm protection | CLIMBER model | Local | ||||
Waste treatment | IO models | |||||
Water supply | WaterGAP | Directional flow related | ||||
Water regulation/flood protection | IMPACT, IMAGE | |||||
Nutrient regulation | IMAGE | |||||
Sediment regulation | Landscape model | In situ | ||||
Raw material and other products | CLUE, Patunxent | |||||
Aesthetic/recreation potential | IO model and social network | User movement related | ||||
IMAGE | Process-based | Energy demand and supply | The IMage Energy Regional model (TIMER) | Population, income, energy services, bioenergy production | Global, some module can be applied to regional scale | Latest Version 3.0 |
Food consumption and agriculture | Soft-linked agro-economic models MAGNET or alternatively IMPACT | Land, labor, capital and natural resources | ||||
Emissions | FAIR model | Land cover and land use change, emission inventories | ||||
Carbon cycle | LPJmL model for productivity | Climate conditions, soil types and assumed technology/management levels. | ||||
Water and nutrients | LPJmL model with hydrology model | Irrigated areas, water availability, agricultural water demand and water stress, fertilizer application, wastewater treatment, population | ||||
Policy | Scenarios simulation | Population, GDP, Trade, and other socioeconomic and policy factors | ||||
CITYgreen | Correlative | Carbon storage and sequestration | Ecological calculated by Tree canopy GIS layers, and converted into economic value by shadow price or replacement value. | Spatial data: Remote sensing images, aerial images, satellite images Attribute data: Literature information, field survey for vegetation, buildings, impervious surfaces, etc. | Local scale for small area < 20 acres and city scale for large area > 20 acres | Latest Version 5.4 |
Air purification | ||||||
Stormwater regulation | ||||||
Water quality (runoff and contaminant loading) | ||||||
Tree growth | ||||||
SAORES | Process-based | Carbon storage | NPP | DEM, soil data, climate data, land use maps | Regional | |
Soil retention | RULS equation | |||||
Water yield | Budyko curve | |||||
Grain yield | Potential productivity multiply a natural quality grade index | |||||
ENVISION | Process-based | Carbon sequestration Water yield Food and timber production Nutrient management | Prevalent models | Landscape attributes, biophysical factors, climate data | Local to regional | Latest Version 7 |
EcoMetrix | Process-based | Provisioning and regulation services | Prevalent models | Landscape attributes, biophysical factors, climate data | Local | |
EcoAIM | Correlative and process-based | Provisioning and regulation services | Prevalent models and risk analysis | Landscape attributes, biophysical factors, climate data, management information, preference interviews | Local |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, X.; Luo, X. Models for Assessing Urban Ecosystem Services: Status and Outlooks. Sustainability 2022, 14, 4725. https://doi.org/10.3390/su14084725
Ouyang X, Luo X. Models for Assessing Urban Ecosystem Services: Status and Outlooks. Sustainability. 2022; 14(8):4725. https://doi.org/10.3390/su14084725
Chicago/Turabian StyleOuyang, Xinyu, and Xiangyu Luo. 2022. "Models for Assessing Urban Ecosystem Services: Status and Outlooks" Sustainability 14, no. 8: 4725. https://doi.org/10.3390/su14084725
APA StyleOuyang, X., & Luo, X. (2022). Models for Assessing Urban Ecosystem Services: Status and Outlooks. Sustainability, 14(8), 4725. https://doi.org/10.3390/su14084725