Spatio-Temporal Analysis of Rainfall Dynamics of 120 Years (1901–2020) Using Innovative Trend Methodology: A Case Study of Haryana, India
Abstract
:1. Introduction
2. Study Area and Data
3. Methods
3.1. Distribution Pattern of Rainfall
3.2. Trend, Correlation and Probability Distribution Function of Rainfall
3.3. Atmospheric Dynamics during Heavy Rainfall Events (HRE)
4. Results and Discussions
4.1. Distribution Pattern of Rainfall
4.1.1. Descriptive Statistics of Rainfall
4.1.2. Rainfall Deviation
4.1.3. Rainfall Variability and Categorisation
4.2. Distribution Pattern of Rainfall
4.2.1. Rainfall Trend
4.2.2. Correlation Analysis
4.2.3. Probability Distribution Function
4.2.4. Atmospheric Dynamics during Heavy Rainfall Events (HREs)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gergis, J.; Henley, B.J. Southern Hemisphere rainfall variability over the past 200 years. Clim. Dyn. 2017, 48, 2087–2105. [Google Scholar] [CrossRef]
- Deng, S.; Yang, N.; Li, M.; Cheng, L.; Chen, Z.; Chen, Y.; Chen, T.; Liu, X. Rainfall seasonality changes and its possible teleconnections with global climate events in China. Clim. Dyn. 2019, 53, 3529–3546. [Google Scholar] [CrossRef]
- Singh, C.; Ganguly, D.; Sharma, P. Impact of West Asia, Tibetan Plateau and local dust emissions on intra-seasonal oscillations of the South Asian monsoon rainfall. Clim. Dyn. 2019, 53, 6569–6593. [Google Scholar] [CrossRef]
- Bisht, D.S.; Chatterjee, C.; Raghuwanshi, N.S.; Sridhar, V. Spatio-temporal trends of rainfall across Indian river basins. Theor. Appl. Climatol. 2018, 132, 419–436. [Google Scholar] [CrossRef]
- Talchabhadel, R.; Karki, R. Correction to: Assessing climate boundary shifting under climate change scenarios across Nepal. Environ. Monit. Assess. 2019, 191, 707. [Google Scholar] [CrossRef] [Green Version]
- Tito, T.M.; Delgado, R.C.; de Carvalho, D.C.; Teodoro, P.E.; de Almeida, C.T.; Junior, C.A.d.; Santos, E.B.d.; Júnior, L.A.S.d. Assessment of evapotranspiration estimates based on surface and satellite data and its relationship with El Niño–Southern Oscillation in the Rio de Janeiro State. Environ. Monit. Assess. 2020, 192, 449. [Google Scholar] [CrossRef]
- Ferreira, F.L.V.; Rodrigues, L.N.; da Silva, D.D. Influence of changes in land use and land cover and rainfall on the streamflow regime of a watershed located in the transitioning region of the Brazilian Biomes Atlantic Forest and Cerrado. Environ. Monit. Assess. 2021, 193, 16. [Google Scholar] [CrossRef]
- Teixeira, D.B.d.; Veloso, M.F.; Ferreira, F.L.V.; Gleriani, J.M.; do Amaral, C.H. Spectro-temporal analysis of the Paraopeba River water after the tailings dam burst of the Córrego do Feijão mine, in Brumadinho, Brazil. Environ. Monit. Assess. 2021, 193, 435. [Google Scholar] [CrossRef]
- Cook, B.I.; Smerdon, J.E.; Seager, R.; Coats, S. Global warming and 21st century drying. Clim. Dyn. 2014, 43, 2607–2627. [Google Scholar] [CrossRef] [Green Version]
- Gizaw, M.S.; Gan, T.Y. Impact of climate change and El Niño episodes on droughts in sub-Saharan Africa. Clim. Dyn. 2017, 49, 665–682. [Google Scholar] [CrossRef]
- Carrão, H.; Naumann, G.; Barbosa, P. Global projections of drought hazard in a warming climate: A prime for disaster risk management. Clim. Dyn. 2018, 50, 2137–2155. [Google Scholar] [CrossRef] [Green Version]
- Handmer, J.; Honda, Y.; Kundzewicz, Z.W.; Arnell, N.; Benito, G.; Hatfield, J.; Mohamed, I.F.; Peduzzi, P.; Wu, S.; Sherstyukov, B.; et al. Changes in impacts of climate extremes: Human systems and ecosystems. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012; pp. 231–290. [Google Scholar] [CrossRef]
- Dore, M.H. Climate change and changes in global precipitation patterns: What do we know? Environ. Int. 2005, 31, 1167–1181. [Google Scholar] [CrossRef] [PubMed]
- Van Wageningen, A.; Du Plessis, J.A. Are rainfall intensities changing, could climate change be blamed and what could be the impact for hydrologists? Water SA 2007, 33, 571–574. [Google Scholar]
- Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Jat, H.S.; Sharma, P.C.; Gathala, M.K.; Malik, R.K.; Kamboj, B.R.; Yadav, A.K.; Ladha, J.K.; Raman, A.; Sharma, D.K.; et al. Can productivity and profitability be enhanced in intensively managed cereal systems while reducing the environmental footprint of production? Assessing sustainable intensification options in the breadbasket of India. Agric. Ecosyst Environ. 2018, 252, 132–147. [Google Scholar] [CrossRef] [PubMed]
- Shirsath, P.B.; Jat, M.L.; McDonald, A.J.; Srivastava, A.K.; Craufurd, P.; Rana, D.S.; Singh, A.K.; Chaudhari, S.K.; Sharma, P.C.; Singh, R.; et al. Agricultural labor, COVID-19, and potential implications for food security and air quality in the breadbasket of India. Agric. Syst. 2020, 185, 102954. [Google Scholar] [CrossRef]
- Sihmar, R. Growth and instability in agricultural production in Haryana: A District level analysis. Int. J. Sci. Res. Pub. 2014, 4, 1–12. [Google Scholar]
- Nirmala, B.; Muthuraman, P. Economic and constraint analysis of rice cultivation in Kaithal district of Haryana. Indian Res. J. Ext. Edu. 2016, 9, 47–49. [Google Scholar]
- Singh, J. Paddy and wheat stubble blazing in Haryana and Punjab states of India: A menace for environmental health. Manag. Environ. Qual. 2018, 28, 47–53. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, D.; Kumar, P. Declining water table scenario in Haryana-A review. Water Energy Int. 2007, 64, 32–34. [Google Scholar]
- Chaudhuri, S.; Roy, M. Reflections on groundwater quality and urban-rural disparity in drinking water sources in the state of Haryana, India. Int. J. Sci. Res. Dev. 2016, 4, 837–843. [Google Scholar]
- Cengiz, T.M.; Tabari, H.; Onyutha, C.; Kisi, O. Combined use of graphical and statistical approaches for analyzing historical precipitation changes in the Black Sea region of Turkey. Water 2020, 12, 705. [Google Scholar] [CrossRef] [Green Version]
- Ay, M.; Kisi, O. Investigation of trend analysis of monthly total precipitation by an innovative method. Theor. Appl. Climatol. 2015, 120, 617–629. [Google Scholar] [CrossRef]
- Ahmad, I.; Zhang, F.; Tayyab, M.; Anjum, M.N.; Zaman, M.; Liu, J.; Farid, H.U.; Saddique, Q. Spatiotemporal analysis of precipitation variability in annual, seasonal and extreme values over upper Indus River basin. Atmos. Res. 2018, 213, 346–360. [Google Scholar] [CrossRef]
- Serencam, U. Innovative trend analysis of total annual rainfall and temperature variability case study: Yesilirmak region, Turkey. Arab. J. Geosci. 2019, 12, 704. [Google Scholar] [CrossRef]
- Tosunoglu, F.; Kisi, O. Trend analysis of maximum hydrologic drought variables using Mann–Kendall and Şen’s innovative trend method. River Res. Appl. 2017, 33, 597–610. [Google Scholar] [CrossRef]
- Kisi, O. An innovative method for trend analysis of monthly pan evaporations. J. Hydrol. 2015, 527, 1123–1129. [Google Scholar] [CrossRef]
- Kisi, O.; Ay, M. Comparison of Mann–Kendall and innovative trend method for water quality parameters of the Kizilirmak River, Turkey. J Hydrol. 2014, 513, 362–375. [Google Scholar] [CrossRef]
- Markus, M.; Demissie, M.; Short, M.B.; Verma, S.; Cooke, R.A. Sensitivity analysis of annual nitrate loads and the corresponding trends in the lower Illinois River. J. Hydrol. Eng. 2013, 19, 533–543. [Google Scholar] [CrossRef]
- Sa’adi, Z.; Shahid, S.; Ismail, T.; Chung, E.S.; Wang, X.J. Trends analysis of rainfall and rainfall extremes in Sarawak, Malaysia using modified Mann–Kendall test. Meteorol. Atmos. Phys. 2019, 131, 263–277. [Google Scholar] [CrossRef]
- Marumbwa, F.M.; Cho, M.A.; Chirwa, P.W. Analysis of spatio-temporal rainfall trends across southern African biomes between 1981 and 2016. Phys. Chem. Earth. 2019, 114, 102808. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.; Tabari, H.; Wang, J.; Wang, Q.; Song, S.; Hu, Z. Innovative trend analysis of annual and seasonal rainfall in the Yangtze River Delta, eastern China. Atmos Res. 2020, 231, 104673. [Google Scholar] [CrossRef]
- Jonah, K.; Wen, W.; Shahid, S.; Ali, M.A.; Bilal, M.; Habtemicheal, B.A.; Iyakaremye, V.; Qiu, Z.; Almazroui, M.; Wang, Y.; et al. Spatiotemporal variability of rainfall trends and influencing factors in Rwanda. J. Atmos. Sol.-Terr. Phys. 2021, 219, 105631. [Google Scholar] [CrossRef]
- Kumar, V.; Jain, S.K.; Singh, Y. Analysis of long-term rainfall trends in India. Hydrol. Sci. J. 2010, 55, 484–496. [Google Scholar] [CrossRef]
- Joshi, S.; Gouda, K.C.; Goswami, P. Seasonal rainfall forecast skill over Central Himalaya with an atmospheric general circulation model. Theor. Appl. Climatol. 2020, 139, 237–250. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Ajilesh, P.P.; Gouda, K.C.; Himesh, S. Impact of land-use changes on the genesis and evolution of extreme rainfall event: A case study over Uttarakhand, India. Theor. Appl. Climatol. 2020, 140, 915–926. [Google Scholar] [CrossRef]
- Malik, A.; Kumar, A. Spatio-temporal trend analysis of rainfall using parametric and non-parametric tests: Case study in Uttarakhand, India. Theor. Appl. Climatol. 2020, 140, 183–207. [Google Scholar] [CrossRef]
- Patra, J.P.; Mishra, A.; Singh, R.; Raghuwanshi, N.S. Detecting rainfall trends in twentieth century (1871–2006) over Orissa State, India. Clim. Chang. 2012, 111, 801–817. [Google Scholar] [CrossRef]
- Krishnakumar, K.N.; Prasada Rao, G.S.L.H.V.; Gopakumar, C.S. Rainfall trends in twentieth century over Kerala, India. Atmos. Environ. 2009, 43, 1940–1944. [Google Scholar] [CrossRef]
- Prasad, A.K.; Singh, R.P. Extreme rainfall event of July 25–27, 2005 over Mumbai, west coast, India. J. Indian Soc. Remote Sens. 2005, 33, 365–370. [Google Scholar] [CrossRef]
- Ranger, N.; Hallegatte, S.; Bhattacharya, S.; Bachu, M.; Priya, S.; Dhore, K.; Rafique, F.; Mathur, P.; Naville, N.; Henriet, F.; et al. An assessment of the potential impact of climate change on flood risk in Mumbai. Clim. Chang. 2011, 104, 139–167. [Google Scholar] [CrossRef] [Green Version]
- Uniyal, A. Lessons from Kedarnath tragedy of Uttarakhand Himalaya, India. Curr. Sci. 2013, 105, 1472–1474. [Google Scholar]
- Kotal, S.D.; Roy, S.S.; Bhowmik, S.R. Catastrophic heavy rainfall episode over Uttarakhand during 16–18 June 2013–observational aspects. Curr. Sci. 2014, 25, 234–245. [Google Scholar]
- Chevuturi, A.; Dimri, A.P. Investigation of Uttarakhand (India) disaster-2013 using weather research and forecasting model. Nat. Hazards 2016, 82, 1703–1726. [Google Scholar] [CrossRef]
- Mishra, V.; Shah, H.L. Hydroclimatological perspective of the Kerala flood of 2018. J. Geological. Soc. Ind. 2018, 92, 645–650. [Google Scholar] [CrossRef]
- Hunt, K.M.; Menon, A. The 2018 Kerala floods: A climate change perspective. Clim. Dyn. 2020, 54, 2433–2446. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.K. Monitoring Tamil Nadu flood of 2015 using satellite remote sensing. Nat. Hazards 2016, 82, 1431–1434. [Google Scholar] [CrossRef]
- Seenirajan, M.; Natarajan, M.; Thangaraj, R.; Bagyaraj, M. Study and analysis of Chennai flood 2015 using GIS and multicriteria technique. J. Geogr. Inf. Syst. 2017, 9, 126. [Google Scholar] [CrossRef] [Green Version]
- Krishnamurthy, L.; Vecchi, G.A.; Yang, X.; van der Wiel, K.; Balaji, V.; Kapnick, S.B.; Jia, L.; Zeng, F.; Paffendorf, K.; Underwood, S. Causes and probability of occurrence of extreme precipitation events like Chennai 2015. J. Clim. 2018, 31, 3831–3848. [Google Scholar] [CrossRef]
- Devi, N.N.; Sridharan, B.; Kuiry, S.N. Impact of urban sprawl on future flooding in Chennai city, India. J. Hydrol. 2019, 574, 486–496. [Google Scholar] [CrossRef]
- Sen, R.S.; Balling, R.C. Trends in extreme daily precipitation indices in India. Int. J. Climatol. 2004, 24, 457–466. [Google Scholar] [CrossRef]
- Goswami, B.N.; Venugopal, V.; Sengupta, D.; Madhusoodanan, M.S.; Xavier, P.K. Increasing trend of extreme rain events over India in a warming environment. Science 2006, 314, 1442–1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajeevan, M.; Bhate, J.; Jaswal, A.K. Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys. Res. Lett. 2008, 35, 1–6. [Google Scholar] [CrossRef]
- Vittal, H.; Karmakar, S.; Ghosh, S. Diametric changes in trends and patterns of extreme rainfall over India from pre-1950 to post-1950. Geophys. Res. Lett. 2013, 40, 3253–3258. [Google Scholar] [CrossRef]
- Abhilash. Growth and Radiation Use Efficiency of Basmati Rice (Oryza sativa L.) Varieties under Different Transplanting Environments. Master’s Thesis, CCS Haryana Agricultural University, Hisar, India, 2016; p. 36. [Google Scholar]
- Pai, D.S.; Sridhar, L.; Rajeevan, M.; Sreejith, O.P.; Satbhai, N.S.; Mukhopadhyay, B. Development of a new high spatial resolution (0.25° × 0.25°) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam 2014, 65, 1–18. [Google Scholar] [CrossRef]
- Berrisford, P.; Kållberg, P.; Kobayashi, S.; Dee, D.; Uppala, S.; Simmons, A.J.; Poli, P.; Sato, H. Atmospheric conservation properties in ERA-Interim. Q. J. R. Meteorol. Soc. 2011, 137, 1381–1399. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, D.P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Khan, U. Emerging Trends of Urbanization in India: An Evaluation From Environmental Perspectives. Ph.D. Thesis, Aligarh Muslim University, Aligarh, India, 2011. [Google Scholar]
- Nomura, C. Historical roots of industrialisation and the emerging state in Colonial India. In Paths to the Emerging State in Asia and Africa, Emerging-Economy State and International Policy Studies; Springer: Singapore, 2019; pp. 169–193. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D. The greening of the green revolution. Nature 1998, 396, 211–212. [Google Scholar] [CrossRef]
- Davidson, E.A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nat. Geosci. 2009, 2, 659–662. [Google Scholar] [CrossRef]
- Kasliwal, R. The New Green Revolution: A Just Transition to Climate-Smart Crops. In ORF Issue Brief No. 433, January 2021; Observer Research Foundation: New Delhi, India, 2021. [Google Scholar]
- Saha, S.; Loveridge, J. Lessons learned from India’s Green Revolution: Why the Green Revolution is highly relevant for today’s world of pandemics, food insecurity, and uncertainty. TATuP-Z. Für Tech. Theor. Und Prax. J. Technol. Assess. Theory Pract. 2020, 29, 58–61. [Google Scholar] [CrossRef]
- Şen, Z. Innovative trend analysis methodology. J. Hydrol. Eng. 2012, 17, 1042–1046. [Google Scholar] [CrossRef]
- Pour, S.H.; Wahab, A.K.A.; Shahid, S.; Ismail, Z.B. Changes in reference evapotranspiration and its driving factors in peninsular Malaysia. Atmos. Res. 2020, 246, 105096. [Google Scholar] [CrossRef]
- Şen, Z. Innovative trend significance test and applications. Theor. Appl. Climatol. 2017, 127, 939–947. [Google Scholar] [CrossRef]
- Godfred-Spenning, C.R.; Reason, C.J. Interannual variability of lower-tropospheric moisture transport during the Australian monsoon. Int. J. Climatol. 2002, 22, 509–532. [Google Scholar] [CrossRef]
- Fasullo, J.; Webster, P.J. A hydrological definition of Indian monsoon onset and withdrawal. J. Clim. 2003, 16, 3200–3211. [Google Scholar] [CrossRef] [Green Version]
- Durai, V.R.; Bhowmik, S.R. Prediction of Indian summer monsoon in short to medium range time scale with high resolution global forecast system (GFS) T574 and T382. Clim. Dyn. 2014, 42, 1527–1551. [Google Scholar] [CrossRef]
- Maurya, R.K.S.; Sinha, P.; Mohanty, M.R.; Mohanty, U.C. RegCM4 model sensitivity to horizontal resolution and domain size in simulating the Indian summer monsoon. Atmos. Res. 2018, 210, 15–33. [Google Scholar] [CrossRef]
- Singh, P.; Kumar, N. Effect of orography on precipitation in the western Himalayan region. J. Hydrol. 1997, 199, 183–206. [Google Scholar] [CrossRef]
- Kuraji, K.; Punyatrong, K.; Suzuki, M. Altitudinal increase in rainfall in the Mae Chaem watershed, Thailand. J. Meteorol. Soc. Japan 2001, 79, 353–363. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, D.; Singh, P.; Nakamura, K. Spatiotemporal variation of rainfall over the central Himalayan region revealed by TRMM Precipitation Radar. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, R.; Sanjay, J.; Gnanaseelan, C.; Mujumdar, M.; Kulkarni, A.; Chakraborty, S. Assessment of Climate Change over the Indian Region: A Report of the Ministry of Earth Sciences (MOES), Government of India; Springer: Berlin/Heidelberg, Germany, 2020; pp. 23–28. [Google Scholar]
- Praveen, B.; Talukdar, S.; Mahato, S.; Mondal, J.; Sharma, P.; Islam, A.R.M.; Rahman, A. Analyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approaches. Sci. Rep. 2020, 10, 10342. [Google Scholar] [CrossRef] [PubMed]
- Guhathakurta, P.; Narkhede, N.; Menon, P.; Prasad, A.K.; Sangwan, N. CRS-IMD, Observed Rainfall Variability and Changes over Haryana State (2020). In Met Monograph No.: ESSO/IMD/HS/Rainfall Variability/09(2020)/33; Ministry of Earth Sciences, Government of India: New Delhi, India, 2020; pp. 43–56. [Google Scholar]
- Nain, M.; Hooda, B.K. Probability and trend analysis of monthly rainfall in Haryana. Int. J. Agri. Stat. Sci. 2019, 15, 221–229. [Google Scholar] [CrossRef]
- Malik, D.; Singh, K.K. Rainfall Trend Analysis of Various Districts of Haryana, India. In Sustainable Engineering; Springer: Singapore, 2019; pp. 95–109. [Google Scholar]
- Anurag, A.K.; Singh, D.; Singh, R.; Kumar, M.; Singh, S.; Kumar, S. Changes in weather entities and extreme events in western Haryana, India. J. Agrometeorol. 2018, 20, 135–142. [Google Scholar]
- Sharma, A.; Jain, K. Long-Term Trend Analysis of Rainfall Data of Sirsa Districts of Haryana. J. Water Res. Pollut. Stud. 2017, 2, 1–9. Available online: http://matjournals.in/index.php/JoWRPS/article/view/1436 (accessed on 21 February 2022).
- Anurag, A.K.; Singh, R.; Singh, D.; Kumar, M. Long Term Trends In Weather Parameters At Hisar (Haryana): A Location In Semi Arid Region of North West India. Int. J. Recent Sci. Res. 2017, 8, 18087–18090. [Google Scholar]
- Bemal, S.; Singh, D.; Singh, S. Rainfall variability analysis over eastern agroclimatic zone of Haryana. J. Agrometeorol. 2012, 14, 88–90. [Google Scholar]
- Kaur, N.; Yousuf, A.; Singh, M.J. Long term rainfall variability and trend analysis. Mausam 2021, 72, 571–582. [Google Scholar] [CrossRef]
- Liu, C.; Zipser, E.J. The global distribution of largest, deepest, and most intense precipitation systems. Geophys. Res. Lett. 2015, 42, 3591–3595. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Dai, A.; Rasmussen, R.M.; Parsons, D.B. The changing character of precipitation. Bull. Am. Meteorol. Soc. 2003, 84, 1205–1218. [Google Scholar] [CrossRef]
- Trenberth, K.E. Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change. Clim. Change 1998, 39, 667–694. [Google Scholar] [CrossRef]
- Trenberth, K.E. Conceptual framework for changes of extremes of the hydrological cycle with climate change. In Weather and Climate Extremes; Springer: Dordrecht, The Netherlands, 1999; pp. 327–339. [Google Scholar] [CrossRef]
- Rao, Y.P. Meteorological Monograph on Synoptic Meteorology, No. 111976; Southwest Monsoon, India Meteorological Department: New Delhi, India, 1976; p. 337. [Google Scholar]
- Gadgil, S. Monsoon–ocean coupling. Curr. Sci. 2000, 10, 309–322. [Google Scholar]
- Sikka, D.R. A study on the monsoon low pressure systems over the Indian region and their relationship with drought and excess monsoon seasonal rainfall. COLA Tech. Rep. 2006, 217, 61. [Google Scholar]
- Krishnan, R.; Sabin, T.P.; Ayantika, D.C.; Kitoh, A.; Sugi, M.; Murakami, H.; Turner, A.G.; Slingo, J.M.; Rajendran, K. Will the south Asian monsoon overturning circulation stabilize any further? Clim. Dyn. 2013, 40, 187–211. [Google Scholar] [CrossRef]
District | Winter | Pre-Monsoon | Monsoon | Post-Monsoon | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | MXR | PNR | Mean | SD | MXR | PNR | Mean | SD | MXR | PNR | Mean | SD | MXR | PNR | |
AM | 79.8 | 52.3 | 289.9 (1961) | 20.0 | 65.8 | 50.8 | 329.6 (1982) | 24.2 | 863.0 | 262.2 | 1754.5 (1995) | 45.0 | 47.9 | 54.0 | 282.8 (1955) | 12.5 |
BH | 25.5 | 22.1 | 99.5 (1977) | 11.7 | 30.7 | 25.9 | 147.7 (2008) | 11.7 | 352.9 | 136.4 | 733.6 (1917) | 39.2 | 17.7 | 24.0 | 132.5 (1997) | 9.2 |
CD | 22.0 | 21.3 | 100.6 (1970) | 15.0 | 27.9 | 27.8 | 146.7 (1982) | 15.8 | 343.7 | 158.5 | 839.6 (1995) | 30.8 | 16.1 | 22.6 | 108.5 (1956) | 11.7 |
FR | 27.5 | 28.1 | 113.2 (1928) | 12.5 | 22.9 | 27.2 | 138.0 (1944) | 10.8 | 520.0 | 265.2 | 1424.5 (1923) | 29.2 | 24.7 | 41.1 | 231.4 (1956) | 6.7 |
FT | 26.9 | 21.0 | 102.5 (1962) | 13.3 | 33.2 | 28.0 | 151.1 (1983) | 16.7 | 307.3 | 135.3 | 670.8 (1917) | 33.3 | 18.2 | 28.3 | 201.6 (1955) | 11.7 |
GU | 29.8 | 23.3 | 89.9 (1915) | 13.3 | 37.5 | 37.7 | 204.7 (1983) | 13.3 | 514.4 | 182.9 | 934.6 (1933) | 38.3 | 24.0 | 35.2 | 227.6 (1956) | 5.8 |
HI | 27.6 | 23.3 | 112.9 (1954) | 17.5 | 35.5 | 27.9 | 126.5 (1982) | 17.5 | 336.7 | 135.3 | 724.8 (1917) | 38.3 | 18.5 | 27.5 | 170.0 (1917) | 10.8 |
JH | 26.0 | 21.6 | 102.4 (2013) | 18.3 | 31.7 | 31.3 | 160.0 (1982) | 9.2 | 429.0 | 168.5 | 905.2 (1977) | 40.0 | 19.0 | 27.4 | 170.5 (1956) | 10.8 |
JI | 33.2 | 29.2 | 148.7 (2013) | 16.7 | 34.7 | 30.4 | 145.6 (1982) | 16.7 | 388.4 | 150.8 | 832.7 (1933) | 45.0 | 19.6 | 26.9 | 137.4 (1955) | 10.8 |
KT | 43.4 | 32.5 | 137.0 (1937) | 15.8 | 41.6 | 36.0 | 174.5 (1983) | 17.5 | 441.9 | 166.9 | 1159.7 (1988) | 40.8 | 24.0 | 31.8 | 173.5 (1917) | 12.5 |
KR | 46.3 | 34.8 | 168.4 (1954) | 17.5 | 38.4 | 33.6 | 173.6 (2020) | 16.7 | 529.1 | 173.2 | 1030.8 (1942) | 37.5 | 28.6 | 37.9 | 219.3 (1955) | 6.7 |
KU | 56.1 | 38.0 | 174.2 (1954) | 20.8 | 48.3 | 40.9 | 233.9 (1982) | 19.2 | 591.4 | 181.6 | 1251.3 (1988) | 50.0 | 34.7 | 42.3 | 223.6 (1955) | 13.3 |
MH | 21.0 | 22.2 | 101.2 (1948) | 10.0 | 29.3 | 27.9 | 137.4 (1913) | 15.0 | 396.5 | 164.3 | 932.2 (1908) | 37.5 | 16.8 | 22.9 | 103.0 (1956) | 12.5 |
NH | 22.9 | 20.9 | 105.3 (1948) | 20.0 | 25.8 | 27.5 | 136.2 (1982) | 14.2 | 480.5 | 172.2 | 1064.0 (1917) | 46.7 | 22.8 | 36.5 | 249.3 (1910) | 13.3 |
PL | 26.0 | 22.8 | 93.4 (1954) | 16.7 | 25.9 | 29.3 | 131.6 (1982) | 9.2 | 487.9 | 185.6 | 1052.7 (1933) | 40.8 | 26.7 | 45.8 | 334.6 (1956) | 15.0 |
PK | 125.0 | 76.0 | 432.5 (1961) | 24.2 | 118.6 | 81.5 | 536.4 (1982) | 23.3 | 1061.1 | 318.3 | 1929.2 (1964) | 51.7 | 74.4 | 87.8 | 531.0 (1956) | 13.3 |
PP | 40.5 | 32.8 | 166.1 (1954) | 14.2 | 35.7 | 36.0 | 228.7 (1982) | 18.3 | 549.9 | 219.8 | 1075.1 (1964) | 30.8 | 29.1 | 44.3 | 297.9 (1956) | 10.0 |
RE | 25.6 | 23.7 | 125.9 (1948) | 14.2 | 33.3 | 34.6 | 161.3 (1913) | 14.2 | 456.4 | 172.3 | 1085.0 (1917) | 45.0 | 20.5 | 27.2 | 130.2 (1997) | 10.0 |
RO | 31.0 | 27.0 | 159.9 (2013) | 15.0 | 36.9 | 33.7 | 192.5 (1982) | 15.0 | 417.8 | 163.0 | 989.2 (1995) | 36.7 | 21.1 | 25.2 | 114.6 (1997) | 5.8 |
SI | 23.3 | 20.1 | 87.9 (1954) | 15.0 | 27.7 | 23.7 | 116.5 (1982) | 13.3 | 259.8 | 118.4 | 811.3 (1917) | 31.7 | 15.5 | 26.2 | 221.4 (1955) | 10.0 |
SO | 37.1 | 28.2 | 148.6 (2013) | 18.3 | 39.2 | 35.9 | 230.1 (1982) | 20.8 | 488.1 | 173.5 | 1072.0 (1964) | 39.2 | 24.6 | 32.5 | 220.9 (1956) | 9.2 |
YN | 78.1 | 54.5 | 258.7 (2013) | 19.2 | 62.3 | 47.0 | 235.8 (1982) | 21.7 | 935.0 | 267.8 | 1536.1 (1966) | 45.8 | 48.3 | 58.2 | 410.1 (1956) | 10.8 |
HR | 37.0 | 24.8 | 117.5 (1954) | 20.0 | 37.7 | 28.8 | 167.8 (1982) | 17.5 | 468.3 | 136.9 | 815.3 (1917) | 43.3 | 24.8 | 29.4 | 165.8 (1956) | 12.5 |
District | QDT1 | QDT2 | QDT3 | 120 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ITAS | σs | ρ | CL95 | CL99 | ITAS | σs | ρ | CL95 | CL99 | ITAS | σs | ρ | CL95 | CL99 | ITAS | σs | ρ | CL95 | CL99 | |
AM | 0.41 ** | 0.12 | 0.96 | ±0.23 | ±0.3 | −1.16 ** | 0.18 | 0.93 | ±0.35 | ±0.47 | −0.8 ** | 0.13 | 0.94 | ±0.25 | ±0.32 | −0.17 ** | 0.02 | 0.97 | ±0.04 | ±0.05 |
BH | −0.1 * | 0.05 | 0.96 | ±0.09 | ±0.12 | −0.03 | 0.03 | 0.99 | ±0.07 | ±0.09 | −0.06 | 0.06 | 0.93 | ±0.12 | ±0.16 | −0.04 ** | 0.01 | 0.99 | ±0.01 | ±0.01 |
CD | −0.3 ** | 0.03 | 0.98 | ±0.06 | ±0.08 | 0.31 ** | 0.06 | 0.93 | ±0.13 | ±0.17 | −0.16 ** | 0.03 | 0.98 | ±0.07 | ±0.09 | 0.01 | 0.01 | 0.96 | ±0.02 | ±0.02 |
FR | 0.2 ** | 0.05 | 0.98 | ±0.1 | ±0.13 | −0.73 ** | 0.08 | 0.94 | ±0.15 | ±0.2 | 0.05 | 0.05 | 0.96 | ±0.1 | ±0.14 | −0.17 ** | 0.01 | 0.98 | ±0.02 | ±0.02 |
FT | −0.1 * | 0.05 | 0.95 | ±0.09 | ±0.12 | −0.07 | 0.04 | 0.98 | ±0.07 | ±0.1 | −0.44 ** | 0.05 | 0.94 | ±0.09 | ±0.12 | −0.03 ** | 0.01 | 0.98 | ±0.01 | ±0.02 |
GU | −0.41 ** | 0.05 | 0.97 | ±0.1 | ±0.13 | −0.39 ** | 0.08 | 0.92 | ±0.15 | ±0.19 | −0.28 ** | 0.03 | 0.98 | ±0.07 | ±0.09 | −0.09 ** | 0.01 | 0.98 | ±0.01 | ±0.02 |
HI | −0.23 ** | 0.03 | 0.98 | ±0.06 | ±0.08 | −0.57 ** | 0.06 | 0.96 | ±0.11 | ±0.15 | 0.07 | 0.07 | 0.9 | ±0.14 | ±0.19 | −0.13 ** | 0.01 | 0.97 | ±0.02 | ±0.02 |
JH | −0.43 ** | 0.04 | 0.98 | ±0.07 | ±0.1 | −0.17 ** | 0.04 | 0.97 | ±0.07 | ±0.1 | −0.28 ** | 0.04 | 0.98 | ±0.08 | ±0.1 | −0.07 ** | 0.01 | 0.97 | ±0.02 | ±0.02 |
JI | 0.03 | 0.05 | 0.97 | ±0.1 | ±0.13 | −0.77 ** | 0.06 | 0.96 | ±0.13 | ±0.16 | −0.13 | 0.07 | 0.96 | ±0.14 | ±0.18 | −0.09 ** | 0.01 | 0.97 | ±0.02 | ±0.03 |
KT | 0.06 | 0.07 | 0.97 | ±0.13 | ±0.18 | −1.09 ** | 0.09 | 0.94 | ±0.18 | ±0.24 | −0.23 ** | 0.03 | 0.99 | ±0.07 | ±0.09 | −0.13 ** | 0.01 | 0.98 | ±0.02 | ±0.02 |
KR | 0.03 | 0.04 | 0.99 | ±0.08 | ±0.1 | −1.02 ** | 0.07 | 0.97 | ±0.13 | ±0.18 | 0.23 * | 0.11 | 0.92 | ±0.21 | ±0.28 | −0.16 ** | 0.01 | 0.98 | ±0.02 | ±0.02 |
KU | 0.22 ** | 0.06 | 0.98 | ±0.11 | ±0.15 | −1.43 ** | 0.06 | 0.98 | ±0.13 | ±0.17 | −0.57 ** | 0.12 | 0.91 | ±0.23 | ±0.31 | −0.23 ** | 0.01 | 0.99 | ±0.02 | ±0.02 |
MH | −0.38 ** | 0.05 | 0.96 | ±0.1 | ±0.13 | −0.09 * | 0.04 | 0.98 | ±0.07 | ±0.1 | 0.26 ** | 0.05 | 0.96 | ±0.09 | ±0.12 | −0.05 ** | 0.01 | 0.99 | ±0.01 | ±0.01 |
NH | −0.47 ** | 0.06 | 0.94 | ±0.12 | ±0.15 | −0.56 ** | 0.08 | 0.9 | ±0.16 | ±0.22 | 0.13 ** | 0.03 | 0.98 | ±0.05 | ±0.07 | −0.16 ** | 0.01 | 0.98 | ±0.01 | ±0.02 |
PL | −0.06 | 0.05 | 0.96 | ±0.1 | ±0.13 | −0.59 ** | 0.05 | 0.96 | ±0.1 | ±0.13 | 0.08 ** | 0.03 | 0.99 | ±0.05 | ±0.07 | −0.13 ** | 0.01 | 0.98 | ±0.01 | ±0.02 |
PK | 0.3 * | 0.13 | 0.97 | ±0.26 | ±0.34 | 0.28 | 0.15 | 0.98 | ±0.29 | ±0.38 | −1.5 ** | 0.08 | 0.99 | ±0.15 | ±0.2 | 0.06 ** | 0.02 | 0.98 | ±0.04 | ±0.06 |
PP | −0.12 | 0.08 | 0.95 | ±0.17 | ±0.22 | −0.89 ** | 0.1 | 0.94 | ±0.19 | ±0.25 | −0.06 | 0.08 | 0.95 | ±0.16 | ±0.21 | −0.18 ** | 0.01 | 0.98 | ±0.02 | ±0.02 |
RE | −0.39 ** | 0.04 | 0.98 | ±0.07 | ±0.09 | −0.64 ** | 0.05 | 0.97 | ±0.09 | ±0.12 | 0.08 | 0.06 | 0.95 | ±0.11 | ±0.14 | −0.09 ** | 0.01 | 0.97 | ±0.02 | ±0.02 |
RO | −0.2 ** | 0.05 | 0.97 | ±0.11 | ±0.14 | −0.29 ** | 0.05 | 0.97 | ±0.09 | ±0.12 | −0.2 | 0.13 | 0.84 | ±0.25 | ±0.33 | −0.09 ** | 0.01 | 0.94 | ±0.03 | ±0.04 |
SI | −0.02 | 0.05 | 0.95 | ±0.1 | ±0.13 | −0.25 ** | 0.04 | 0.97 | ±0.09 | ±0.11 | −0.24 ** | 0.05 | 0.94 | ±0.09 | ±0.12 | −0.05 ** | 0 | 1 | ±0.01 | ±0.01 |
SO | −0.02 | 0.06 | 0.97 | ±0.12 | ±0.15 | −0.69 ** | 0.09 | 0.91 | ±0.17 | ±0.22 | 0.06 | 0.07 | 0.96 | ±0.13 | ±0.17 | −0.12 ** | 0.01 | 0.97 | ±0.02 | ±0.03 |
YN | 0.92 ** | 0.11 | 0.97 | ±0.22 | ±0.29 | −1.81 ** | 0.15 | 0.94 | ±0.3 | ±0.4 | −0.19 | 0.12 | 0.95 | ±0.24 | ±0.31 | −0.28 ** | 0.02 | 0.96 | ±0.05 | ±0.06 |
HR | −0.04 | 0.04 | 0.98 | ±0.08 | ±0.11 | −0.58 ** | 0.06 | 0.96 | ±0.12 | ±0.16 | −0.16 ** | 0.06 | 0.95 | ±0.11 | ±0.15 | −0.11 ** | 0.01 | 0.97 | ±0.02 | ±0.02 |
District | QDT1 | QDT2 | QDT3 | 120 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ITAS | σs | ρ | CL95 | CL99 | ITAS | σs | ρ | CL95 | CL99 | ITAS | σs | ρ | CL95 | CL99 | ITAS | σs | ρ | CL95 | CL99 | |
AM | −0.8 ** | 0.05 | 0.98 | ±0.11 | ±0.14 | 1.16 ** | 0.06 | 0.98 | ±0.11 | ±0.14 | 0.14 | 0.17 | 0.95 | ±0.34 | ±0.45 | 0.51 ** | 0.01 | 0.99 | ±0.02 | ±0.03 |
BH | −0.9 ** | 0.04 | 0.96 | ±0.09 | ±0.12 | 0.27 ** | 0.04 | 0.96 | ±0.08 | ±0.11 | 1 ** | 0.09 | 0.94 | ±0.18 | ±0.23 | 0.2 ** | 0.01 | 0.98 | ±0.01 | ±0.02 |
CD | −1.02 ** | 0.07 | 0.95 | ±0.13 | ±0.17 | 0.64 ** | 0.04 | 0.97 | ±0.07 | ±0.1 | 0.83 ** | 0.12 | 0.9 | ±0.23 | ±0.3 | 0.22 ** | 0.01 | 0.98 | ±0.02 | ±0.02 |
FR | 0.03 | 0.05 | 0.98 | ±0.09 | ±0.12 | −0.63 ** | 0.03 | 0.99 | ±0.06 | ±0.08 | 0.01 | 0.09 | 0.89 | ±0.18 | ±0.24 | −0.08 ** | 0.01 | 0.96 | ±0.02 | ±0.03 |
FT | −0.54 ** | 0.03 | 0.99 | ±0.05 | ±0.07 | 0.68 ** | 0.05 | 0.97 | ±0.09 | ±0.12 | −0.08 | 0.12 | 0.91 | ±0.23 | ±0.3 | 0.17 ** | 0.01 | 0.99 | ±0.01 | ±0.02 |
GU | −0.64 ** | 0.07 | 0.96 | ±0.13 | ±0.17 | 0.55 ** | 0.04 | 0.99 | ±0.07 | ±0.1 | 0.31 | 0.2 | 0.86 | ±0.39 | ±0.51 | 0.23 ** | 0.01 | 0.99 | ±0.02 | ±0.02 |
HI | −0.64 ** | 0.03 | 0.98 | ±0.07 | ±0.09 | 0.09 | 0.05 | 0.95 | ±0.1 | ±0.13 | 0.73 ** | 0.14 | 0.86 | ±0.28 | ±0.37 | 0.12 ** | 0 | 0.99 | ±0.01 | ±0.01 |
JH | −0.79 ** | 0.09 | 0.92 | ±0.17 | ±0.23 | 0.72 ** | 0.06 | 0.95 | ±0.12 | ±0.16 | 0.67 ** | 0.11 | 0.93 | ±0.22 | ±0.29 | 0.21 ** | 0.01 | 0.99 | ±0.01 | ±0.02 |
JI | −0.64 ** | 0.05 | 0.97 | ±0.11 | ±0.14 | 0.23 ** | 0.07 | 0.9 | ±0.13 | ±0.17 | 0.48 ** | 0.08 | 0.96 | ±0.17 | ±0.22 | 0.19 ** | 0.01 | 0.99 | ±0.02 | ±0.02 |
KT | −0.88 ** | 0.06 | 0.97 | ±0.13 | ±0.17 | −0.13 | 0.07 | 0.9 | ±0.14 | ±0.19 | 0 | 0.13 | 0.94 | ±0.25 | ±0.32 | 0.17 ** | 0.02 | 0.95 | ±0.03 | ±0.04 |
KR | −0.81 ** | 0.06 | 0.97 | ±0.12 | ±0.15 | 0.06 | 0.03 | 0.97 | ±0.07 | ±0.09 | 0.39 ** | 0.07 | 0.98 | ±0.14 | ±0.18 | 0.16 ** | 0.01 | 0.98 | ±0.02 | ±0.02 |
KU | −1.07 ** | 0.06 | 0.97 | ±0.11 | ±0.15 | 0.45 ** | 0.06 | 0.96 | ±0.12 | ±0.16 | −0.57 ** | 0.12 | 0.96 | ±0.23 | ±0.3 | 0.33 ** | 0.01 | 0.98 | ±0.02 | ±0.03 |
MH | −0.75 ** | 0.06 | 0.97 | ±0.11 | ±0.15 | 0.19 ** | 0.07 | 0.91 | ±0.13 | ±0.17 | 1.04 ** | 0.05 | 0.98 | ±0.1 | ±0.13 | 0.21 ** | 0.01 | 0.96 | ±0.02 | ±0.03 |
NH | −0.66 ** | 0.07 | 0.94 | ±0.14 | ±0.18 | 0.03 | 0.05 | 0.92 | ±0.1 | ±0.14 | 0.87 ** | 0.14 | 0.86 | ±0.28 | ±0.36 | 0.07 ** | 0.01 | 0.97 | ±0.02 | ±0.03 |
PL | −0.73 ** | 0.09 | 0.94 | ±0.17 | ±0.22 | −0.43 ** | 0.06 | 0.87 | ±0.12 | ±0.16 | 0.39 ** | 0.08 | 0.96 | ±0.16 | ±0.21 | 0.03 ** | 0.01 | 0.98 | ±0.02 | ±0.03 |
PK | −1.55 ** | 0.19 | 0.92 | ±0.37 | ±0.49 | 2.1 ** | 0.17 | 0.94 | ±0.34 | ±0.44 | −2 ** | 0.2 | 0.97 | ±0.39 | ±0.51 | 0.81 ** | 0.03 | 0.97 | ±0.06 | ±0.08 |
PP | −0.8 ** | 0.09 | 0.93 | ±0.17 | ±0.23 | 0.16 ** | 0.03 | 0.97 | ±0.07 | ±0.09 | 0.08 | 0.07 | 0.99 | ±0.13 | ±0.17 | 0.15 ** | 0.01 | 0.97 | ±0.03 | ±0.03 |
RE | −0.97 ** | 0.06 | 0.98 | ±0.11 | ±0.14 | 0.35 ** | 0.03 | 0.98 | ±0.07 | ±0.09 | 1.13 ** | 0.06 | 0.98 | ±0.12 | ±0.16 | 0.24 ** | 0.01 | 0.97 | ±0.02 | ±0.03 |
RO | −0.78 ** | 0.08 | 0.92 | ±0.16 | ±0.21 | 0.56 ** | 0.05 | 0.94 | ±0.1 | ±0.13 | 0.49 ** | 0.1 | 0.96 | ±0.2 | ±0.27 | 0.27 ** | 0.01 | 0.99 | ±0.02 | ±0.02 |
SI | −0.35 ** | 0.05 | 0.95 | ±0.1 | ±0.13 | 0.57 ** | 0.05 | 0.95 | ±0.1 | ±0.13 | 0.33 ** | 0.09 | 0.94 | ±0.17 | ±0.22 | 0.16 ** | 0.01 | 0.99 | ±0.01 | ±0.01 |
SO | −0.67 ** | 0.08 | 0.94 | ±0.16 | ±0.21 | 0.28 ** | 0.03 | 0.97 | ±0.06 | ±0.08 | 0.33 | 0.14 | 0.94 | ±0.27 | ±0.36 | 0.22 ** | 0.01 | 0.98 | ±0.02 | ±0.03 |
YN | −1.22 ** | 0.12 | 0.90 | ±0.24 | ±0.32 | 0.18 ** | 0.06 | 0.98 | ±0.11 | ±0.15 | −0.35 ** | 0.13 | 0.96 | ±0.26 | ±0.34 | 0.41 ** | 0.01 | 0.99 | ±0.02 | ±0.03 |
HR | −0.75 ** | 0.06 | 0.95 | ±0.11 | ±0.15 | 0.35 ** | 0.05 | 0.93 | ±0.1 | ±0.13 | 0.35 ** | 0.09 | 0.96 | ±0.17 | ±0.22 | 0.21 ** | 0.01 | 0.98 | ±0.02 | ±0.02 |
District | QDT1 | QDT2 | QDT3 | 120 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ITAS | σs | ρ | CL95 | CL99 | ITAS | σs | ρ | CL95 | CL99 | ITAS | σs | ρ | CL95 | CL99 | ITAS | σs | ρ | CL95 | CL99 | |
AM | −0.52 | 0.47 | 0.96 | ±0.92 | ±1.21 | 5.72 ** | 0.54 | 0.97 | ±1.05 | ±1.38 | −8.46 ** | 0.59 | 0.97 | ±1.15 | ±1.52 | 2.14 ** | 0.06 | 0.99 | ±0.12 | ±0.16 |
BH | −1.55 ** | 0.17 | 0.99 | ±0.34 | ±0.45 | 0.69 | 0.39 | 0.93 | ±0.76 | ±1 | −0.34 | 0.19 | 0.99 | ±0.37 | ±0.49 | 0.02 | 0.04 | 0.98 | ±0.08 | ±0.1 |
CD | −2.55 ** | 0.22 | 0.98 | ±0.44 | ±0.57 | 6.14 ** | 0.45 | 0.94 | ±0.88 | ±1.16 | 0.45 * | 0.23 | 0.99 | ±0.44 | ±0.58 | 0.78 ** | 0.02 | 1 | ±0.05 | ±0.06 |
FR | 10.12 ** | 0.56 | 0.98 | ±1.09 | ±1.43 | −3.11 ** | 0.68 | 0.94 | ±1.33 | ±1.75 | −2.68 ** | 0.34 | 0.97 | ±0.67 | ±0.89 | −2.26 ** | 0.06 | 0.99 | ±0.11 | ±0.15 |
FT | −0.43 | 0.38 | 0.93 | ±0.75 | ±0.99 | 0 | 0.18 | 0.99 | ±0.36 | ±0.47 | −1.49 ** | 0.35 | 0.95 | ±0.68 | ±0.89 | −0.08 ** | 0.02 | 0.99 | ±0.04 | ±0.06 |
GU | −1.15 * | 0.50 | 0.94 | ±0.97 | ±1.28 | 5.44 ** | 0.28 | 0.98 | ±0.54 | ±0.71 | −3.26 ** | 0.61 | 0.9 | ±1.19 | ±1.57 | 0.99 ** | 0.04 | 0.99 | ±0.07 | ±0.1 |
HI | 0.53 | 0.41 | 0.93 | ±0.8 | ±1.05 | −0.86 ** | 0.31 | 0.96 | ±0.6 | ±0.79 | 0.08 | 0.27 | 0.97 | ±0.53 | ±0.69 | −0.43 ** | 0.03 | 0.99 | ±0.06 | ±0.08 |
JH | −1.91 ** | 0.19 | 0.99 | ±0.37 | ±0.49 | 6.63 ** | 0.27 | 0.98 | ±0.52 | ±0.69 | −2.36 ** | 0.35 | 0.96 | ±0.69 | ±0.9 | 0.65 ** | 0.03 | 0.99 | ±0.06 | ±0.08 |
JI | 0.01 | 0.48 | 0.91 | ±0.95 | ±1.25 | −2.64 ** | 0.3 | 0.97 | ±0.58 | ±0.76 | 0.23 | 0.26 | 0.97 | ±0.51 | ±0.68 | −0.76 ** | 0.03 | 0.99 | ±0.07 | ±0.09 |
KT | 0.23 | 0.39 | 0.93 | ±0.77 | ±1.01 | −3.23 ** | 0.38 | 0.95 | ±0.74 | ±0.97 | −2.83 ** | 0.34 | 0.98 | ±0.67 | ±0.88 | 0.06 | 0.05 | 0.98 | ±0.1 | ±0.14 |
KR | −0.19 | 0.34 | 0.97 | ±0.67 | ±0.88 | −1.38 ** | 0.31 | 0.97 | ±0.61 | ±0.8 | −2.48 ** | 0.39 | 0.96 | ±0.76 | ±0.99 | −0.69 ** | 0.06 | 0.98 | ±0.11 | ±0.15 |
KU | −0.95 ** | 0.34 | 0.96 | ±0.67 | ±0.88 | 0.88 | 0.48 | 0.92 | ±0.95 | ±1.24 | −8.61 ** | 0.38 | 0.98 | ±0.75 | ±0.98 | 0.4 ** | 0.04 | 0.99 | ±0.07 | ±0.1 |
MH | −1.98 ** | 0.47 | 0.95 | ±0.93 | ±1.22 | 2.26 ** | 0.31 | 0.96 | ±0.61 | ±0.8 | 1.8 ** | 0.35 | 0.96 | ±0.69 | ±0.91 | −0.1 | 0.05 | 0.98 | ±0.1 | ±0.13 |
NH | −1.03 ** | 0.30 | 0.98 | ±0.6 | ±0.79 | 1.23 ** | 0.25 | 0.98 | ±0.5 | ±0.65 | 0.32 | 0.29 | 0.97 | ±0.57 | ±0.75 | −0.43 ** | 0.05 | 0.98 | ±0.09 | ±0.12 |
PL | 2.85 ** | 0.52 | 0.94 | ±1.03 | ±1.35 | −2.34 ** | 0.39 | 0.97 | ±0.77 | ±1.01 | −2.51 ** | 0.23 | 0.98 | ±0.46 | ±0.6 | −1.07 ** | 0.04 | 0.99 | ±0.07 | ±0.09 |
PK | 2.92 ** | 0.44 | 0.98 | ±0.87 | ±1.14 | −0.22 | 0.5 | 0.98 | ±0.97 | ±1.28 | −3.64 ** | 0.66 | 0.96 | ±1.29 | ±1.69 | −2.58 ** | 0.08 | 0.99 | ±0.16 | ±0.21 |
PP | −0.92 | 0.63 | 0.93 | ±1.23 | ±1.61 | −0.28 | 0.41 | 0.97 | ±0.81 | ±1.07 | −8.76 ** | 0.67 | 0.91 | ±1.32 | ±1.74 | −0.91 ** | 0.1 | 0.95 | ±0.2 | ±0.27 |
RE | 0.1 | 0.51 | 0.93 | ±1.01 | ±1.32 | 1.64 ** | 0.27 | 0.98 | ±0.52 | ±0.68 | −2.88 ** | 0.34 | 0.97 | ±0.66 | ±0.87 | 0.65 ** | 0.05 | 0.98 | ±0.1 | ±0.13 |
RO | −0.07 | 0.40 | 0.95 | ±0.79 | ±1.04 | 4.46 ** | 0.32 | 0.97 | ±0.63 | ±0.83 | −3.26 ** | 0.55 | 0.92 | ±1.07 | ±1.4 | 0.54 ** | 0.04 | 0.99 | ±0.07 | ±0.09 |
SI | −0.79 | 0.47 | 0.91 | ±0.92 | ±1.21 | −0.9 ** | 0.16 | 0.98 | ±0.32 | ±0.42 | −0.84 ** | 0.24 | 0.96 | ±0.47 | ±0.61 | −0.34 ** | 0.04 | 0.97 | ±0.08 | ±0.11 |
SO | −1.22 * | 0.47 | 0.93 | ±0.93 | ±1.22 | 5.91 ** | 0.27 | 0.98 | ±0.52 | ±0.69 | −3.83 ** | 0.51 | 0.92 | ±1 | ±1.32 | 0.47 ** | 0.05 | 0.98 | ±0.1 | ±0.13 |
YN | −1.26 | 0.74 | 0.92 | ±1.45 | ±1.91 | −5.23 ** | 0.62 | 0.96 | ±1.22 | ±1.6 | −3.16 ** | 0.33 | 0.99 | ±0.64 | ±0.84 | −0.06 | 0.07 | 0.99 | ±0.13 | ±0.18 |
HR | −0.37 | 0.30 | 0.96 | ±0.58 | ±0.77 | 0.68 ** | 0.23 | 0.97 | ±0.45 | ±0.59 | −2.26 ** | 0.25 | 0.97 | ±0.5 | ±0.65 | −0.06 | 0.04 | 0.98 | ±0.07 | ±0.09 |
District | QDT1 | QDT2 | QDT3 | 120 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ITAS | σs | ρ | CL95 | CL99 | ITAS | σs | ρ | CL95 | CL99 | ITAS | σs | ρ | CL95 | CL99 | ITAS | σs | ρ | CL95 | CL99 | |
AM | −0.09 | 0.13 | 0.94 | ±0.25 | ±0.33 | −0.43 | 0.3 | 0.83 | ±0.59 | ±0.77 | −1.41 ** | 0.09 | 0.97 | ±0.18 | ±0.23 | −0.05 | 0.03 | 0.94 | ±0.06 | ±0.08 |
BH | 0.01 | 0.02 | 0.99 | ±0.04 | ±0.05 | −0.38 ** | 0.1 | 0.88 | ±0.2 | ±0.26 | −0.2 ** | 0.05 | 0.96 | ±0.1 | ±0.13 | −0.1 ** | 0.02 | 0.9 | ±0.03 | ±0.04 |
CD | −0.37 ** | 0.03 | 0.98 | ±0.06 | ±0.08 | −0.42 ** | 0.08 | 0.94 | ±0.16 | ±0.21 | −0.12 | 0.07 | 0.89 | ±0.13 | ±0.17 | −0.09 ** | 0.01 | 0.97 | ±0.02 | ±0.02 |
FR | 0.68 ** | 0.24 | 0.75 | ±0.48 | ±0.62 | −1.23 ** | 0.21 | 0.87 | ±0.42 | ±0.55 | −0.03 | 0.08 | 0.88 | ±0.15 | ±0.2 | −0.3 ** | 0.03 | 0.92 | ±0.05 | ±0.07 |
FT | −0.02 | 0.08 | 0.92 | ±0.16 | ±0.21 | −0.58 ** | 0.14 | 0.87 | ±0.28 | ±0.37 | −0.58 ** | 0.08 | 0.92 | ±0.15 | ±0.2 | −0.1 ** | 0.01 | 0.97 | ±0.02 | ±0.03 |
GU | −0.3 | 0.17 | 0.83 | ±0.33 | ±0.44 | −0.52 ** | 0.16 | 0.87 | ±0.32 | ±0.42 | −0.51 ** | 0.05 | 0.97 | ±0.1 | ±0.13 | −0.09 ** | 0.02 | 0.92 | ±0.04 | ±0.06 |
HI | 0.01 | 0.13 | 0.86 | ±0.25 | ±0.33 | −0.49 ** | 0.07 | 0.96 | ±0.13 | ±0.17 | −0.38 ** | 0.09 | 0.9 | ±0.17 | ±0.22 | −0.14 ** | 0.01 | 0.95 | ±0.03 | ±0.04 |
JH | −0.18 | 0.10 | 0.90 | ±0.19 | ±0.25 | −0.54 ** | 0.04 | 0.99 | ±0.08 | ±0.1 | −0.39 ** | 0.06 | 0.94 | ±0.11 | ±0.14 | −0.11 ** | 0.01 | 0.97 | ±0.02 | ±0.03 |
JI | 0.2 | 0.12 | 0.81 | ±0.24 | ±0.32 | −0.45 ** | 0.03 | 0.99 | ±0.06 | ±0.08 | −0.48 ** | 0.09 | 0.9 | ±0.19 | ±0.24 | −0.11 ** | 0.01 | 0.98 | ±0.02 | ±0.02 |
KT | −0.04 | 0.18 | 0.75 | ±0.36 | ±0.47 | −0.72 ** | 0.06 | 0.98 | ±0.11 | ±0.15 | −0.45 ** | 0.05 | 0.97 | ±0.1 | ±0.13 | −0.11 ** | 0.01 | 0.98 | ±0.02 | ±0.02 |
KR | 0.34 ** | 0.09 | 0.94 | ±0.17 | ±0.23 | −1.02 ** | 0.15 | 0.92 | ±0.3 | ±0.39 | −0.87 ** | 0.05 | 0.98 | ±0.1 | ±0.13 | −0.2 ** | 0.01 | 0.99 | ±0.02 | ±0.02 |
KU | −0.07 | 0.09 | 0.96 | ±0.17 | ±0.23 | −0.7 ** | 0.14 | 0.93 | ±0.28 | ±0.36 | −1.13 ** | 0.08 | 0.97 | ±0.16 | ±0.21 | −0.1 ** | 0.01 | 0.98 | ±0.02 | ±0.03 |
MH | −0.55 ** | 0.05 | 0.95 | ±0.1 | ±0.13 | −0.49 ** | 0.06 | 0.97 | ±0.11 | ±0.15 | −0.29 ** | 0.09 | 0.82 | ±0.18 | ±0.23 | −0.09 ** | 0.01 | 0.98 | ±0.01 | ±0.02 |
NH | −0.35 | 0.24 | 0.73 | ±0.47 | ±0.62 | −0.8 ** | 0.1 | 0.94 | ±0.19 | ±0.26 | −0.34 * | 0.14 | 0.83 | ±0.28 | ±0.37 | −0.18 ** | 0.02 | 0.96 | ±0.03 | ±0.04 |
PL | 0 | 0.14 | 0.92 | ±0.27 | ±0.36 | −1.7 ** | 0.12 | 0.97 | ±0.24 | ±0.31 | −0.29 ** | 0.04 | 0.98 | ±0.08 | ±0.11 | −0.35 ** | 0.02 | 0.97 | ±0.03 | ±0.04 |
PK | 0.31 | 0.22 | 0.93 | ±0.44 | ±0.57 | −1.36 * | 0.56 | 0.8 | ±1.1 | ±1.44 | −2.47 ** | 0.18 | 0.95 | ±0.36 | ±0.47 | −0.21 ** | 0.06 | 0.91 | ±0.11 | ±0.14 |
PP | 0.74 ** | 0.10 | 0.93 | ±0.2 | ±0.27 | −1.67 ** | 0.1 | 0.98 | ±0.2 | ±0.26 | −0.74 ** | 0.07 | 0.95 | ±0.13 | ±0.17 | −0.32 ** | 0.02 | 0.96 | ±0.04 | ±0.05 |
RE | −0.46 ** | 0.08 | 0.94 | ±0.16 | ±0.21 | −0.8 ** | 0.04 | 0.99 | ±0.07 | ±0.1 | −0.55 ** | 0.04 | 0.97 | ±0.09 | ±0.11 | −0.17 ** | 0.02 | 0.92 | ±0.03 | ±0.04 |
RO | 0.13 | 0.09 | 0.89 | ±0.17 | ±0.23 | −0.37 ** | 0.09 | 0.91 | ±0.18 | ±0.23 | −0.49 ** | 0.03 | 0.99 | ±0.05 | ±0.07 | −0.09 ** | 0.01 | 0.95 | ±0.02 | ±0.03 |
SI | −0.27 ** | 0.09 | 0.83 | ±0.18 | ±0.23 | −0.69 ** | 0.1 | 0.94 | ±0.2 | ±0.26 | −0.34 ** | 0.04 | 0.95 | ±0.09 | ±0.11 | −0.13 ** | 0.02 | 0.9 | ±0.03 | ±0.05 |
SO | 0.24 ** | 0.09 | 0.93 | ±0.17 | ±0.23 | −0.79 ** | 0.1 | 0.95 | ±0.2 | ±0.26 | −0.54 ** | 0.09 | 0.93 | ±0.17 | ±0.22 | −0.16 ** | 0.01 | 0.97 | ±0.02 | ±0.03 |
YN | 0.37 ** | 0.10 | 0.97 | ±0.2 | ±0.26 | −1.07 ** | 0.28 | 0.89 | ±0.55 | ±0.72 | −1.49 ** | 0.11 | 0.95 | ±0.22 | ±0.29 | −0.2 ** | 0.02 | 0.97 | ±0.04 | ±0.06 |
HR | 0 | 0.09 | 0.91 | ±0.17 | ±0.23 | −0.71 ** | 0.12 | 0.92 | ±0.23 | ±0.3 | −0.59 ** | 0.05 | 0.97 | ±0.1 | ±0.13 | −0.14 ** | 0.01 | 0.99 | ±0.01 | ±0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chauhan, A.S.; Singh, S.; Maurya, R.K.S.; Kisi, O.; Rani, A.; Danodia, A. Spatio-Temporal Analysis of Rainfall Dynamics of 120 Years (1901–2020) Using Innovative Trend Methodology: A Case Study of Haryana, India. Sustainability 2022, 14, 4888. https://doi.org/10.3390/su14094888
Chauhan AS, Singh S, Maurya RKS, Kisi O, Rani A, Danodia A. Spatio-Temporal Analysis of Rainfall Dynamics of 120 Years (1901–2020) Using Innovative Trend Methodology: A Case Study of Haryana, India. Sustainability. 2022; 14(9):4888. https://doi.org/10.3390/su14094888
Chicago/Turabian StyleChauhan, Abhilash Singh, Surender Singh, Rajesh Kumar Singh Maurya, Ozgur Kisi, Alka Rani, and Abhishek Danodia. 2022. "Spatio-Temporal Analysis of Rainfall Dynamics of 120 Years (1901–2020) Using Innovative Trend Methodology: A Case Study of Haryana, India" Sustainability 14, no. 9: 4888. https://doi.org/10.3390/su14094888
APA StyleChauhan, A. S., Singh, S., Maurya, R. K. S., Kisi, O., Rani, A., & Danodia, A. (2022). Spatio-Temporal Analysis of Rainfall Dynamics of 120 Years (1901–2020) Using Innovative Trend Methodology: A Case Study of Haryana, India. Sustainability, 14(9), 4888. https://doi.org/10.3390/su14094888