Bio-Based Materials Riding the Wave of Sustainability: Common Misconceptions, Opportunities, Challenges and the Way Forward
Abstract
:1. Introduction
2. The Ubiquitous Fallacies of Bio-Based Materials
2.1. Bio-Based Materials Falsely Deemed Biodegradable
2.2. The Blurring Line between Composability and Biodegradability
3. Current Challenges in Developing Bio-Based Materials as the Preferable Alternative for Sustainable Waste Disposal
4. Methodology
5. Results
5.1. Public Knowledge and Attitudes towards Consumption of Bio-Based Products
5.2. Public Perceptions and Awareness of the Environmental Impact of High Synthetic Rubber Utilization and Poor Waste Management
5.3. Efforts to Reduce the Use of Conventional Products
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elhacham, E.; Ben-Uri, L.; Grozovski, J.; Bar-On, Y.M.; Milo, R. Global human-made mass exceeds all living biomass. Nature 2020, 588, 442–444. [Google Scholar] [CrossRef] [PubMed]
- Amobonye, A.; Bhagwat, P.; Raveendran, S.; Singh, S.; Pillai, S. Environmental Impacts of Microplastics and Nanoplastics: A Current Overview. Front. Microbiol. 2021, 12, 768297. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.A.; Grantham, H.S.; Watson, J.E.M.; Alvarez, S.J.; Simmonds, J.S.; Rogéliz, C.A.; Da Silva, M.; Forero-Medina, G.; Etter, A.; Nogales, J.; et al. Minimising the loss of biodiversity and ecosystem services in an intact landscape under risk of rapid agricultural development. Environ. Res. Lett. 2019, 15, 014001. [Google Scholar] [CrossRef]
- Gutowski, T.; Cooper, D.; Sahni, S. Why we use more materials. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2017, 375, 20160368. [Google Scholar] [CrossRef]
- Schneider, F.; Kläy, A.; Zimmermann, A.B.; Buser, T.; Ingalls, M.; Messerli, P. How can science support the 2030 Agenda for Sustainable Development? Four tasks to tackle the normative dimension of sustainability. Sustain. Sci. 2019, 14, 1593–1604. [Google Scholar] [CrossRef] [Green Version]
- Stark, S.; Biber-Freudenberger, L.; Dietz, T.; Escobar, N.; Förster, J.J.; Henderson, J.; Laibach, N.; Börner, J. Sustainability implications of transformation pathways for the bioeconomy. Sustain. Prod. Consum. 2022, 29, 215–227. [Google Scholar] [CrossRef]
- Smith, O.; Brisman, A. Plastic Waste and the Environmental Crisis Industry. Crit. Criminol. 2021, 29, 289–309. [Google Scholar] [CrossRef] [PubMed]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [Green Version]
- United Nations Environment Programme (UNEP). Banning Single-Use Plastics: Lessons and Experiences from Countries. 2018. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/25496/singleUsePlastic_sustainability.pdf (accessed on 11 February 2022).
- Stoica, M.; Antohi, V.M.; Zlati, M.L.; Stoica, D. The financial impact of replacing plastic packaging by biodegradable biopolymers-A smart solution for the food industry. J. Clean. Prod. 2020, 277, 124013. [Google Scholar] [CrossRef]
- Thushari, G.; Senevirathna, J. Plastic pollution in the marine environment. Heliyon 2020, 6, e04709. [Google Scholar] [CrossRef]
- Gómez-Sanabria, A.; Kiesewetter, G.; Klimont, Z.; Schoepp, W.; Haberl, H. Potential for future reductions of global GHG and air pollutants from circular waste management systems. Nat. Commun. 2022, 13, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kvale, K.; Prowe, A.E.F.; Chien, C.-T.; Landolfi, A.; Oschlies, A. Zooplankton grazing of microplastic can accelerate global loss of ocean oxygen. Nat. Commun. 2021, 12, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.L.P.; Prata, J.C.; Walker, T.R.; Duarte, A.C.; Ouyang, W.; Barcelò, D.; Rocha-Santos, T. Increased plastic pollution due to COVID-19 pandemic: Challenges and recommendations. Chem. Eng. J. 2021, 405, 126683. [Google Scholar] [CrossRef]
- Ferronato, N.; Torretta, V. Waste Mismanagement in Developing Countries: A Review of Global Issues. Int. J. Environ. Res. Public Health 2019, 16, 1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Przydatek, G.; Budzik, G.; Janik, M. Effectiveness of selected issues related to used tyre management in Poland. Environ. Sci. Pollut. Res. 2022. [Google Scholar] [CrossRef] [PubMed]
- Nuzaimah, M.; Sapuan, S.M.; Nadlene, R.; Jawaid, M. Recycling of waste rubber as fillers: A review. IOP Conf. Ser. Mater. Sci. Eng. 2018, 368, 012016. [Google Scholar] [CrossRef]
- Polgar, L.M.; Migliore, N.; Picchioni, F.; Van Duin, M. Sustainable EPM rubber compounds. Polym. Technol. Mater. 2020, 59, 1379–1385. [Google Scholar] [CrossRef]
- Patti, A.; Acierno, D. Towards the Sustainability of the Plastic Industry through Biopolymers: Properties and Potential Applications to the Textiles World. Polymers 2022, 14, 692. [Google Scholar] [CrossRef]
- Reike, D.; Vermeulen, W.J.V.; Witjes, S. The circular economy: New or Refurbished as CE 3.0?—Exploring Controversies in the Conceptualization of the Circular Economy through a Focus on History and Resource Value Retention Options. Resour. Conserv. Recycl. 2018, 135, 246–264. [Google Scholar] [CrossRef]
- Pahl, S.; Wyles, K.J.; Thompson, R.C. Channelling passion for the ocean towards plastic pollution. Nat. Hum. Behav. 2017, 1, 697–699. [Google Scholar] [CrossRef]
- Sijtsema, S.J.; Onwezen, M.C.; Reinders, M.J.; Dagevos, H.; Partanen, A.; Meeusen, M. Consumer perception of bio-based products—An exploratory study in 5 European countries. NJAS Wagening. J. Life Sci. 2016, 77, 61–69. [Google Scholar] [CrossRef]
- Choe, S.; Kim, Y.; Won, Y.; Myung, J. Bridging Three Gaps in Biodegradable Plastics: Misconceptions and Truths about Biodegradation. Front. Chem. 2021, 9, 671750. [Google Scholar] [CrossRef] [PubMed]
- Kakadellis, S.; Woods, J.; Harris, Z.M. Friend or foe: Stakeholder attitudes towards biodegradable plastic packaging in food waste anaerobic digestion. Resour. Conserv. Recycl. 2021, 169, 105529. [Google Scholar] [CrossRef]
- Zaman, A.; Newman, P. Plastics: Are they part of the zero-waste agenda or the toxic-waste agenda? Sustain. Earth 2021, 4, 1–16. [Google Scholar] [CrossRef]
- Gerassimidou, S.; Martin, O.V.; Chapman, S.P.; Hahladakis, J.N.; Iacovidou, E. Development of an integrated sustainability matrix to depict challenges and trade-offs of introducing bio-based plastics in the food packaging value chain. J. Clean. Prod. 2021, 286, 125378. [Google Scholar] [CrossRef]
- What Are Bioplastics? European Bioplastics e.V. 2021. Available online: https://docs.european-bioplastics.org/publications/fs/EuBP (accessed on 19 February 2022).
- Stoica, M. Biodegradable nanomaterials for drink packaging. In Nanotechnology in the Beverage Industry; Elsevier: Amsterdam, The Netherlands, 2020; pp. 609–632. [Google Scholar]
- Folino, A.; Karageorgiou, A.; Calabrò, P.S.; Komilis, D. Biodegradation of Wasted Bioplastics in Natural and Industrial Environments: A Review. Sustainability 2020, 12, 6030. [Google Scholar] [CrossRef]
- ASTM D6400-99; Standard Specification for Compostable Plastics. ASTM International: West Conshohocken, PA, USA, 2002.
- Song, J.-H.; Murphy, R.J.; Narayan, R.; Davies, G.B.H. Biodegradable and compostable alternatives to conventional plastics. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2127–2139. [Google Scholar] [CrossRef]
- Moshood, T.D.; Nawanir, G.; Mahmud, F.; Mohamad, F.; Ahmad, M.H.; AbdulGhani, A. Sustainability of biodegradable plastics: New problem or solution to solve the global plastic pollution? Curr. Res. Green Sustain. Chem. 2022, 5, 100273. [Google Scholar] [CrossRef]
- Di Bartolo, A.; Infurna, G.; Dintcheva, N. A Review of Bioplastics and Their Adoption in the Circular Economy. Polymers 2021, 13, 1229. [Google Scholar] [CrossRef]
- Kale, G.; Kijchavengkul, T.; Auras, R.; Rubino, M.; Selke, S.E.; Singh, S.P. Compostability of Bioplastic Packaging Materials: An Overview. Macromol. Biosci. 2007, 7, 255–277. [Google Scholar] [CrossRef]
- Rujnić-Sokele, M.; Pilipović, A. Challenges and opportunities of biodegradable plastics: A mini review. Waste Manag. Res. J. Sustain. Circ. Econ. 2017, 35, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Napper, I.E.; Thompson, R.C. Environmental Deterioration of Biodegradable, Oxo-biodegradable, Compostable, and Conventional Plastic Carrier Bags in the Sea, Soil, and Open-Air over a 3-Year Period. Environ. Sci. Technol. 2019, 53, 4775–4783. [Google Scholar] [CrossRef] [PubMed]
- Markowicz, F.; Szymańska-Pulikowska, A. Analysis of the possibility of environmental pollution by composted biodegradable and oxobiodegradable plastics. Geosciences 2019, 9, 460. [Google Scholar] [CrossRef] [Green Version]
- Abdelmoez, W.; Dahab, I.; Ragab, E.M.; Abdelsalam, O.A.; Mustafa, A. Bio- and Oxo-Degradable Plastics: Insights on Facts and Challenges. Polym. Adv. Technol. 2021, 32, 1981–1996. [Google Scholar] [CrossRef]
- Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J.H.; Abu-Omar, M.; Scott, S.L.; Suh, S. Degradation Rates of Plastics in the Environment. ACS Sustain. Chem. Eng. 2020, 8, 3494–3511. [Google Scholar] [CrossRef] [Green Version]
- Meereboer, K.W.; Misra, M.; Mohanty, A.K. Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chem. 2020, 22, 5519–5558. [Google Scholar] [CrossRef]
- Selke, S.; Auras, R.; Nguyen, T.A.; Aguirre, E.C.; Cheruvathur, R.; Liu, Y. Evaluation of Biodegradation-Promoting Additives for Plastics. Environ. Sci. Technol. 2015, 49, 3769–3777. [Google Scholar] [CrossRef]
- Ghatge, S.; Yang, Y.; Ahn, J.-H.; Hur, H.-G. Biodegradation of polyethylene: A brief review. Appl. Biol. Chem. 2020, 63, 1–14. [Google Scholar] [CrossRef]
- Gaffey, J.; McMahon, H.; Marsh, E.; Vehmas, K.; Kymäläinen, T.; Vos, J. Understanding Consumer Perspectives of Bio-Based Products—A Comparative Case Study from Ireland and The Netherlands. Sustainability 2021, 13, 6062. [Google Scholar] [CrossRef]
- Abidin, A.N.S.Z.; Jawi, Z.M.; Kak, D.W.; Tan, C.Y.; Wahab, M.A.F.; Osman, M.R.; Omar, A.; Kassim, K.A.A. Motor-Vehicle Tyre Ecosystem in Malaysia—A Status Review. J. Soc. Automot. Eng. Malays. 2019, 3, 298–313. [Google Scholar]
- OECD. 2014. Available online: https://www.oecd.org/env/workingpapers.htm (accessed on 23 November 2021).
- European Commission. 2017. Available online: https://ec.europa.eu/info/publications/annual-activity-reports-2017_en (accessed on 11 December 2021).
- Chilvers, J.; Lorenzoni, I.; Terry, G.; Buckley, P.; Pinnegar, J.; Gelcich, S. Public engagement with marine climate change issues: (Re)framings, understandings and responses. Glob. Environ. Chang. 2014, 29, 165–179. [Google Scholar] [CrossRef] [Green Version]
- Dilkes-Hoffman, L.; Ashworth, P.; Laycock, B.; Pratt, S.; Lant, P. Public attitudes towards bioplastics—Knowledge, perception and end-of-life management. Resour. Conserv. Recycl. 2019, 151, 104479. [Google Scholar] [CrossRef]
- Zhang, C.; Conrad, F. Speeding in Web Surveys: The tendency to answer very fast and its association with straightlining. Surv. Res. Methods 2014, 8, 127–135. [Google Scholar] [CrossRef]
- Smith, W.G. Does Gender Influence Online Survey Participation? A Record-Linkage Analysis of University Faculty Online Survey Response Behavior. 2008. Available online: https://eric.ed.gov/?id=ED501717 (accessed on 24 March 2022).
- Hahladakis, J.N.; Iacovidou, E.; Gerassimidou, S. Plastic waste in a circular economy. Plast. Waste Recycl. 2020, 19, 481–512. [Google Scholar] [CrossRef]
- Gómez, E.F.; Michel, F.C., Jr. Biodegradability of conventional and bio-based plastics and natural fiber composites during composting, anaerobic digestion and long-term soil incubation. Polym. Degrad. Stab. 2013, 98, 2583–2591. [Google Scholar] [CrossRef]
- Stahl, F.F.; Emberger-Klein, A.; Menrad, K. Consumer Preferences in Germany for Bio-Based Apparel with Low and Moderate Prices, and the Influence of Specific Factors in Distinguishing between These Groups. Front. Sustain. Food Syst. 2021, 2, 624913. [Google Scholar] [CrossRef]
- Filho, W.L.; Salvia, A.L.; Bonoli, A.; Saari, U.A.; Voronova, V.; Klõga, M.; Kumbhar, S.S.; Olszewski, K.; De Quevedo, D.M.; Barbir, J. An assessment of attitudes towards plastics and bioplastics in Europe. Sci. Total Environ. 2021, 755, 142732. [Google Scholar] [CrossRef]
- Van den Oever, M.; Molenveld, K.; van der Zee, M.; Bos, H. Bio-Based and Biodegradable Plastics: Facts and Figures: Focus on Food Packaging in the Netherlands; Wageningen Food & Biobased Research: Wageningen, The Netherlands, 2017. [Google Scholar]
- Kershaw, P. Biodegradable Plastics and Marine Litter: Misconceptions, Concerns and Impacts on Marine Environments; UNEP: Nairobi, Kenya, 2015. [Google Scholar]
- Carus, M.; Partanen, A.; Piotrowski, S.; Dammer, L. Market Analysis, BIOFOREVER Deliverable D7.2. 2019. Available online: https://cordis.europa.eu/project/id/720710/results (accessed on 22 February 2022).
- Sabini, M.; Cheren, S.; Borgna, S. Bridging Consumers, Brands, and Bio-Based Industry to Improve the Market of Sustainable Bio-Based Products. 2020. Available online: https://www.biobridges-project.eu/results/action-plan-for-raising-consumers-e2-80-99-awareness/urlen (accessed on 22 February 2022).
- Al Mamun, A.; Fazal, S.A.; Bin Ahmad, G.; Bin Yaacob, M.R.; Mohamad, M.R. Willingness to Pay for Environmentally Friendly Products among Low-Income Households along Coastal Peninsular Malaysia. Sustainability 2018, 10, 1316. [Google Scholar] [CrossRef] [Green Version]
- Lange, L.; Connor, K.O.; Arason, S.; Bundgård-Jørgensen, U.; Canalis, A.; Carrez, D.; Gallagher, J.; Gøtke, N.; Huyghe, C.; Jarry, B.; et al. Developing a Sustainable and Circular Bio-Based Economy in EU: By Partnering Across Sectors, Upscaling and Using New Knowledge Faster, and For the Benefit of Climate, Environment & Biodiversity, and People & Business. Front. Bioeng. Biotechnol. 2021, 8, 619066. [Google Scholar] [CrossRef]
Compostable | Biodegradable | Oxo-Biodegradable | |
---|---|---|---|
Definition | Materials that break down into carbon dioxide, biomass, and water within a specific time frame under suitable composting conditions | Materials that break down into carbon dioxide, biomass, and water under the presence of microorganisms, bacteria, and fungi | Materials that break down into smaller pieces under the presence of heavy metals or other catalysts |
Residue | Leaves no toxic or visible residue | May leave residue in the environment if toxic ingredients do not break down | Leaves heavy metals or other toxins in the environment |
Property | Can break down completely in nature | May take a long time to break down, depending on the disposal environment | Complete breakdown and biodegradation still have to be proven |
Nutrients | Releases nutrients to the soil | Does not provide nutrients to the soil | Does not provide nutrients to the soil |
Recyclability | Not recyclable | Recyclable | Recyclable |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hairon Azhar, N.N.; Ang, D.T.-C.; Abdullah, R.; Harikrishna, J.A.; Cheng, A. Bio-Based Materials Riding the Wave of Sustainability: Common Misconceptions, Opportunities, Challenges and the Way Forward. Sustainability 2022, 14, 5032. https://doi.org/10.3390/su14095032
Hairon Azhar NN, Ang DT-C, Abdullah R, Harikrishna JA, Cheng A. Bio-Based Materials Riding the Wave of Sustainability: Common Misconceptions, Opportunities, Challenges and the Way Forward. Sustainability. 2022; 14(9):5032. https://doi.org/10.3390/su14095032
Chicago/Turabian StyleHairon Azhar, Natasya Nabilla, Desmond Teck-Chye Ang, Rosazlin Abdullah, Jennifer Ann Harikrishna, and Acga Cheng. 2022. "Bio-Based Materials Riding the Wave of Sustainability: Common Misconceptions, Opportunities, Challenges and the Way Forward" Sustainability 14, no. 9: 5032. https://doi.org/10.3390/su14095032
APA StyleHairon Azhar, N. N., Ang, D. T.-C., Abdullah, R., Harikrishna, J. A., & Cheng, A. (2022). Bio-Based Materials Riding the Wave of Sustainability: Common Misconceptions, Opportunities, Challenges and the Way Forward. Sustainability, 14(9), 5032. https://doi.org/10.3390/su14095032