Experimental Study on the Use of Iron Tailings-Based Multicomponent Solid Waste as SCMs
Abstract
:1. Introduction
2. Experiments
2.1. Raw Materials
2.2. Sample Preparation
2.3. Experimental Methods
2.3.1. Strength Test Method
2.3.2. Fluidity Test Method
2.3.3. Microscopic Test
3. Results and Discussion
3.1. Destruction Form
3.2. Compressive Strength
3.2.1. Different SCMs Systems
3.2.2. Proportion of Ternary SCMs System
3.2.3. Multiple Regression Analysis
3.2.4. Effect of Activator on Strength of Ternary SCMs System
3.3. Fluidity Analysis
3.4. SEM Analysis
3.5. DTA-TG Analysis
4. Conclusions
- The compressive strength of the ternary SCMs system is significantly higher than that of the binary SCMs system and the unary SCMs system. Compared with the ternary SCMs system, the binary SCMs system lacking IOTs has the lowest strength, and the filling and nucleation effects of iron tailings in the ternary SCMs system cannot be ignored.
- The ternary SCMs system reached the maximum compressive strength of 40.2 MPa of the SCMs system at 28 days in the ratio of IOTs. SS:PS = 1:2:2, and the activity index reached 92%. The difference between the 28 d compressive strength of this ternary SCMs system and that of Bz is only 3.4 Mpa, thus providing the possibility of large-scale consumption of IOTs, PS, SS.
- The nucleation of IOTs accelerates the hydration of Cao in SS and PS to produce C-S-H gel as well as Ca(OH)2, while the SiO2 in PS and IOTs reacts with the Ca(OH)2 generated from SS and PS to produce C-S-H gel, and the three have a synergistic effect.
- NaOH and Na2SiO3 have a negative impact on the compressive strength of the system, and the hydration products of the ternary system after the addition of activator are mainly plate CH, and the hydration products are dispersed, the pores increase, and the strength decreases linearly with the increase in admixture.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, F.; Song, S.; Liu, J.; Huang, S. Properties of steam-cured precast concrete containing iron tailing powder. Powder Technol. 2019, 345, 292–299. [Google Scholar] [CrossRef]
- Pacewska, B. Usage of supplementary cementitious materials: Advantages and limitations Part I. C–S–H, C–A–S–H and other products formed in different binding mixtures. J. Therm. Anal. Calorim. 2020, 142, 371–393. [Google Scholar] [CrossRef]
- Santos, A.F.; Vaz, T.E.; Lopes, D.V.; Cardoso, O.; Quina, M.J. Beneficial use of lime mud from kraft pulp industry for drying and microbiological decontamination of sewage sludge. J. Environ. Manag. 2021, 296, 113255. [Google Scholar] [CrossRef] [PubMed]
- Dhandapani, Y.; Santhanam, M.; Kaladharan, G.; Ramanathan, S. Towards ternary binders involving limestone additions—A review. Cem. Concr. Res. 2021, 143, 106396. [Google Scholar] [CrossRef]
- Palankar, N.; Ravi Shankar, A.U.; Mithun, B.M. Durability studies on eco-friendly concrete mixes incorporating steel slag as coarse aggregates. J. Clean. Prod. 2016, 129, 437–448. [Google Scholar] [CrossRef]
- Wang, W.; Liu, H. Experimental study on the mechanical properties of iron tailing sand concrete after high temperature. Nonmet. Miner. 2019, 42, 42–44. [Google Scholar] [CrossRef]
- Fu, J.; Jones, A.M.; Bligh, M.W.; Holt, C.; Keyte, L.M.; Moghaddam, F.; Foster, S.J.; Waite, T.D. Mechanisms of enhancement in early hydration by sodium sulfate in a slag-cement blend– Insights from pore solution chemistry. Cem. Concr. Res. 2020, 135, 106110. [Google Scholar] [CrossRef]
- Sun, H. Study on the influence of fly ash on the durability of concrete: Comment on the durability of fly ash concrete. Concr. Cem. Prod. 2020, 10, 96. [Google Scholar]
- Han, F.; Zhou, Y.; Zhang, Z. Effect of gypsum on the properties of composite binder containing high-volume slag and iron tailing powder. Constr. Build. Mater. 2020, 252, 119023. [Google Scholar] [CrossRef]
- Wu, R.; Liu, J. Experimental Study on the Concrete with Compound Admixture of Iron Tailings and Slag Powder under Low Cement Clinker System. Adv. Mater. Sci. Eng. 2018, 2018, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhou, Y.; Wu, A. Reconstruction of broken Si–O–Si bonds in iron ore tailings (IOTs) in concrete. Int. J. Miner. Metall. Mater. 2019, 26, 1329–1336. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, F.; Li, W.; Liu, R.; Li, G.; Wei, J. Test research on the effects of mechanochemically activated iron tailings on the compressive strength of concrete. Constr. Build. Mater. 2016, 118, 164–170. [Google Scholar] [CrossRef]
- Ma, B.-G.; Cai, L.-X.; Li, X.-G.; Jian, S.-W. Utilization of iron tailings as substitute in autoclaved aerated concrete: Physico-mechanical and microstructure of hydration products. J. Clean. Prod. 2016, 127, 162–171. [Google Scholar] [CrossRef]
- Zhuang, S.; Wang, Q. Inhibition mechanisms of steel slag on the early-age hydration of cement. Cem. Concr. Res. 2021, 140, 106283. [Google Scholar] [CrossRef]
- Han, X.; Feng, J.; Shao, Y.; Hong, R. Influence of a steel slag powder-ground fly ash composite supplementary cementitious material on the chloride and sulphate resistance of mass concrete. Powder Technol. 2020, 370, 176–183. [Google Scholar] [CrossRef]
- Yang, J.; Lu, J.; Wu, Q.; Xia, M.F.; Li, X. Influence of steel slag powders on the properties of MKPC paste. Constr. Build. Mater. 2018, 159, 137–146. [Google Scholar] [CrossRef]
- Liu, C.; Li, S.; Shen, W.; Lei, W. Comprehensive utilization of Phosphorus slag and its application in road base stabilizing cement. World Build. Mater. 2018, 39, 32–37. [Google Scholar]
- Pang, M.; Sun, Z.; Chen, M.; Lang, J.; Dong, J.; Tian, X.; Sun, J. Influence of Phosphorus Slag on Physical and Mechanical Properties of Cement Mortars. Materials 2020, 13, 2390. [Google Scholar] [CrossRef]
- Bezerra, C.G.; Rocha, C.A.A.; de Siqueira, I.S.; Filho, R.D.T. Feasibility of iron-rich ore tailing as supplementary cementitious material in cement pastes. Constr. Build. Mater. 2021, 303, 124496. [Google Scholar] [CrossRef]
- Saedi, A.; Jamshidi-Zanjani, A.; Darban, A.K. A review on different methods of activating tailings to improve their cementitious property as cemented paste and reusability. J. Environ. Manag. 2020, 270, 110881. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, Z.; Zhuang, S.; He, W. Hydration properties and microstructure characteristics of alkali–activated steel slag. Constr. Build. Mater. 2020, 241, 118141. [Google Scholar] [CrossRef]
- Xie, F.; Liu, Z.; Zhang, D.; Wang, J.; Wang, D.; Ni, J. The effect of NaOH content on rheological properties, microstructures and interfacial characteristic of alkali activated phosphorus slag fresh pastes. Constr. Build. Mater. 2020, 252, 119132. [Google Scholar] [CrossRef]
- GB175-2007; Common Portland Cement. China Quality and Standards Publishing & Media Co., Ltd.: Beijing, China, 2007.
- GB/T51003-2014; Technical Code for Application of Mineral Admixture. China Quality and Standards Publishing & Media Co., Ltd.: Beijing, China, 2014.
- GB/T 17671-1999; Method of Testing Cements—Determination of Strength. China Quality and Standards Publishing & Media Co., Ltd.: Beijing, China, 1999.
- GB/T12957-2005; Test Method for Activity of Industrial Waste Slag Used as Addition to Cement. China Quality and Standards Publishing & Media Co., Ltd.: Beijing, China, 2005.
- GB/T2419-2005; Test Method for Fluidity of Cement Mortar. China Quality and Standards Publishing & Media Co., Ltd.: Beijing, China, 2005.
- Ming, Z.; Qianming, M.; Rongxin, G.; Pang, W. Mechanical Properties of Phosphorus Slag-Portland Cement Composite and Alkali Phosphorus Slag Cementitious Materials. Bull. Chin. Ceram. Soc. 2020, 39, 376–382. [Google Scholar]
- Yu, L.; Wang, Q.; Wu, K.; Tan, Z.; Pan, F.; Yang, Z.; De Schutter, G. Identification of multi-scale homogeneity of blended cement concrete: Macro performance, micro and meso structure. J. Therm. Anal. 2022, 1–12. [Google Scholar] [CrossRef]
- Lothenbach, B.; Scrivener, K.; Hooton, R.D. Supplementary cementitious materials. Cem. Concr. Res. 2011, 41, 1244–1256. [Google Scholar] [CrossRef]
- Martins, A.C.P.; Franco de Carvalho, J.M.; Costa, L.C.B.; Andrade, H.D.; Varela de Melo, T.; Ribeiro, J.C.L.; Pedroti, L.G.; Peixoto, R.A.F. Steel slags in cement-based composites: An ultimate review on characterization, applications and performance. Constr. Build. Mater. 2021, 291, 123265. [Google Scholar] [CrossRef]
- Wang, D.; Shi, C.; Farzadnia, N.; Shi, Z.; Jia, H. A review on effects of limestone powder on the properties of concrete. Constr. Build. Mater. 2018, 192, 153–166. [Google Scholar] [CrossRef]
- Li, C.; Sun, H.; Yi, Z.; Li, L. Innovative methodology for comprehensive utilization of iron ore tailings: Part 2: The residues after iron recovery from iron ore tailings to prepare cementitious material. J. Hazard. Mater. 2010, 174, 78–83. [Google Scholar] [CrossRef]
- Hasannejad, M.; Berenjian, J.; Pouraminian, M.; Larijani, A.S. Studying of microstructure, interface transition zone and ultrasonic wave velocity of high strength concrete by different aggregates. J. Build. Pathol. Rehabil. 2021, 7, 1–15. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, C.; Ma, Y.; Xiao, Y.; Liu, Y. Accelerators for shotcrete–Chemical composition and their effects on hydration, microstructure and properties of cement-based materials. Constr. Build. Mater. 2021, 281, 122557. [Google Scholar] [CrossRef]
- You, J.; Yoo, J.-S.; Kum, K.-Y.; Hong, S.-H. Hydration behavior and radiopacity of strontium substituted Ca3SiO5 cement. J. Korean Ceram. Soc. 2021, 58, 330–336. [Google Scholar] [CrossRef]
- Huang, W.; Kazemi-Kamyab, H.; Sun, W.; Scrivener, K. Effect of replacement of silica fume with calcined clay on the hydration and microstructural development of eco-UHPFRC. Mater. Des. 2017, 121, 36–46. [Google Scholar] [CrossRef]
- Du, J.; Meng, W.; Khayat, K.H.; Bao, Y.; Guo, P.; Lyu, Z.; Abu-obeidah, A.; Nassif, H.; Wang, H. New development of ultra-high-performance concrete (UHPC). Compos. Part B Eng. 2021, 224, 109220. [Google Scholar] [CrossRef]
- He, Y.; Liu, S.; Zhang, X.; Liu, W.; Liao, G.; Xu, M. Influence of triethanolamine on mechanical strength and hydration performance of blended cement containing fly ash, limestone and slag. J. Build. Eng. 2021, 44, 102879. [Google Scholar] [CrossRef]
- Wang, Y. Evaluation of Volcanic Ash Activity of Lithium Slag and Its Microstructural Properties of Composite Cementitious Materials; China University of Mining and Technology: Beijing, China, 2018. [Google Scholar]
- Lu, X.; Wang, S.; Ye, Z.; Li, C.; Cheng, X. Study on the hydration product of ettringite in cement paste with ethanol-diisopropanolamine. J. Therm. Anal. Calorim. 2020, 139, 1007–1016. [Google Scholar] [CrossRef]
- Piao, C.A. The Activation Process and Mechanism of Iron Tailings Powder and Its Influence on Concrete Performance; China University of Mining and Technology: Beijing, China, 2017. [Google Scholar]
Composition | CaO | SiO2 | Al2O3 | Fe2O3 | MgO | SO3 | LOI | Others |
---|---|---|---|---|---|---|---|---|
Cement | 56.1 | 23.6 | 6.89 | 2.69 | 3.96 | 2.69 | 3.20 | 4.07 |
IOT | 7.77 | 62.26 | 4.78 | 14.37 | 6.33 | 0.48 | 2.39 | 4.01 |
SS | 42.65 | 15.20 | 2.53 | 27.54 | 6.05 | 0.12 | 2.18 | 5.46 |
PS | 47.45 | 39.08 | 3.94 | 1.14 | 2.90 | 1.22 | 2.70 | 4.27 |
Serial Number | Cement/g | Water/g | Sand/g | IOT/g | SS/g | PS/g | Activator |
---|---|---|---|---|---|---|---|
PB5 | 315 | 135 | 0 | 27 | 54 | 54 | 0 |
PC2 | 315 | 135 | 0 | 27 | 54 | 54 | 0.6% NaOH |
PD2 | 315 | 135 | 0 | 27 | 54 | 54 | 0.6% Na2SiO3 |
Serial Number | Cement/g | Water/g | Sand/g | IOT/g | SS/g | PS/g |
---|---|---|---|---|---|---|
BZ | 450 | 225 | 1350 | 0 | 0 | 0 |
T0 | 315 | 225 | 1350 | 135 | 0 | 0 |
T1 | 315 | 225 | 1350 | 67.5 | 67.5 | 0 |
T2 | 315 | 225 | 1350 | 67.5 | 0 | 67.5 |
T3 | 315 | 225 | 1350 | 0 | 67.5 | 67.5 |
T4 | 315 | 225 | 1350 | 45 | 45 | 45 |
Serial Number | Cement/g | Water/g | Sand/g | IOT/g | SS/g | PS/g |
---|---|---|---|---|---|---|
BZ | 450 | 225 | 1350 | 0 | 0 | 0 |
B1 | 315 | 225 | 1350 | 67.5 | 50.6 | 16.9 |
B2 | 315 | 225 | 1350 | 67.5 | 33.8 | 33.8 |
B3 | 315 | 225 | 1350 | 67.5 | 16.9 | 50.6 |
B4 | 315 | 225 | 1350 | 45 | 45 | 45 |
B5 | 315 | 225 | 1350 | 27 | 54 | 54 |
Serial Number | Cement/g | Water/g | Sand/g | IOT/g | SS/g | PS/g | Activator/g |
---|---|---|---|---|---|---|---|
C0 | 315 | 225 | 1350 | 27 | 54 | 54 | 0 |
C1 | 315 | 225 | 1350 | 27 | 54 | 54 | 0.54 g NaOH |
C2 | 315 | 225 | 1350 | 27 | 54 | 54 | 0.81 g NaOH |
C3 | 315 | 225 | 1350 | 27 | 54 | 54 | 1.08 g NaOH |
C4 | 315 | 225 | 1350 | 27 | 54 | 54 | 1.35 g NaOH |
C5 | 315 | 225 | 1350 | 27 | 54 | 54 | 1.62 g NaOH |
D1 | 315 | 225 | 1350 | 27 | 54 | 54 | 0.54 g Na2SiO3 |
D2 | 315 | 225 | 1350 | 27 | 54 | 54 | 0.81 g Na2SiO3 |
D3 | 315 | 225 | 1350 | 27 | 54 | 54 | 1.08 g Na2SiO3 |
D4 | 315 | 225 | 1350 | 27 | 54 | 54 | 1.35 g Na2SiO3 |
D5 | 315 | 225 | 1350 | 27 | 54 | 54 | 1.62 g Na2SiO3 |
Serial Number | Age | Dehydration Quantity of CH | Decomposition Quantity of CaCO3 | Quantity of CH |
---|---|---|---|---|
PB5 | 7 d | 3.78% | 3.84% | 24.26% |
PC2 | 7 d | 4.00% | 3.42% | 24.21% |
PD2 | 7 d | 2.48% | 3.29% | 17.46% |
PB5 | 28 d | 2.19% | 2.52% | 14.73% |
PC2 | 28 d | 2.54% | 2.28% | 15.60% |
PD2 | 28 d | 3.01% | 2.85% | 18.85% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Sun, H.; Gu, X.; Zhang, W.; Liu, B. Experimental Study on the Use of Iron Tailings-Based Multicomponent Solid Waste as SCMs. Sustainability 2022, 14, 5124. https://doi.org/10.3390/su14095124
Zhang Y, Sun H, Gu X, Zhang W, Liu B. Experimental Study on the Use of Iron Tailings-Based Multicomponent Solid Waste as SCMs. Sustainability. 2022; 14(9):5124. https://doi.org/10.3390/su14095124
Chicago/Turabian StyleZhang, Yannian, Houqi Sun, Xiaowei Gu, Wenjie Zhang, and Bonan Liu. 2022. "Experimental Study on the Use of Iron Tailings-Based Multicomponent Solid Waste as SCMs" Sustainability 14, no. 9: 5124. https://doi.org/10.3390/su14095124
APA StyleZhang, Y., Sun, H., Gu, X., Zhang, W., & Liu, B. (2022). Experimental Study on the Use of Iron Tailings-Based Multicomponent Solid Waste as SCMs. Sustainability, 14(9), 5124. https://doi.org/10.3390/su14095124