Green Infrastructure Planning Principles: Identification of Priorities Using Analytic Hierarchy Process
Abstract
:1. Introduction
2. Framework: Green Infrastructure Planning Principles
3. Materials and Methods
3.1. Methodological Framework
3.2. Study Area
3.3. The Lisbon Metropolitan Area Planning System
3.4. The Analytic Hierarchy Process (AHP)
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Madureira, H.; Andresen, T.; Monteiro, A. Green structure and planning evolution in Porto. Urban For. Urban Green. 2011, 10, 141–149. [Google Scholar] [CrossRef]
- Wilker, J.; Rusche, K.; Rymsa-Fitschen, C. Improving Participation in Green Infrastructure Planning. Plan. Pract. Res. 2016, 31, 229–249. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P. Spatial planning for multifunctional green infrastructure: Growing resilience in Detroit. Landsc. Urban Plan. 2017, 159, 62–75. [Google Scholar] [CrossRef]
- Campagna, M.; Di Cesare, E.A.; Cocco, C. Integrating Green-Infrastructures Design in Strategic Spatial Planning with Geodesign. Sustainability 2020, 12, 1820. [Google Scholar] [CrossRef] [Green Version]
- Llausàs, A.; Roe, M. Green Infrastructure Planning: Cross-National Analysis between the North East of England (UK) and Catalonia (Spain). Eur. Plan. Stud. 2012, 20, 641–663. [Google Scholar] [CrossRef]
- Roe, M.; Mell, I. Negotiating value and priorities: Evaluating the demands of green infrastructure development. J. Environ. Plan. Manag. 2013, 56, 650–673. [Google Scholar] [CrossRef]
- Monteiro, R.; Ferreira, J.C.; Antunes, P. Green Infrastructure Planning Principles: An Integrated Literature Review. Land 2020, 9, 525. [Google Scholar] [CrossRef]
- Yacamán Ochoa, C.; Ferrer Jiménez, D.; Mata Olmo, R. Green Infrastructure Planning in Metropolitan Regions to Improve the Connectivity of Agricultural Landscapes and Food Security. Land 2020, 9, 414. [Google Scholar] [CrossRef]
- Wright, H. Understanding green infrastructure: The development of a contested concept in England. Local Environ. 2011, 16, 1003–1019. [Google Scholar] [CrossRef]
- Benedict, M.A.; McMahon, E.T. Green Infrastructure: Smart Conservation for the 21st Century. Renew. Resour. J. 2002, 20, 12–17. [Google Scholar]
- Ferreira, J.C.; Monteiro, R.; Silva, V.R. Planning a Green Infrastructure Network from Theory to Practice: The Case Study of Setúbal, Portugal. Sustainability 2021, 13, 8432. [Google Scholar] [CrossRef]
- Hoover, F.-A.; Meerow, S.; Grabowski, Z.J.; McPhearson, T. Environmental justice implications of siting criteria in urban green infrastructure planning. J. Environ. Policy Plan. 2021, 23, 665–682. [Google Scholar] [CrossRef]
- Mell, I.; Clement, S. Progressing Green Infrastructure planning: Understanding its scalar, temporal, geo-spatial and disciplinary evolution. Impact Assess. Proj. Apprais. 2020, 38, 449–463. [Google Scholar] [CrossRef]
- Szulczewska, B.; Giedych, R.; Maksymiuk, G. Can we face the challenge: How to implement a theoretical concept of green infrastructure into planning practice? Warsaw case study. Landsc. Res. 2017, 42, 176–194. [Google Scholar] [CrossRef]
- Honeck, E.; Sanguet, A.; Schlaepfer, M.A.; Wyler, N.; Lehmann, A. Methods for identifying green infrastructure. SN Appl. Sci. 2020, 2, 1916. [Google Scholar] [CrossRef]
- Liquete, C.; Kleeschulte, S.; Dige, G.; Maes, J.; Grizzetti, B.; Olah, B.; Zulian, G. Mapping green infrastructure based on ecosystem services and ecological networks: A Pan-European case study. Environ. Sci. Policy 2015, 54, 268–280. [Google Scholar] [CrossRef]
- European Comission Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Green Infrastructure (GI)—Enhancing Europe’s Natural Capital. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:d41348f2-01d5-4abe-b817-4c73e6f1b2df.0014.03/DOC_1&format=PDF (accessed on 14 August 2020).
- Gómez-Baggethun, E.; Barton, D.N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 2013, 86, 235–245. [Google Scholar] [CrossRef]
- Kim, H.W.; Tran, T. An Evaluation of Local Comprehensive Plans Toward Sustainable Green Infrastructure in US. Sustainability 2018, 10, 4143. [Google Scholar] [CrossRef] [Green Version]
- Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Kaźmierczak, A.; Niemela, J.; James, P. Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landsc. Urban Plan. 2007, 81, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Slätmo, E.; Nilsson, K.; Turunen, E. Implementing Green Infrastructure in Spatial Planning in Europe. Land 2019, 8, 62. [Google Scholar] [CrossRef] [Green Version]
- Hasala, D.; Supak, S.; Rivers, L. Green infrastructure site selection in the Walnut Creek wetland community: A case study from southeast Raleigh, North Carolina. Landsc. Urban Plan. 2020, 196, 103743. [Google Scholar] [CrossRef]
- Jeong, D.; Kim, M.; Song, K.; Lee, J. Planning a Green Infrastructure Network to Integrate Potential Evacuation Routes and the Urban Green Space in a Coastal City: The Case Study of Haeundae District, Busan, South Korea. Sci. Total Environ. 2021, 761, 143179. [Google Scholar] [CrossRef]
- Girma, Y.; Terefe, H.; Pauleit, S.; Kindu, M. Urban green infrastructure planning in Ethiopia: The case of emerging towns of Oromia special zone surrounding Finfinne. J. Urban Manag. 2018, 8, 75–88. [Google Scholar] [CrossRef]
- Wei, J.X.; Song, Y.; Wang, Y.C.; Xiang, W.N. Urban green infrastructure building for sustainability in areas of rapid urbanization based on evaluating spatial priority: A ease study of fukou in China. Acta Ecol. Sin. 2019, 39, 1178–1188. [Google Scholar] [CrossRef]
- Gradinaru, S.R.; Hersperger, A.M. Green infrastructure in strategic spatial plans: Evidence from European urban regions. Urban For. Urban Green. 2019, 40, 17–28. [Google Scholar] [CrossRef]
- Hansen, R.; Rall, E.; Chapman, E.; Rolf, W.; Pauleit, S. Urban Green Infrastructure Planning—A Guide for Practitioners. 2017. Available online: https://ign.ku.dk/english/green-surge/rapporter/D5_3_Urban_GIP_-_A_guide_for_practitioners.pdf (accessed on 6 March 2022).
- Pauleit, S.; Ambrose-Oji, B.; Andersson, E.; Anton, B.; Buijs, A.; Haase, D.; Elands, B.; Hansen, R.; Kowarik, I.; Kronenberg, J.; et al. Advancing urban green infrastructure in Europe: Outcomes and reflections from the GREEN SURGE project. Urban For. Urban Green. 2019, 40, 4–16. [Google Scholar] [CrossRef]
- Yirga Ayele, B.; Megento, T.L.; Habetemariam, K.Y. Governance of green infrastr ucture planning in Addis Ababa, Ethiopia. Land Use Policy 2021, 111, 105777. [Google Scholar] [CrossRef]
- Sandstrom, U.G. Green infrastructure planning in urban Sweden. Plan. Pract. Res. 2002, 17, 373–385. [Google Scholar] [CrossRef]
- Mascarenhas, A.; Ramos, T.B.; Haase, D.; Santos, R. Participatory selection of ecosystem services for spatial planning: Insights from the Lisbon Metropolitan Area, Portugal. Ecosyst. Serv. 2016, 18, 87–99. [Google Scholar] [CrossRef]
- Marat-Mendes, T.; Isidoro, I.; Catela, J.; Pereira, M.; Borges, J.; Silva Lopes, S.; Henriques, C. Drivers of change: How the food system of the Lisbon Metropolitan Area is being shaped by activities, initiatives and citizens needs towards a sustainable transition. Cid. Comunidades Territ. 2021, 21, 41–62. [Google Scholar] [CrossRef]
- INE—Plataforma de Divulgação dos Censos 2021—Resultados Provisórios. Available online: https://www.ine.pt/scripts/db_censos_2021.html (accessed on 6 March 2022).
- European Environment Agency. Available online: https://natura2000.eea.europa.eu/# (accessed on 17 October 2021).
- Mascarenhas, A.; Haase, D.; Ramos, T.B.; Santos, R. Pathways of demographic and urban development and their effects on land take and ecosystem services: The case of Lisbon Metropolitan Area, Portugal. Land Use Policy 2019, 82, 181–194. [Google Scholar] [CrossRef]
- CCDR_LVT. Programa Regional de Ordenamento do Território da Área Metropolitana de Lisboa; Comissão de Coordenação e Desenvolvimento Regional de Lisboa e Vale do Tejo: Lisboa, Portugal, 2002. [Google Scholar]
- Abrantes, P. Ordenamento e Planeamento do Território; Instituto de Geografia e Ordenamento do Território da Universidade de Lisboa: Lisboa, Portugal, 2016; p. 17. [Google Scholar]
- Saaty, T.L. How to Make a Decision: The Analytic Hierarchy Process. Inf. J. Appl. Anal. 1994, 24, 19–43. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83. [Google Scholar] [CrossRef] [Green Version]
- Shin, Y.; Kim, S.; Lee, S.-W.; An, K. Identifying the Planning Priorities for Green Infrastructure within Urban Environments Using Analytic Hierarchy Process. Sustainability 2020, 12, 5468. [Google Scholar] [CrossRef]
- Xu, C.; Tang, T.; Jia, H.; Xu, M.; Xu, T.; Liu, Z.; Long, Y.; Zhang, R. Benefits of coupled green and grey infrastructure systems: Evidence based on analytic hierarchy process and life cycle costing. Resour. Conserv. Recycl. 2019, 151, 104478. [Google Scholar] [CrossRef]
- Park, Y.; Lee, S.-W.; Lee, J. Comparison of Fuzzy AHP and AHP in Multicriteria Inventory Classification While Planning Green Infrastructure for Resilient Stream Ecosystems. Sustainability 2020, 12, 9035. [Google Scholar] [CrossRef]
- Young, K.D.; Younos, T.; Dymond, R.L.; Kibler, D.F.; Lee, D.H. Application of the Analytic Hierarchy Process for Selecting and Modeling Stormwater Best Management Practices. J. Contemp. Water Res. Educ. 2010, 146, 50–63. [Google Scholar] [CrossRef]
- Li, L.; Uyttenhove, P.; Van Eetvelde, V. Planning green infrastructure to mitigate urban surface water flooding risk—A methodology to identify priority areas applied in the city of Ghent. Landsc. Urban Plan. 2020, 194, 103703. [Google Scholar] [CrossRef]
- Axelsson, C.; Giove, S.; Soriani, S. Urban Pluvial Flood Management Part 1: Implementing an AHP-TOPSIS Multi-Criteria Decision Analysis Method for Stakeholder Integration in Urban Climate and Stormwater Adaptation. Water 2021, 13, 2422. [Google Scholar] [CrossRef]
- Oğuztï Mur, S. Why Fuzzy Analytic Hierarchy Process Approach for Transport Problems? ERSA Conference Papers ersa11p438, European Regional Science Association. 2011. Available online: https://ideas.repec.org/p/wiw/wiwrsa/ersa11p438.html (accessed on 6 March 2022).
- Chen, Z.-Y. Research on Comprehensive Evaluation Index System of Traffic Infrastructure Construction. IOP Conf. Ser. Mater. Sci. Eng. 2019, 688, 22021. [Google Scholar] [CrossRef]
- Saaty, R.W. The analytic hierarchy process—what it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Ossadnik, W.; Schinke, S.; Kaspar, R.H. Group Aggregation Techniques for Analytic Hierarchy Process and Analytic Network Process: A Comparative Analysis. Group Decis. Negot. 2016, 25, 421–457. [Google Scholar] [CrossRef] [Green Version]
- Yedla, S.; Shrestha, R.M. Application of Analytic Hierarchy Process to Prioritize Urban Transport Options—Comparative analysis of group aggregation methods. World Rev. Sci. Technol. Sustain. Dev. 2012, 9, 15–33. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Song, S.-K. The multifunctional benefits of green infrastructure in community development: An analytical review based on 447 cases. Sustainability 2019, 11, 3917. [Google Scholar] [CrossRef] [Green Version]
- Hansen, R.; Pauleit, S. From multifunctionality to multiple ecosystem services? A conceptual framework for multifunctionality in green infrastructure planning for Urban Areas. Ambio 2014, 43, 516–529. [Google Scholar] [CrossRef] [Green Version]
- Kambites, C.; Owen, S. Renewed prospects for green infrastructure planning in the UK. Plan. Pract. Res. 2006, 21, 483–496. [Google Scholar] [CrossRef]
- Ribeiro, L.; Barão, T. Greenways for recreation and maintenance of landscape quality: Five case studies in Portugal. Landsc. Urban Plan. 2006, 76, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Ahern, J. Greenways in the USA: Theory, trends and prospects. In Ecological Networks and Greenways; Jongman, R.H.G., Pungetti, G., Eds.; Cambridge University Press: Cambridge, UK, 2004; pp. 34–55. ISBN 978-0-511-60676-2. [Google Scholar]
- Machado, J.R.; Ahern, J. Greenways Network for the Metropolitan Area of Lisbon. In Environmental Challenges in An Expanding Urban World and the Role of Emerging Information Technologies; National Centre for Geographical Information: Lisbon, Portugal, 1997; Available online: https://www.worldcat.org/title/environmental-challenges-in-an-expanding-urban-world-and-the-role-of-emerging-information-technologies/oclc/1200081753 (accessed on 6 March 2022).
- Jongman, R.H.G.; Külvik, M.; Kristiansen, I. European ecological networks and greenways. Landsc. Urban Plan. 2004, 68, 305–319. [Google Scholar] [CrossRef]
- Ahern, J. Greenways as a planning strategy. Landsc. Urban Plan. 1995, 33, 131–155. [Google Scholar] [CrossRef]
- Matthews, T.; Lo, A.Y.; Byrne, J.A. Reconceptualizing green infrastructure for climate change adaptation: Barriers to adoption and drivers for uptake by spatial planners. Landsc. Urban Plan. 2015, 138, 155–163. [Google Scholar] [CrossRef]
- Fedele, G.; Locatelli, B.; Djoudi, H.; Colloff, M.J. Reducing risks by transforming landscapes: Cross-scale effects of land-use changes on ecosystem services. PLoS ONE 2018, 13, e0195895. [Google Scholar] [CrossRef] [PubMed]
- Saarikoski, H.; Primmer, E.; Saarela, S.-R.; Antunes, P.; Aszalós, R.; Baró, F.; Berry, P.; Blanko, G.G.; Goméz-Baggethun, E.; Carvalho, L.; et al. Institutional challenges in putting ecosystem service knowledge in practice. Ecosyst. Serv. 2018, 29, 579–598. [Google Scholar] [CrossRef]
- Lennon, M.; Scott, M. Delivering ecosystems services via spatial planning: Reviewing the possibilities and implications of a green infrastructure approach. Town Plan. Rev. 2014, 85, 563–587. [Google Scholar] [CrossRef] [Green Version]
- Nunes Silva, C. Citizen Participation in Spatial Planning in Portugal 1920–2020 Non-participation, Tokenism and Citizen Power in Local Governance. In Contemporary Trends in Local Governance: Reform, Cooperation and Citizen Participation; Nunes Silva, C., Ed.; Local and Urban Governance; Springer International Publishing: Cham, Switzerland, 2020; pp. 241–276. ISBN 978-3-030-52516-3. [Google Scholar]
Principles | Description |
---|---|
Connectivity | Connectivity aims to create a well-connected green space network that can serve both humans (recreation) and other species, namely fauna and flora (migrations and interactions). |
Multifunctionality | Multifunctionality directly connects green infrastructure with the provision of a wide number of ecosystem services, namely provision, regulation, support, and cultural. |
Multiscale | Multiscale relates to the different scales at which green infrastructure can be planned, so that interactions between and in these spaces can be enhanced. |
Integration | Integration mainly concerns the interactions and links between green infrastructure and other urban structures (grey infrastructure). |
Diversity | Diversity enhances the different existing structures (managed/artificial or natural), their size (small or large), and the nature of the areas (green or blue). |
Applicability | Applicability considers if the green infrastructure is realistic, can be implemented and developed, and if the solutions presented are adaptable to the considered area or not. |
Governance | Governance aims at the collaboration between government actors (practitioners and policymakers) and citizens in the green infrastructure planning processes. |
Continuity | Continuity relates to a monitoring system of green infrastructure throughout time, which can (or not) include periodic evaluation reports/communications |
Municipality | Area (km2) | Population (Inhab) | Urban Area (%) | Agriculture (%) | Forest (%) | Water Bodies (%) | Coastline (km) |
---|---|---|---|---|---|---|---|
Alcochete | 128.36 | 19,148 | 6.9 | 30.2 | 31.0 | 31.8 | 30.3 |
Almada | 70.01 | 177,400 | 54.0 | 14.3 | 31.4 | 0.3 | 47.1 |
Amadora | 23.78 | 171,719 | 68.9 | 7.8 | 23.2 | 0.0 | - |
Barreiro | 36.39 | 78,362 | 41.1 | 14.2 | 30.3 | 14.3 | 29.9 |
Cascais | 97.40 | 214,134 | 54.3 | 11.3 | 34.3 | 0.1 | 39.7 |
Lisboa | 100.05 | 544,851 | 70.3 | 1.9 | 14.2 | 13.6 | 34.7 |
Loures | 167.24 | 201,646 | 27.1 | 37.4 | 33.9 | 1.6 | 6.9 |
Mafra | 291.65 | 86,523 | 14.5 | 48.3 | 37.1 | 0.1 | 20.1 |
Moita | 55.26 | 66,326 | 22.7 | 40.3 | 11.3 | 25.7 | 47.4 |
Montijo | 348.62 | 55,732 | 7.4 | 33.2 | 56.8 | 2.6 | 51.0 |
Odivelas | 26.54 | 148,156 | 60.5 | 15.2 | 24.3 | 0.1 | - |
Oeiras | 45.88 | 171,802 | 63.4 | 16.6 | 19.8 | 0.3 | 14.6 |
Palmela | 465.12 | 68,879 | 9.4 | 49.6 | 38.8 | 2.2 | 30.5 |
Seixal | 95.45 | 166,693 | 46.3 | 6.8 | 37.0 | 9.9 | 88.4 |
Sesimbra | 195.72 | 52,465 | 15.1 | 12.5 | 70.9 | 1.5 | 67.3 |
Setúbal | 230.33 | 123,684 | 17.0 | 19.8 | 33.0 | 30.3 | 222.6 |
Sintra | 319.23 | 385,954 | 28.5 | 37.6 | 33.8 | 0.1 | 32.5 |
Vila Franca de Xira | 318.19 | 137,659 | 10.6 | 57.8 | 11.3 | 20.3 | 93.6 |
Scale | Definition | Explanation |
---|---|---|
1 | Equal importance | Two criteria contribute equally to the objective |
3 | Moderate importance | Judgment moderately favors one criterion over another |
5 | Strong importance | Judgment strongly favors one criterion over another |
7 | Very strong importance | One criterion is favored very strongly over another |
9 | Extreme importance | There is evidence favoring one criterion that is of the highest possible order of affirmation |
2, 4, 6, 8 | Immediate values between those of the above scale | When a compromise is required |
Reciprocals | Compared to activity ‘b’, if any of the above numbers is assigned to element ‘a’, ‘b’ is the reciprocal of ‘a’ |
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Random Consistency Index | 0 | 0 | 0.52 | 0.89 | 1.11 | 1.25 | 1.35 | 1.40 | 1.45 | 1.49 |
Municipalities | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Alcochete | Almada | Amadora | Barreiro | Cascais | Lisboa | Loures | Mafra | Moita | Montijo | Odivelas | Oeiras | Palmela | Seixal | Sesimbra | Setúbal | Sintra | Vila Franca de Xira | Overall | ||
GI Planning Principles | Connectivity | 0.23 | 0.32 | 0.23 | 0.17 | 0.21 | 0.12 | 0.22 | 0.26 | 0.17 | NDA | 0.16 | 0.21 | 0.22 | 0.29 | 0.33 | 0.19 | 0.13 | 0.26 | 0.22 |
Multifunctionality | 0.25 | 0.32 | 0.23 | 0.21 | 0.13 | 0.14 | 0.19 | 0.16 | 0.18 | NDA | 0.09 | 0.05 | 0.15 | 0.19 | 0.18 | 0.09 | 0.06 | 0.31 | 0.17 | |
Multiscale | 0.07 | 0.15 | 0.10 | 0.08 | 0.17 | 0.16 | 0.14 | 0.08 | 0.11 | NDA | 0.09 | 0.03 | 0.10 | 0.09 | 0.08 | 0.07 | 0.03 | 0.06 | 0.09 | |
Integration | 0.05 | 0.13 | 0.10 | 0.07 | 0.08 | 0.15 | 0.09 | 0.13 | 0.12 | NDA | 0.14 | 0.11 | 0.10 | 0.13 | 0.10 | 0.09 | 0.17 | 0.05 | 0.11 | |
Diversity | 0.05 | 0.04 | 0.05 | 0.07 | 0.18 | 0.07 | 0.06 | 0.12 | 0.12 | NDA | 0.05 | 0.03 | 0.07 | 0.09 | 0.08 | 0.08 | 0.07 | 0.03 | 0.08 | |
Applicability | 0.04 | 0.03 | 0.16 | 0.13 | 0.10 | 0.11 | 0.12 | 0.08 | 0.09 | NDA | 0.26 | 0.28 | 0.12 | 0.10 | 0.11 | 0.29 | 0.20 | 0.03 | 0.13 | |
Governance | 0.27 | 0.03 | 0.04 | 0.15 | 0.04 | 0.12 | 0.12 | 0.07 | 0.11 | NDA | 0.10 | 0.03 | 0.02 | 0.08 | 0.09 | 0.13 | 0.14 | 0.27 | 0.11 | |
Continuity | 0.08 | 0.02 | 0.09 | 0.12 | 0.07 | 0.12 | 0.03 | 0.12 | 0.09 | NDA | 0.11 | 0.29 | 0.01 | 0.05 | 0.08 | 0.09 | 0.16 | 0.06 | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monteiro, R.; Ferreira, J.C.; Antunes, P. Green Infrastructure Planning Principles: Identification of Priorities Using Analytic Hierarchy Process. Sustainability 2022, 14, 5170. https://doi.org/10.3390/su14095170
Monteiro R, Ferreira JC, Antunes P. Green Infrastructure Planning Principles: Identification of Priorities Using Analytic Hierarchy Process. Sustainability. 2022; 14(9):5170. https://doi.org/10.3390/su14095170
Chicago/Turabian StyleMonteiro, Renato, José Carlos Ferreira, and Paula Antunes. 2022. "Green Infrastructure Planning Principles: Identification of Priorities Using Analytic Hierarchy Process" Sustainability 14, no. 9: 5170. https://doi.org/10.3390/su14095170
APA StyleMonteiro, R., Ferreira, J. C., & Antunes, P. (2022). Green Infrastructure Planning Principles: Identification of Priorities Using Analytic Hierarchy Process. Sustainability, 14(9), 5170. https://doi.org/10.3390/su14095170