Diverse Planting Density-Driven Nutrient and Yield Enhancement of Sweet Corn by Zinc and Selenium Foliar Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Location
Test Materials
2.2. Experimental Design and Treatment
2.3. Sampling Procedures and Analysis
2.4. Data Processing
3. Results
3.1. Grain Yield, Yield Parameters, and Nutritional Values
3.2. Nutritional Values
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Awika, J.M. Major cereal grains production and use around the world. In Advances in Cereal Science: Implications to Food Processing and Health Promotion; ACS Publications: Columbus, OH, USA, 2011; pp. 1–13. [Google Scholar]
- Tarighaleslami, M.; Zarghami, R.; Mashadi, A.B.M.; Oveysi, M. Effect of nitrogen fertilizer and water deficit stress on physiological indexes of corn (Zea mays L.). Iran. J. Agron. Plant Breed. 2012, 8, 161–174. [Google Scholar]
- Shiferaw, B.; Prasanna, B.M.; Hellin, J.; Bänziger, M. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Sec. 2011, 3, 307. [Google Scholar] [CrossRef] [Green Version]
- Yadav, G.S.; Das, A.; Kandpal, B.K.; Babu, S.; Lal, R.; Datta, M.; Das, B.; Singh, R.; Singh, V.; Mohapatra, K.; et al. The food-energy-water-carbon nexus in a maize-maize-mustard cropping sequence of the Indian Himalayas: An impact of tillage-cum-live mulching. Renew. Sustain. Energy Rev. 2021, 151, 111602. [Google Scholar] [CrossRef]
- Cakmak, I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil 2008, 302, 1–17. [Google Scholar] [CrossRef]
- Szerement, J.; Szatanik-Kloc, A.; Mokrzycki, J.; Mierzwa-Hersztek, M. Agronomic Biofortification with Se, Zn, and Fe: An Effective Strategy to Enhance Crop Nutritional Quality and Stress Defense—A Review. J. Soil Sci. Plant Nutr. 2021, 22, 1122–1159. [Google Scholar] [CrossRef]
- Niyigaba, E.; Twizerimana, A.; Mugenzi, I.; Ngnadong, W.A.; Ye, Y.P.; Wu, B.M.; Hai, J.B. Winter wheat grain quality, zinc and iron concentration affected by a combined foliar spray of zinc and iron fertilizers. Agronomy 2019, 9, 250. [Google Scholar] [CrossRef] [Green Version]
- Barrett, C.B. Measuring food insecurity. Science 2010, 327, 825–828. [Google Scholar] [CrossRef]
- Branca, F.; Ferrari, M. Impact of micronutrient deficiencies on growth: The stunting syndrome. Ann. Nutr. Metab. 2002, 46, 8–17. [Google Scholar] [CrossRef]
- Golden, M.H. The nature of nutritional deficiency in relation to growth failure and poverty. Acta Paediatr. 1991, 80, 95–110. [Google Scholar] [CrossRef]
- Grujcic, D.; Yazici, A.M.; Tutus, Y.; Cakmak, I.; Singh, B.R. Biofortification of Silage Maize with Zinc, Iron and Selenium as Affected by Nitrogen Fertilization. Plants 2021, 10, 391. [Google Scholar] [CrossRef]
- de Valença, A.W.; Bake, A.; Brouwer, I.D.; Giller, K.E. Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Glob. Food Secur. 2017, 12, 8–14. [Google Scholar] [CrossRef]
- Mugenzi, I.; Yongli, D.; Ngnadong, W.A.; Dan, H.; Niyigaba, E.; Twizerimana, A.; Hai, J. Effect of combined zinc and iron application rates on summer maize yield, photosynthetic capacity and grain quality. Int. J. Agron. Agric. Res. 2018, 12, 36–46. [Google Scholar]
- Alloway, B.J. Soil factors associated with zinc deficiency in crops and humans. Environ. Geochem. Health 2009, 31, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Çakmak, İ.; Kalaycı, M.; Ekiz, H.; Braun, H.J.; Kılınç, Y.; Yılmaz, A. Zinc deficiency as a practical problem in plant and human nutrition in Turkey: A NATO-science for stability project. Field Crop. Res. 1999, 60, 175–188. [Google Scholar] [CrossRef] [Green Version]
- Baloch, Q.B.; Chachar, Q.I.; Tareen, M.N. Effect of foliar application of macro and micro nutrients on production of green chilies (Capsicum annuum L.). J. Agric. Technol. 2008, 4, 177–184. [Google Scholar]
- Panwar, A.S.; Shamim, M.; Babu, S.; Ravishankar, N.; Prusty, A.K.; Alam, N.M.; Singh, D.K.; Bindhu, J.S.; Kaur, J.; Dashora, L.N.; et al. Enhancement in Productivity, Nutrients Use Efficiency, and Economics of Rice-Wheat Cropping Systems in India through Farmer’s Participatory Approach. Sustainability 2019, 11, 122. [Google Scholar] [CrossRef] [Green Version]
- Brown, P.H.; Cakmak, I.; Zhang, Q. Form and function of zinc plants. In Zinc in Soils and Plants; Springer: Berlin/Heidelberg, Germany, 1993; pp. 93–106. [Google Scholar]
- Malakouti, M.J. The effect of micronutrients in ensuring efficient use of macronutrients. Turk. J. Agric. For. 2008, 32, 215–220. [Google Scholar]
- Babu, S.; Singh, R.; Yadav, D.; Rathore, S.S.; Raj, R.; Avasthe, R.; Yadav, S.; Das, A.; Yadav, V.; Yadav, B.; et al. Nanofertilizers for agricultural and environmental sustainability. Chemosphere 2022, 292, 133451. [Google Scholar] [CrossRef]
- Tariq, A.; Anjum, S.A.; Randhawa, M.A.; Ullah, E.; Naeem, M.; Qamar, R.; Ashraf, U.; Nadeem, M. Influence of zinc nutrition on growth and yield behaviour of maize (Zea mays L.) hybrids. Am. J. Plant Sci. 2014, 5, 2646–2654. [Google Scholar] [CrossRef] [Green Version]
- Zou, C.; Zhai, R.; Huang, K.; Tan, H.; Zheng, D.; Huang, A.; Wei, X.; Mo, R.; Xiong, F.; Wei, H.; et al. Effect of Foliar Application of Selenium Fertilizer on Yield, Selenium Content and Heavy Metal Contents of Waxy Maize. Asian Agric. Res. 2021, 12, 40–48. [Google Scholar]
- Revilla, P.; Anibas, C.M.; Tracy, W.F. Sweet Corn Research around the World 2015–2020. Agronomy 2021, 11, 534. [Google Scholar] [CrossRef]
- Burhan, K.; Ertek, A.; Bekir, A. Mineral nutrient content of sweet corn under deficit irrigation. J. Agric. Sci. 2016, 22, 54–61. [Google Scholar]
- Yang, Q.; Yang, X.; Zhang, Q.; Wang, Y.; Song, H.; Huang, F. Quantifying soluble sugar in super sweet corn using near-infrared spectroscopy combined with chemometrics. Optik 2020, 220, 165128. [Google Scholar] [CrossRef]
- Swapna, G.; Jadesha, G.; Mahadevu, P. Sweet corn—A future healthy human nutrition food. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 3859–3865. [Google Scholar] [CrossRef]
- Lertrat, K.; Pulam, T. Breeding for Increased Sweetness in Sweet Corn. Int. J. Plant Breed. 2007, 1, 27–30. [Google Scholar]
- Peykarestan, B.; Yarnia, M.; Madani, H.; Rashidi, V.; Abad, H.H.S. Impact of low-alternate furrow irrigiation and zinc sulfate foliar application on grain yield and enrichment of sweet corn hybrids. Pak. J. Bot. 2018, 50, 1005–1011. [Google Scholar]
- Santos, O.F.; Lima, S.F.; Piati, G.L.; Barzotto, G.R.; Gava, R. Irrigation as an alternative to reduce damages caused by defoliation of sweet corn. Hortic. Bras. 2018, 36, 341–345. [Google Scholar] [CrossRef]
- Subaedah, S.; Edy, E.; Mariana, K. Growth, Yield, and Sugar Content of Different Varieties of Sweet Corn and Harvest Time. Int. J. Agron. 2021, 2021, e8882140. [Google Scholar] [CrossRef]
- Li, L.; Vuichard, N.; Viovy, N.; Ciais, P.; Wang, T.; Ceschia, E.; Jans, W.; Wattenbach, M.; Béziat, P.; Gruenwald, T.; et al. Importance of crop varieties and management practices: Evaluation of a process-based model for simulating CO2 and H2O fluxes at five European maize (Zea mays L.) sites. Biogeosciences 2011, 8, 1721–1736. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, Z.; Mao, H.; Zhao, H.; Huang, D. Increasing Se concentration in maize grain with soil- or foliar-applied selenite on the Loess Plateau in China. Field Crop. Res. 2013, 150, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Shafiq, S.; Adeel, M.; Raza, H.; Iqbal, R.; Ahmad, Z.; Naeem, M.; Sheraz, M.; Ahmed, U.; Azmi, U.R. Effects of Foliar Application of Selenium in Maize (Zea mays L.) under Cadmium Toxicity. Biol. Forum 2019, 11, 61–71. [Google Scholar]
- Pilon-Smits, E.A.H. Selenium in Plants. In Progress in Botany; Lüttge, U., Beyschlag, W., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 76, pp. 93–107. [Google Scholar]
- Terry, N.; Zayed, A.M.; de Souza, M.P.; Tarun, A.S. Selenium in Higher Plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2000, 51, 401–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabani, J.; Amam, Y. Yield response to water stress at different growth stages of maize hybrids. J. Crop. Prod. Process. 2012, 1, 65–78. [Google Scholar]
- Scot, P.; Aboudrare, A. Adaptation of crop management to water-limited environment. Eur. J. Agron. 2009, 21, 433–446. [Google Scholar]
- Umair Hassan, M.; Aamer, M.; Umer Chattha, M.; Haiying, T.; Shahzad, B.; Barbanti, L.; Nawaz, M.; Rasheed, A.; Afzal, A.; Liu, Y.; et al. The Critical Role of Zinc in Plants Facing the Drought Stress. Agriculture 2020, 10, 396. [Google Scholar] [CrossRef]
- Sadeghzadeh, B.; Rengel, Z. Zinc in Soils and Crop Nutrition. In The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops; Wiley-Blackwell: Oxford, UK, 2011; pp. 335–375. [Google Scholar]
- Alloway, B. Zinc in Soils and Crop Nutrition. Areas of the World with Zinc Deficiency Problems; International Zinc Association Brussels: Brussels, Belgium, 2004; pp. 1–116. [Google Scholar]
- Sadeghzadeh, B. A review of zinc nutrition and plant breeding. J. Soil Sci. Plant Nutr. 2013, 13, 905–927. [Google Scholar] [CrossRef] [Green Version]
- Leach, K.A.; Hameleers, A. The effects of a foliar spray containing phosphorus and zinc on the development, composition and yield of forage maize. Grass Forage Sci. 2001, 56, 311–315. [Google Scholar] [CrossRef]
- Subedi, K.D.; Ma, B.L. Corn crop production: Growth, fertilization and yield. In Agriculture Issues and Policies; Nova Science Publisher: New York, NY, USA, 2009. [Google Scholar]
- Erenoglu, B.; Nikolic, M.; Römheld, V.; Cakmak, I. Uptake and transport of foliar applied zinc (65Zn) in bread and durum wheat cultivars differing in zinc efficiency. Plant Soil 2002, 241, 251–257. [Google Scholar] [CrossRef]
- Grzebisz, W.; Wronska, M.; Diatta, J.B.; Dullin, P. Effect of zinc foliar application at an early stage of maize growth on patterns of nutrients and dry matter accumulation by the canopy. Part I. Zinc uptake patterns and its redistribution among maize organs. J. Elem. 2008, 13, 29–39. [Google Scholar]
- Xia, H.; Kong, W.; Wang, L.; Xue, Y.; Liu, W.; Zhang, C.; Yang, S.; Li, C. Foliar Zn spraying simultaneously improved concentrations and bioavailability of Zn and Fe in maize grains irrespective of foliar sucrose supply. Agronomy 2019, 9, 386. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Tong, L.; Kang, S.; Li, F.; Li, D.; Qin, Y.; Shi, R.; Li, J. Planting density affected biomass and grain yield of maize for seed production in an arid region of Northwest China. J. Arid Land 2018, 10, 292–303. [Google Scholar] [CrossRef] [Green Version]
- Jiao, X.; Lyu, Y.; Wu, X.; Li, H.; Cheng, L.; Zhang, C.; Yuan, L.; Jiang, R.; Jiang, B.; Rengel, Z.; et al. Grain production versus resource and environmental costs: Towards increasing sustainability of nutrient use in China. J. Exp. Bot. 2016, 67, 4935–4949. [Google Scholar] [CrossRef]
- Du, X.; Wang, Z.; Lei, W.; Kong, L. Increased planting density combined with reduced nitrogen rate to achieve high yield in maize. Sci. Rep. 2021, 11, 358. [Google Scholar] [CrossRef] [PubMed]
- Sher, A.; Khan, A.; Cai, L.J.; Ahmad, M.I.; Asharf, U.; Jamoro, S.A. Response of maize grown under high plant density; performance, issues and management-a critical review. Adv. Crop. Sci. Technol. 2017, 5, 275. [Google Scholar] [CrossRef] [Green Version]
- Shi, D.; Li, Y.; Zhang, J.; Liu, P.; Zhao, B.; Dong, S. Increased plant density and reduced N rate lead to more grain yield and higher resource utilization in summer maize. J. Integr. Agric. 2016, 15, 2515–2528. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Feyissa, T.; Ma, H.; Duan, Z.; Zhang, W. Optimizing Plant Density and Balancing NPK Inputs in Combination with Innovative Fertilizer Product for Sustainable Maize Production in North China Plain; Research Square: Durham, NC, USA, 2022. [Google Scholar]
- Dhaliwal, D.S.; Ainsworth, E.A.; Williams, M.M. Historical Trends in Sweet Corn Plant Density Tolerance Using Era Hybrids (1930–2010s). Front. Plant Sci. 2021, 12, 1. [Google Scholar] [CrossRef]
- Assefa, Y.; Carter, P.; Hinds, M.; Bhalla, G.; Schon, R.; Jeschke, M.; Paszkiewicz, S.; Smith, S.; Ciampitti, I.A. Analysis of Long Term Study Indicates Both Agronomic Optimal Plant Density and Increase Maize Yield per Plant Contributed to Yield Gain. Sci. Rep. 2018, 8, 4937. [Google Scholar] [CrossRef] [Green Version]
- Piper, C.S. Soil and Plant Analysis; Scientific Jodhpur Publishers: Jodhpur, India, 2019. [Google Scholar]
- Dellaporta, S.L.; Calderon-Urrea, A. The Sex Determination Process in Maize. Science 1994, 266, 1501–1505. [Google Scholar] [CrossRef]
- Ventura, J. Characterization of Maize Sex-Determination Gene Orthologs in Rice (Oryza sativa L. Japonica Cv. Nipponbare); University of Rhode Island: Kingston, RI, USA, 2012. [Google Scholar]
- Beljkaš, B.; Matić, J.; Milovanović, I.; Jovanov, P.; Mišan, A.; Šarić, L. Rapid method for determination of protein content in cereals and oilseeds: Validation, measurement uncertainty and comparison with the Kjeldahl method. Accredit. Qual. Assur. 2010, 15, 555–561. [Google Scholar] [CrossRef]
- Schop, M.; de Vries, S.; Gerrits, W.J.J.; Jansman, A.J.M. In Vitro Enzymatic Protein Hydrolysis Kinetics of Feed Ingredients. Modelling Digestion Kinetics in Pigs. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2020; p. 65. [Google Scholar]
- Isaac, R.A.; Kerber, J.D. Atomic Absorption and Flame Photometry: Techniques and Uses in Soil, Plant, and Water Analysis. In Instrumental Methods for Analysis of Soils and Plant Tissue; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1971; pp. 17–37. [Google Scholar]
- Zhao, A.; Wang, B.; Tian, X.; Yang, X. Combined soil and foliar ZnSO4 application improves wheat grain Zn concentration and Zn fractions in a calcareous soil. Eur. J. Soil Sci. 2020, 71, 681–694. [Google Scholar] [CrossRef]
- Cakmak, I. Tansley Review No. 111 Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol. 2000, 146, 185–205. [Google Scholar] [CrossRef] [PubMed]
- Potarzycki, J.; Grzebisz, W. Effect of zinc foliar application on grain yield of maize and its yielding components. Plant Soil Environ. 2009, 55, 519–527. [Google Scholar] [CrossRef] [Green Version]
- Nawaz, F.; Ahmad, R.; Ashraf, M.Y.; Waraich, E.A.; Khan, S.Z. Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress. Ecotoxicol. Environ. Saf. 2015, 113, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Farnham, D.E. Row Spacing, Plant Density, and Hybrid Effects on Corn Grain Yield and Moisture. Agron. J. 2001, 93, 1049–1053. [Google Scholar] [CrossRef]
- Gozubenli, H.; Kilinc, M.; Sener, O.; Konuskan, O. Effects of single and twin row planting on yield and yield components in maize. Asian J. Plant Sci. 2004, 3, 203–206. [Google Scholar] [CrossRef]
- Germ, M.; Stibilj, V. Selenium and plants. Acta Agric. Slov. 2007, 89, 65–71. [Google Scholar] [CrossRef]
- Testa, G.; Reyneri, A.; Blandino, M. Maize grain yield enhancement through high plant density cultivation with different inter-row and intra-row spacings. Eur. J. Agron. 2016, 72, 28–37. [Google Scholar] [CrossRef]
- Shelton, A.C.; Tracy, W.F. Genetic variation and phenotypic response of 15 sweet corn (Zea mays L.) hybrids to population density. Sustainability 2013, 5, 2442–2456. [Google Scholar] [CrossRef] [Green Version]
- Hisham, A.R.A.; Ch’Ng, H.Y.; Rahman, M.M.; Mat, K.; Zulhisyam, A.K. Effects of zinc on the growth and yield of maize (Zea mays L.) cultivated in a tropical acid soil using different application techniques. IOP Conf. Ser. Earth Environ. Sci. 2021, 756, 012056. [Google Scholar] [CrossRef]
- Naseem, M.; Anwar-Ul-Haq, M.; Wang, X.; Farooq, N.; Awais, M.; Sattar, H.; Malik, H.A.; Mustafa, A.; Ahmad, J.; El-Esawi, M.A. Influence of Selenium on Growth, Physiology, and Antioxidant Responses in Maize Varies in a Dose-Dependent Manner. J. Food Qual. 2021, 2021, e6642018. [Google Scholar] [CrossRef]
- Fahrurrozi, F.; Muktamar, Z.; Dwatmadji, D.; Setyowati, N.; Sudjatmiko, S.; Chozin, M. Growth and Yield Responses of Three Sweet Corn (Zea mays L. var. Saccharata) Varieties to Local-based Liquid Organic Fertilizer. Int. J. Adv. Sci. Eng. Inf. Technol. 2017, 6, 319–323. [Google Scholar]
- Peddapuli, M.; Venkateswarlu, B.; Prasad, P.V.N.; Rao, S. Growth and Yield of Sweetcorn as Influenced by Zinc Fertilization. Int. J. Agric. Environ. Biotechnol. 2021, 14, 175–179. [Google Scholar] [CrossRef]
- Safyan, N.; Naderidarbaghshahi, M.R.; Bahari, B. The effect of microelements spraying on growth, qualitative and quantitative grain corn in Iran. Int. Res. J. Appl. Basic Sci. 2012, 3, 2780–2784. [Google Scholar]
- Karrimi, A.S.; Reddy, A.P.K.; Babazoi, F.; Kohistani, T. Growth, yield and post-harvest soil available nutrients in sweet corn (Zea mays L.) as influenced by zinc and iron nutrition. J. Pharmacogn. Phytochem. 2018, 7, 2372–2374. [Google Scholar]
- Abuzar, M.R.; Sadozai, G.U.; Baloch, M.S.; Baloch, A.A.; Shah, I.H.; Javaid, T.; Hussain, N. Effect of plant population densities on yield of maize. J. Anim. Plant Sci. 2011, 21, 692–695. [Google Scholar]
- López-Bellido, L.; López-Bellido, R.J.; Castillo, J.E.; López-Bellido, F.J. Effects of long-term tillage, crop rotation and nitrogen fertilization on bread-making quality of hard red spring wheat. Field Crop. Res. 2001, 72, 197–210. [Google Scholar] [CrossRef]
- Haddadi, M.H. Investigation of characteristics and cultivation of sweet corn: A Review. Int. J. Farming Allied Sci. 2016, 5, 243–247. [Google Scholar]
- Adamec, S.; Andrejiová, A.; Hegedűsová, A.; Šemnicer, M. Evaluation of the foliar nutrition influence on selected quantitative and qualitative paprameters of sugar mayze (Zea mays SK saccharata). Potravin. Slovak J. Food Sci. 2020, 14, 208–215. [Google Scholar] [CrossRef]
- Syomina, S.A.; Paliychuk, A.S.; Gavryushina, I.V.; Lysenko, I.A. Fertilizers, plant density and nutritional properties of corn grain. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; p. 012036. [Google Scholar]
- Huang, A.H.; Huang, K.J.; Peng, J.; Huang, S.H.; Bi, X.C.; Zhai, R.N.; Mo, R.X.; Zheng, D.B.; Zou, C.L.; Wei, X.X.; et al. Effects of foliar spraying of selenium fertilizer on selenium-enriched content, heavy metal content and yield of sweet corn grain. J. South. Agric. 2019, 50, 40–44. [Google Scholar]
- White, P.J. Selenium accumulation by plants. Ann. Bot. 2016, 117, 217–235. [Google Scholar] [CrossRef] [Green Version]
- Lyons, G.H.; Genc, Y.; Stangoulis, J.; Palmer, L.T.; Graham, R.D. Selenium distribution in wheat grain, and the effect of postharvest processing on wheat selenium content. Biol. Trace Elem. Res. 2005, 103, 155–168. [Google Scholar] [CrossRef]
- Radawiec, A.; Rutkowska, B.; Tidaback, J.A.; Gozdowski, D.; Knapowski, T.; Szulc, W. The Impact of Selenium Fertilization on the Quality Characteristics of Spring Wheat Grain. Agronomy 2021, 11, 2100. [Google Scholar] [CrossRef]
- López-Millán, A.F.; Ellis, D.R.; Grusak, M.A. Effect of zinc and manganese supply on the activities of superoxide dismutase and carbonic anhydrase in Medicago truncatula wild type and raz mutant plants. Plant Sci. 2005, 168, 1015–1022. [Google Scholar] [CrossRef]
- Palai, J.B.; Sarkar, N.C.; Jena, J. Effect of zinc on growth, yields, zinc use efficiency and economics in baby corn. J. Pharmacogn. Phytochem. 2018, 7, 1641–1645. [Google Scholar]
- Zulfiqar, U.; Hussain, S.; Ishfaq, M.; Matloob, A.; Ali, N.; Ahmad, M.; Alyemeni, M.; Ahmad, P. Zinc-induced effects on productivity, zinc use efficiency, and grain biofortification of bread wheat under different tillage permutations. Agronomy 2020, 10, 1566. [Google Scholar] [CrossRef]
Total Nitrogen | Available Phosphorus | Organic Matter | Available Potassium | pH |
---|---|---|---|---|
1.46 g kg−1 | 17.69 mg kg−1 | 18.02 g kg−1 | 189.2 mg kg−1 | 7.9 |
Source of Variation | GY | KPC | LA | Phe | CP | Sol | Su | Zn | Se |
---|---|---|---|---|---|---|---|---|---|
VA | * | ns | *** | *** | ns | ns | *** | *** | *** |
TE | * | ns | * | ** | ns | *** | ** | * | * |
DE | ns | ns | *** | ns | ns | ns | ns | ns | ns |
VA*TE | * | * | * | ns | ns | ns | ns | ns | ns |
VA*DE | ns | ns | ns | ns | ns | ns | ns | * | ns |
TE*DE | ns | ns | ns | ns | ns | ns | ns | * | ns |
VA*TE*DE | ns | ns | ns | ns | ns | * | ns | *** | ns |
2019–2020 Summer Cropping Season | 2010–2021 Summer Cropping Season | |||||||
---|---|---|---|---|---|---|---|---|
Treatment | GY (t ha −1) | KPC (g) | LA (cm2) | Phe (cm) | GY (t ha −1) | KPC (g) | LA (cm2) | Phe (cm) |
V1 CKD1 | 2.247 | 42.2 | 647.0 | 203.8 | 2.244 | 40.6 | 672.6 | 191.8 |
V1 CKD2 | 2.348 | 40.7 | 623.7 | 227.3 | 2.419 | 41 | 683.3 | 202.4 |
V1 CKD3 | 2.732 | 41.8 | 623.4 | 217.0 | 2.679 | 41.5 | 659.4 | 203.7 |
V1 ZnD1 | 2.547 * | 41.2 | 657.3 * | 248.8 * | 2.499 * | 40.6 | 671.3 * | 220.5 * |
V1 ZnD2 | 2.463 * | 40.5 | 637.2 * | 250.0 * | 2.405 * | 39.2 | 681.9 * | 222.6 * |
V1 ZnD3 | 2.451 * | 40.8 | 671.2 * | 251.2 * | 2.385 * | 38.7 | 710.8 * | 223.8 * |
V1 SeD1 | 2.558 * | 42.8 | 637.8 * | 252.7 * | 2.505 * | 42.8 | 649.3 * | 218.6 * |
V1 SeD2 | 2.7 * | 40.8 | 614.6 * | 250.3 * | 2.685 * | 39.7 | 669.6 * | 222.3 * |
V1 SeD3 | 2.665 * | 41.3 | 649.4 * | 232.3 * | 2.60 * | 40.7 | 707.8 * | 216.6 * |
V2 CKD1 | 2.383 | 40.8 | 494.7 | 214.5 | 2.311 | 40.3 | 501.6 | 195.4 |
V2 CKD2 | 2.58 | 42.5 | 498.6 | 216.2 | 2.526 | 41.3 | 496.1 | 194.4 |
V2 CKD3 | 2.435 | 41.2 | 557.1 | 217.2 | 2.419 | 38.8 | 574.9 | 196.8 |
V2 ZnD1 | 2.691 * | 42.2 | 519.6 * | 225.0 * | 2.645 * | 42 | 550 * | 202.9 * |
V2 ZnD2 | 2.702 * | 42.7 | 552.7 * | 215.0 * | 2.702 * | 42.3 | 564.6 * | 200.8 * |
V2 ZnD3 | 2.857 * | 44.7 | 579.8 * | 224.7 * | 2.855 * | 43.1 | 592.8 * | 202.3 * |
V2 SeD1 | 2.733 * | 43.0 | 521.2 * | 229.3 * | 2.75 * | 42.3 | 548.4 * | 204.4 * |
V2 SeD2 | 2.618 * | 42.0 | 586.7 * | 223.7 * | 2.6 * | 41.4 | 593.6 * | 201 * |
VSeD3 | 2.602 * | 42.2 | 574.7 * | 225.3 * | 2.645 * | 41.1 | 580.7 * | 203.9 * |
2019–2020 Summer Cropping Season | 2010–2021 Summer Cropping Season | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Treatment | Cp (%) | Sol (%) | Su (%) | Zinc (%) | Se (%) | Cp (%) | Sol (%) | Su (%) | Zinc (%) | Se (%) |
V1 CKD1 | 14.42 | 0.55 | 14.05 | 0.038 | 1.148 | 12.82 | 0.61 | 14.20 | 0.036 | 1.144 |
V1 CKD2 | 14.57 | 0.49 | 14.97 | 0.035 | 1.128 | 13.30 | 0.54 | 14.58 | 0.035 | 1.253 |
V1 CKD3 | 14.40 | 0.54 | 14.58 | 0.035 | 1.186 | 13.53 | 0.58 | 14.15 | 0.036 | 1.144 |
V1 ZnD1 | 14.32 | 0.62 * | 14.97 | 0.041 | 1.177 | 13.58 * | 0.61 | 14.72 * | 0.041 | 1155 |
V1 ZnD2 | 15.50 | 0.63 * | 15.08 | 0.041 | 1.218 | 13.18 * | 0.64 | 14.43 * | 0.039 | 1.242 |
V1 ZnD3 | 14.98 | 0.59 * | 14.68 | 0.032 | 1.337 | 13.83 * | 0.68 | 14.13 * | 0.032 | 1.278 |
V1 SeD1 | 14.58 | 0.56 * | 15.25 | 0.039 | 1.373 | 13.67 * | 0.60 | 15.02 * | 0.038 | 1.229 |
V1 SeD2 | 15.37 | 0.58 * | 15.02 | 0.042 | 1.325 | 13.47 * | 0.63 | 14.83 * | 0..41 | 1.221 |
V1 SeD3 | 14.43 | 0.61 * | 14.78 | 0.040 | 1.235 | 14.18 * | 0.68 | 14.78 * | 0.039 | 1.208 |
V2 CKD1 | 12.58 | 0.51 | 15.18 | 0.038 | 1.083 | 15.00 | 0.55 | 15.18 | 0.038 | 1.150 |
V2 CKD2 | 13.27 | 0.53 | 16.05 | 0.043 | 1.083 | 14.82 | 0.56 | 15.72 | 0.042 | 1.109 |
V2 CKD3 | 12.55 | 0.53 | 15.92 | 0.040 | 1.145 | 14.93 | 0.55 | 15.60 | 0.040 | 1.134 |
V2 ZnD1 | 12.97 | 0.60 * | 16.45 | 0.040 | 1.161 | 14.98 * | 0.66 | 16.08 * | 0.040 | 1.185 |
V2 ZnD2 | 12.73 | 0.61 * | 16.27 | 0.043 | 1.102 | 15.38 * | 0.64 | 16.15 * | 0.042 | 1.161 |
V2 ZnD3 | 13.17 | 0.61 * | 16.10 | 0.047 | 1.160 | 15.65 * | 0.67 | 16.13 * | 0.045 | 1.154 |
V2 SeD1 | 12.97 | 0.58 * | 15.90 | 0.048 | 1.185 | 15.63 * | 0.63 | 15.57 * | 0.046 | 1.204 |
V2 SeD2 | 12.20 | 0.58 * | 16.63 | 0.035 | 1.140 | 15.28 * | 0.64 | 160.2 * | 0.035 | 1.186 |
V2 SeD3 | 12.68 | 0.60 * | 16.32 | 0.043 | 1.149 | 15.13 * | 0.63 | 160.2 * | 0.043 | 1.169 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shio, B.J.; Guo, S.; Zhang, R.; Tanveer, S.K.; Hai, J. Diverse Planting Density-Driven Nutrient and Yield Enhancement of Sweet Corn by Zinc and Selenium Foliar Application. Sustainability 2022, 14, 5261. https://doi.org/10.3390/su14095261
Shio BJ, Guo S, Zhang R, Tanveer SK, Hai J. Diverse Planting Density-Driven Nutrient and Yield Enhancement of Sweet Corn by Zinc and Selenium Foliar Application. Sustainability. 2022; 14(9):5261. https://doi.org/10.3390/su14095261
Chicago/Turabian StyleShio, Bosco Justin, Shaomin Guo, Ruifang Zhang, Sikander Khan Tanveer, and Jiangbo Hai. 2022. "Diverse Planting Density-Driven Nutrient and Yield Enhancement of Sweet Corn by Zinc and Selenium Foliar Application" Sustainability 14, no. 9: 5261. https://doi.org/10.3390/su14095261
APA StyleShio, B. J., Guo, S., Zhang, R., Tanveer, S. K., & Hai, J. (2022). Diverse Planting Density-Driven Nutrient and Yield Enhancement of Sweet Corn by Zinc and Selenium Foliar Application. Sustainability, 14(9), 5261. https://doi.org/10.3390/su14095261