The Potential of the Co-Recycling of Secondary Biodegradable Household Resources Including Wild Plants to Close Nutrient and Carbon Cycles in Agriculture in Germany
Abstract
:1. Introduction
1.1. Problem Status and Relevance
1.2. The Potential of Alternative Circular Concepts
1.3. Objectives
2. Materials and Methods
2.1. Scope and Functional Unit
2.2. Scenarios and System Boundaries
2.3. Feedstock Characterization
2.4. Input Parameters and Fermentation Tests
2.5. Substitution Potential
3. Results and Discussion
3.1. Dry Matter Content
3.2. Carbon Oxygen Demand and Nutrients
3.3. Heavy Metals
3.4. Biogas Potential of Household Organic Resources
3.5. Biogas Potential of Wild Plants and Kitchen Waste
3.6. Synergistic Effects on Methane Yield of Black Water, Kitchen Waste and Wild Plants
3.7. The Potential for Fossil Energy and Corn Acreage Substitution
3.8. The Potential for Mineral Phosphorus Fertilizer Substitution
3.9. The Potential for Plastic Substitution
3.10. The Potential for Substitution of Soil Improving Measures
3.11. The Potential of Alternative Circular Concepts
4. Conclusions
4.1. Conclusions and Outlook
4.2. Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lansche, J.; Awiszus, S.; Latif, S.; Müller, J. Potential of Biogas Production from Processing Residues to Reduce Environmental Impacts from Cassava Starch and Crisp Production—A Case Study from Malaysia. Appl. Sci. 2020, 10, 2975. [Google Scholar] [CrossRef]
- Gell, K.; de Ruijter, F.J.; Kuntke, P.; de Graaff, M.; Smit, A.L. Safety and effectiveness of struvite from black water and urine as a phosphorus fertilizer. J. Agric. Sci. 2011, 3, 67. [Google Scholar] [CrossRef]
- Mihelcic, J.R.; Fry, L.M.; Shaw, R. Global potential of phosphorus recovery from human urine and feces. Chemosphere 2011, 84, 832–839. [Google Scholar] [CrossRef] [PubMed]
- Cordell, D.; White, S.; Lindström, T. Peak phosphorus: The crunch time for humanity. Sustain. Rev. 2011, 2, 3. [Google Scholar]
- Schroeder, P.; Anggraeni, K.; Weber, U. The Relevance of Circular Economy Practices to the Sustainable Development Goals. J. Ind. Ecol. 2019, 23, 77–95. [Google Scholar] [CrossRef] [Green Version]
- Pollert, A.; Kirchner, B.; Polzin, J.M.; Pollert, M.C. Duden Wirtschaft von A bis Z: Grundlagenwissen für Schule und Studium, Beruf und Alltag; Bibliographisches Institut GmbH: Gotha, Germany, 2016; ISBN 3411912154. [Google Scholar]
- Friedrich, J.; Poganietz, W.-R.; Lehn, H. Life-cycle assessment of system alternatives for the Water-Energy-Waste Nexus in the urban building stock. Resour. Conserv. Recycl. 2020, 158, 104808. [Google Scholar] [CrossRef]
- Remy, C. Life Cycle Assessment of Conventional and Source Separation Systems for Urban Wastewater Management; Papierflieger: Clausthal-Zellerfeld, Germany, 2010. [Google Scholar]
- Remy, C.; Ruhland, A. Ecological Assessment of Alternative Sanitation Concepts with Life Cycle Assessment; Technical University Berlin: Berlin, Germany, 2006; p. 55. [Google Scholar]
- RUN—Rural Urban Nutrient Partnership. RUN in Images. Available online: https://www.run-projekt.de/erklaergrafiken (accessed on 24 March 2022).
- Saratale, R.G.; Cho, S.K.; Saratale, G.D.; Kadam, A.A.; Ghodake, G.S.; Kumar, M.; Bharagava, R.N.; Kumar, G.; Kim, D.S.; Mulla, S.I.; et al. A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams. Bioresour. Technol. 2021, 325, 124685. [Google Scholar] [CrossRef]
- Umweltbundesamt; Bundesanstalt für Geowissenschaften und Rohstoffe; Thünen-Institut für Agrarklimaschutz; Thüneninstitut für Waldökosysteme; Deutscher wetterdienst Abteilung Agrarmeteorologie. Bodenzustand in Deutschland: Zum "internationalen Jahr des Bodens" 2015. Available online: www.umweltbundesamt.de/publikationen/bodenzustand-in-deutschland (accessed on 1 September 2021).
- Energiebilanzen, A.G. Auswertungstabellen zur Energiebilanz für die Bundesrepublik Deutschland 1990 bis 2019 (Stand September 2020). Available online: https://www.ag-energiebilanzen.de/10-0-Auswertungstabellen.html (accessed on 1 September 2020).
- Statista 2020. Düngemittel: Verbrauch in der Landwirtschaft bis 2019|Statista. Available online: https://de.statista.com/statistik/daten/studie/161842/umfrage/verbrauch-ausgewaehlter-duenger-in-der-landwirtschaft-in-deutschland/ (accessed on 17 December 2020).
- Consultic Marketing & Industrieberatung GmbH. Produktion, Verarbeitung und Verwertung von Kunststoffen in Deutschland 2015-Kurzfassung. Available online: https://www.bvse.de/images/pdf/kunststoff/2016/161020_Consultic_Endbericht_2015_19_09_2016_Kurzfassung.pdf (accessed on 24 March 2022).
- Bertling, J.; Zimmermann, T.; Rödig, L. Kunststoffe in der Umwelt: Emissionen in landwirtschaftlich genutzte Böden. Tech. Rep. Fraunhofer Ges. 2021. Available online: https://publica.fraunhofer.de/eprints/urn_nbn_de_0011-n-6336116.pdf (accessed on 24 March 2022).
- Hübsch, H.; Adlwarth, W. Systematische Erfassung von Lebensmittelabfällen der Privaten Haushalte in Deutschland. In Schlussbericht der GfK Studie, durchgeführt von der GfK für das BMEL; 2017; Available online: https://Www.Bmel.De/Shar./Downloads/Ernaehrung/WvL/Stud._GfK.Pdf (accessed on 24 March 2022).
- Kegebein, J. Die Verwendung von Küchenabfallzerkleinerern (KAZ) aus Abwasser-und Abfallwirtschaftlicher Sicht; Verlag Siedlungswasserwirtschaft: Berlin/Heidelberg, Germany, 2006; ISBN 3980938352. [Google Scholar]
- Deutsche Gesellschaft für Ernährung. 13. DGE-Ernährungsbericht; Deutsche Ges. f. Ernährung: Bonn, Germany, 2017; ISBN 978-3-88749-256-4. [Google Scholar]
- Deutsches Institut für Normung e.V. Deutsche Einheitsverfahren zur Wasser-, Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung; Schlamm und Sedimente; Beuth Verlag GmbH: Berlin, Germany, 2021. [Google Scholar]
- Deutsches Institut für Normung e.V. Schlamm, Behandelter Bioabfall und Boden—Bestimmung des Gesamt-Stickstoffgehalts Mittels Trockener Verbrennung; Beuth Verlag GmbH: Berlin, Germany, 2021. [Google Scholar]
- Deutsches Institut für Normung e.V. Wasserbeschaffenheit—Anwendung der Induktiv Gekoppelten Plasma-Massenspektrometrie; Beuth Verlag GmbH: Berlin, Germany, 2021. [Google Scholar]
- Deutsches Institut für Normung e.V. Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung; Summarische Wirkungs- und Stoffkenngrößen; Beuth Verlag GmbH: Berlin, Germany, 2020. [Google Scholar]
- Verein Deutscher Ingenieure. VDI-Richtlinie: Vergärung Organischer Stoffe—Substratcharakterisierung, Probenahme, Stoffdatenerhebung, Gärversuche; Beuth Verlag Berlin: Berlin, Germany, 2014. [Google Scholar]
- BioAbfV, L. Verordnung über die Verwertung von Bioabfällen auf Landwirtschaftlich, Forstwirtschaftlich und Gärtnerisch Genutzten Böden (Bioabfallverordnung—BioAbfV). 1998. Available online: https://www.lanuv.nrw.de/fileadmin/lanuv/agrar/duengemittel/gesetzessammlung/2013_BioAbfV_leslicher_.pdf (accessed on 24 March 2022).
- Kranert, M. Einführung in die Kreislaufwirtschaft; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2017; ISBN 978-3-8348-1837-9. [Google Scholar]
- Montag, D.; Gethke, K.; Wibke, E.; Pinnekamp, J. Nährstoff- und Schadstoffgehalte in Sekundärphosphaten. Available online: http://publications.rwth-aachen.de/record/98779?ln=de (accessed on 1 September 2021).
- Schulze-Rettmer, R.; Blank, R. Chemische Fällung von Ammonium mit Magnesiumphosphat unter Kreislaufführung des Fällmittels. Korresp. Abwasser 1992, 39, 550–559. [Google Scholar]
- Uhrig, T.; Zimmer, J.; Rankenhohn, F.; Steinmetz, H. Biopolymerproduktion aus Abwasser-strömen für eine kreislauforientierte Siedlungswasserwirtschaft. Wasser Und Abfall 2020, 13–18. [Google Scholar] [CrossRef]
- Bengtsson, S.; Werker, A.; Visser, C.; Korving, L. PHARIO: Stepping Stone to a Sustainable Value Chain for PHA Bioplastic Using Municipal Activated Sludge; STOWA: Amersfoort, The Netherlands, 2017. [Google Scholar]
- Rhu, D.H.; Lee, W.H.; Kim, J.Y.; Choi, E. Polyhydroxyalkanoate (PHA) production from waste. Water Sci. Technol. 2003, 48, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wu, H.; Chen, H. Coupling of polyhydroxyalkanoate production with volatile fatty acid from food wastes and excess sludge. Process Saf. Environ. Prot. Trans. Inst. Chem. Eng. Part B 2014, 92, 171–178. [Google Scholar] [CrossRef]
- Colombo, B.; Favini, F.; Scaglia, B.; Sciarria, T.P.; D’Imporzano, G.; Pognani, M.; Alekseeva, A.; Eisele, G.; Cosentino, C.; Adani, F. Enhanced polyhydroxyalkanoate (PHA) production from the organic fraction of municipal solid waste by using mixed microbial culture. Biotechnol. Biofuels 2017, 10, 201. [Google Scholar] [CrossRef] [PubMed]
- Joseph, B. Technical and Environmental Assessment of Energy and Material Production from Rural and Urban Residual Biomass. Ph.D. Thesis, University of Kassel, Kassel, Germany, 23 March 2020. [Google Scholar]
- Novotny, E.H.; Maia, C.M.B.d.F.; Carvalho, M.T.d.M.; Madari, B.E. Biochar: Pyrogenic carbon for agricultural use—A critical review. Rev. Bras. Ciênc. Solo 2015, 39, 321–344. [Google Scholar] [CrossRef] [Green Version]
- Antal, M.J.; Croiset, E.; Dai, X.; DeAlmeida, C.; Mok, W.S.-L.; Norberg, N.; Richard, J.-R.; Al Majthoub, M. High-yield biomass charcoal. Energy Fuels 1996, 10, 652–658. [Google Scholar] [CrossRef]
- Schmidt, H.-P. 55 Anwendungen von Pflanzenkohle. Ithaka J. 2012, 1, 9–102. [Google Scholar]
- Fachagentur Nachwachsende Rohstoffe e.V. Maisanbau in Deutschland. 2020. Available online: mediathek.fnr.de (accessed on 1 September 2021).
- Fachagentur Nachwachsende Rohstoffe e.V. Basisdaten Bioenergie Deutschland. 2018. Available online: www.fnr.de (accessed on 1 September 2021).
- Wendland, C. Anaerobic Digestion of Blackwater and Kitchen Refuse; Gesellschaft zur Förderung und Entwicklung der Umwelttechnologien an der Technischen Universität Hamburg-Harburg: Hamburg, Germany, 2008; ISBN 9783930400430. [Google Scholar]
- KTBL, F.N. Faustzahlen Biogas; Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V: Darmstadt, Germany, 2007; Available online: www.ktbl.de (accessed on 1 September 2021).
- Bayrische Landesanstalt für Landwirtschaft. Biogasausbeuten Verschiedener Substrate. Available online: https://www.lfl.bayern.de/iba/energie/049711/?sel_list=1%2Cb&anker0=substratanker#substratanker (accessed on 5 January 2021).
- Knerr, H. Untersuchungen zur Zusammensetzung und zum Abbau von Schwarzwasser Mittels des Belebungsverfahrens sowie zur Kinetik des Heterotrophen und Autotrophen Stoffwechsels; Technische Universität Kaiserslautern: Kaiserslautern, Germany, 2012. [Google Scholar]
- Kranert, M.; Hafner, G.; Barabosz, J.; Schuller, H.; Leverenz, D.; Kölbig, A.; Schneider, F.; Lebersorger, S.; Scherhaufer, S. Ermittlung der Weggeworfenen Lebensmittelmengen und Vorschläge zur Verminderung der Wegwerfrate bei Lebensmitteln in Deutschland. Stud. Der Univ. Stuttg. (Gefördert Vom BMELV) Stuttgart. 2012. Available online: http://www.Bmelv.De/Shar./Downloads/Ernaehrung/WvL/Stud._Lebensm._Langfassung.Pdf (accessed on 24 March 2022).
- Pilsl, P. Vergärung von Grünabfall in Baden-Württemberg—Potenzial und Realistische Einschätzung. Masterarbeit; Universität Stuttgart: Stuttgart, Germany, 2014. [Google Scholar]
- Fricke, K.; Heußner, C.; Hüttner, A.; Turk, T.; Bauer, W.; Bidlingmaier, W. Vergärung von Bio-und Grünabfällen, Teil 1: Ausbaupotenzial bei der Vergärung von Bio-und Grünabfällen. Müll Und Abfall 2013, 12, 628–635. [Google Scholar]
- Umweltbundesamt. Aufwand und Nutzen einer optimierten Bioabfallverwertung hinsichtlich Energieeffizienz, Klima-und Ressourcenschutz; Umweltbundesamt: Dessau-Roßlau, Germany, 2010.
- BW, U.M. Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg. Phosphor-Rückgewinnungsstrategie Baden-Württemberg; Ministerium für Umwelt, Klima und Energiewirtschaft: Stuttgart, Germany, 2012.
- Kumar, M.; Ou, Y.-L.; Lin, J.-G. Co-composting of green waste and food waste at low C/N ratio. Waste Manag. 2010, 30, 602–609. [Google Scholar] [CrossRef]
- Otterpohl, R.; Oldenburg, M. Innovative Technologien zur Abwasserbehandlung in urbanen Gebieten. Korresp. Abwasser 2002, 49, 1364–1371. [Google Scholar]
- Vinnerås, B.; Palmquist, H.; Balmér, P.; Jönsson, H. The characteristics of household wastewater and biodegradable solid waste—A proposal for new Swedish design values. Urban Water J. 2006, 3, 3–11. [Google Scholar] [CrossRef]
- Bolzonella, D.; Pavan, P.; Battistoni, P.; Cecchi, F. The under sink garbage grinder: A friendly technology for the environment. Environ. Technol. 2003, 24, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Antony, D.; Murugavelh, S. Anaerobic co-digestion of kitchen waste and wastewater sludge: Biogas-based power generation. Biofuels 2018, 9, 157–162. [Google Scholar] [CrossRef]
- LUBW Landesanstalt für Umwelt Baden-Württemberg; Bundesgütegemeinschaft Kompost. Sortenreinheit von Bioabfällen: Datenerhebung am Beispiel Zweier Öffentlich-Rechtlicher Entsorgungsträger Baden-Württemberg; Stand: April, 2018; LUBW Landesanstalt für Umwelt Baden-Württemberg: Karlsruhe, Germany; BGK Bundesgütegemeinschaft Kompost e.V: Köln, Germany, 2018; ISBN 978-3-88251-402-5. [Google Scholar]
- Tervahauta, T.; Rani, S.; Hernández Leal, L.; Buisman, C.J.N.; Zeeman, G. Black water sludge reuse in agriculture: Are heavy metals a problem? J. Hazard. Mater. 2014, 274, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Bernstad, A.; Davidsson, Å.; Tsai, J.; Persson, E.; Bissmont, M.; La Cour Jansen, J. Tank-connected food waste disposer systems–Current status and potential improvements. Waste Manag. 2013, 33, 193–203. [Google Scholar] [CrossRef]
- Fachverband Biogas. Biogas aus Bioabfall. Available online: https://www.biogas.org/edcom/webfvb.nsf/id/DE-biowaste-to-biogas_deu (accessed on 11 September 2020).
- Wang, H.; Li, Z.; Zhou, X.; Wang, X.; Zuo, S. Anaerobic Co-Digestion of Kitchen Waste and Blackwater for Different Practical Application Scenarios in Decentralized Scale: From Wastes to Energy Recovery. Water 2020, 12, 2556. [Google Scholar] [CrossRef]
- Lebiocka, M.; Piotrowicz, A. Co-digestion of sewage sludge and organic fraction of municipal solid waste. A comparison between laboratory and technical scales. Environ. Prot. Eng. 2012, 38, 157–162. [Google Scholar] [CrossRef]
- Minale, M.; Worku, T. Anaerobic co-digestion of sanitary wastewater and kitchen solid waste for biogas and fertilizer production under ambient temperature: Waste generated from condominium house. Int. J. Environ. Sci. Technol. 2014, 11, 509–516. [Google Scholar] [CrossRef] [Green Version]
- Mu, L.; Zhang, L.; Zhu, K.; Ma, J.; Ifran, M.; Li, A. Anaerobic co-digestion of sewage sludge, food waste and yard waste: Synergistic enhancement on process stability and biogas production. Sci. Total Environ. 2020, 704, 135429. [Google Scholar] [CrossRef]
- Paritosh, K.; Mathur, S.; Pareek, N.; Vivekanand, V. Feasibility study of waste (d) potential: Co-digestion of organic wastes, synergistic effect and kinetics of biogas production. Int. J. Environ. Sci. Technol. 2018, 15, 1009–1018. [Google Scholar] [CrossRef]
- Ghosh, P.; Kumar, M.; Kapoor, R.; Kumar, S.S.; Singh, L.; Vijay, V.; Vijay, V.K.; Kumar, V.; Thakur, I.S. Enhanced biogas production from municipal solid waste via co-digestion with sewage sludge and metabolic pathway analysis. Bioresour. Technol. 2020, 296, 122275. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Zhao, Y.; Chen, H. Study on Biogas Production of Joint Anaerobic Digestion with Excess Sludge and Kitchen Waste. Procedia Environ. Sci. 2016, 35, 756–762. [Google Scholar] [CrossRef]
- Forstfachverlag GmbH & Co. KG. Energie Aus Pflanzen; Forstfachverlag GmbH & Co. KG: Scheeßel, Germany, 2018. [Google Scholar]
- Tasnim, F.; Iqbal, S.A.; Chowdhury, A.R. Biogas production from anaerobic co-digestion of cow manure with kitchen waste and Water Hyacinth. Renew. Energy 2017, 109, 434–439. [Google Scholar] [CrossRef]
t·a−1 | kg·(p·a)−1 | kWh·(p·a)−1 | |
---|---|---|---|
Final energy consumption in private households [13] | - | - | 1508 |
Fertilizer consumption of phosphorus [14] | 92,000 | 1 | - |
Fertilizer consumption of nitrogen [14] | 134,400 | 16 | - |
Fertilizer consumption of potassium [14] | 34,300 | 5 | - |
Estimated application for plant charcoal on soil, threatened by erosion [12] | 16,366,420 | 197 | - |
Agricultural plastic consumption [15,16] | 1,100,000 | 13 | - |
(a) | |||||||
Resources | Fresh Matter | Dry Matter | Water Content | Volatile Solids | |||
kg·(p·a)−1 | % | % | % | ||||
BW | 2376.2 [43] | 0.9 ± 0.1 | 99.1 ± 0.1 | 81.8 ± 2.1 | |||
KW | 62.1 [44] | 29.4 ± 3.4 | 70.6 ± 3.4 | 92.6 ± 3.8 | |||
GWD | 31.0 [26,45,46,47] | 15.7 ± 0.7 | 84.30 ± 0.7 | 91.0 ± 0.9 | |||
GWW | 31.0 [26,45,46,47] | 85.0 ± 0.3 | 15.0 ± 0.3 | 95.0 ± 0.6 | |||
GW | 62.1 [47,48] | 50.3 ± 3.5 | 49.7 ± 3.5 | 94.4 ± 0.3 | |||
M1 | 2438.2 * | 1.6 ± 0.1 | 98.4 ± 0.1 | 82.19 ± 0.2 | |||
M2 | 2469.2 * | 1.8 ± 0.1 | 98.2 ± 0.2 | 82.08 ± 0.2 | |||
M3 | 2500.6 * | 2.8 ± 2.2 | 97.2 ± 2.2 | 90.1 ± 2.1 | |||
WP | - | 35.2 ± 0.2 | 64.8 ± 0.2 | 91.9 ± 0.7 | |||
(b) | |||||||
Resources | Unit | Total Phosphorus | Total Nitrogen | Potassium | Magnesium | Carbon Oxygen Demand | |
BW | g·(kg DM)−1 | 13.9 ± 1.1 | 95 ± 17.1 | 41.0 ± 7.8 | 3.1 ± 0.3 | 1396.0 ± 108.7 | |
g·(p·a)−1 | 297.0 ± 22.8 | 2031.6 ± 366.7 | 876.8 ± 166.6 | 66.5 ± 5.4 | 29,853.9 ± 2324.5 | ||
KW | g·(kg DM)−1 | 1.6 ± 0.4 | 21.7 ± 1.7 | 11.6 ± 0.4 | 1.4 ± 0.2 | 1520.0 ± 24.5 | |
g·(p·a)−1 | 29.0 ± 7.8 | 395.9 ± 31.8 | 212.3 ± 7.6 | 25.2 ± 4.6 | 27,728.9 ± 446.9 | ||
GWD | g·(kg DM)−1 | 3.9 ± 1.8 | 46.4 ± 0.7 | 37.1 ± 2.2 | 1.8 ± 0.1 | 111.5 ± 9.0 | |
g·(p·a)−1 | 19.1 ± 8.8 | 226.0 ± 3.2 | 180.8 ± 10.9 | 9.0 ± 0.5 | 542.9 ± 43.8 | ||
GWW | g·(kg DM)−1 | 0.7 ± 0.3 | 11.0 ± 0.1 | 2.4 ± 0.1 | 1.0 ± 0.2 | 1070.0 ± 17.7 | |
g·(p·a)−1 | 19.7 ± 8.0 | 290.1 ± 3.3 | 64.1 ± 2.2 | 26.5 ± 5.7 | 28,217.2 ± 1005.2 | ||
GW | g·(kg DM)−1 | 1.5 ± 0.4 | 30.7 ± 2.4 | 6.3 ± 1.3 | 1.7 ± 1.0 | 710.5 ± 32.2 | |
g·(p·a)−1 | 47.8 ± 14.0 | 959.1 ± 74.3 | 197.1 ± 40.0 | 54.4 ± 30.7 | 22,197.3 ± 1005.2 | ||
M1 * | g·(kg DM)−1 | 13.6 ± 1.0 | 93.1 ± 16.8 | 40.2 ± 7.6 | 3.1 ± 0.3 | 1366.9 ± 106.2 | |
g·(p·a)−1 | 326.0 ± 30.6 | 2427.5 ± 398.5 | 1089.1 ± 174.2 | 91.7 ± 10.0 | 34,606.9 ± 2533.57 | ||
M2 * | g·(kg DM)−1 | 13.5 ± 1.1 | 92.5 ± 16.5 | 40.2 ± 7.5 | 3.1 ± 0.3 | 1351.0 ± 105.0 | |
g·(p·a)−1 | 345.1 ± 39.4 | 2653.5 ± 401.7 | 1270.0 ± 185.1 | 100.7 ± 10.5 | 35,149.8 ± 2577.4 | ||
M3 * | g·(kg DM)−1 | 13.3 ± 1.0 | 91.6 ± 16.4 | 39.4 ± 7.4 | 3.0 ± 0.3 | 1350.5 ± 104.4 | |
g·(p·a)−1 | 373.8 ± 44.7 | 3386.8 ± 472.9 | 1286.3 ± 214.2 | 146.5 ± 40.7 | 56,804.2 ± 3538.8 | ||
WP | g·(kg DM)−1 | 2.4 ± 0.3 | 12.7 ± 0.6 | 22.2 ± 0.8 | 1.7 ± 0.3 | 151.7 ± 1.2 | |
(c) | |||||||
Resources | Unit | Plumb | Cadmium | Chromium | Copper | Nickel | Zinc |
BW | mg·(kg DM)−1 | <0.036 | <0.0027 | 0.04 ± 0.0 | 0.2 ± 0.0 | <0.027 | 0.4 ± 0.1 |
mg·(p·a)−1 | <0.8 | <0.06 | 0.9 ± 0.1 | 3.2 ± 0.8 | <0.6 | 9.2 ± 1.8 | |
KW | mg·(kg DM)−1 | 0.5 ± 0.1 | 0.04 ± 0.0 | 1.3 ± 0.3 | 19.8 ± 0.8 | 2.9 ± 0.4 | 27.0 ± 2.2 |
mg·(p·a)−1 | 9.7 ± 0.9 | 0.7 ± 0.3 | 23.0 ± 4.8 | 361.2 ± 13.7 | 52.7 ± 7.7 | 492.6 ± 39.4 | |
GWD | mg·(kg DM)−1 | 1.2 ± 0.1 | 0.1 ± 0.0 | 2.6 ± 0.5 | 18.8 ± 1.0 | 3.8 ± 0.5 | 98.6 ± 3.0 |
mg·(p·a)−1 | 6.0 ± 0.4 | 0.6 ± 0.1 | 12.6 ± 2.3 | 91.6 ± 5.0 | 18.4 ± 2.5 | 480.3 ± 14.5 | |
GWW | mg·(kg DM)−1 | 0.3 ± 0.0 | 0.02 ± 0.0 | 0.5 ± 0.1 | 5.7 ± 0.6 | 0.4 ± 0.2 | 1.3 ± 0.4 |
mg·(p·a)−1 | 7.2 ± 0.3 | 0.6 ± 0.5 | 13.8 ± 3.3 | 149.8 ± 15.3 | 11.4 ± 4.3 | 33.2 ± 10.5 | |
GW | mg·(kg DM)−1 | 0.4 ± 0.0 | 0.3 ± 0.0 | 1.3 ± 0.2 | 7.7 ± 1.4 | 1.1 ± 0.3 | 25.2 ± 1.2 |
mg·(p·a)−1 | 12.7 ± 0.3 | 8.8 ± 1.1 | 40.3 ± 7.2 | 239.9 ± 43.2 | 34.1 ± 8.7 | 787.3 ± 38.9 | |
M1 * | mg·(kg DM)−1 | 0.1 ± 0.0 | 0.004 ± 0.0 | 0.1 ± 0.0 | 0.7 ± 0.1 | 0.1 ± 0.0 | 1.1 ± 0.1 |
mg·(p·a)−1 | 10.4 ± 0.9 | 0.7 ± 0.3 | 23.9 ± 4.9 | 364.4 ± 14.5 | 53.3 ± 7.7 | 501.8 ± 41.2 | |
M2 * | mg·(kg DM)−1 | 0.1 ± 0.0 | 0.005 ± 0.0 | 0.1 ± 0.0 | 0.9 ± 0.1 | 0.2 ± 0.0 | 2.4 ± 0.2 |
mg·(p·a)−1 | 16.4 ± 1.4 | 1.3 ± 0.4 | 36.4 ± 7.1 | 456.0 ± 19.5 | 71.7 ± 10.2 | 982.0 ± 55.7 | |
M3 * | g·(kg DM)−1 | 0.1 ± 0.0 | 0.01 ± 0.0 | 0.1 ± 0.0 | 0.8 ± 0.1 | 0.1 ± 0.0 | 1.7 ± 0.2 |
g·(p·a)−1 | 23.1 ± 1.2 | 9.5 ± 1.4 | 64.2 ± 12.0 | 604.4 ± 57.6 | 87.4 ± 16.4 | 1289.1 ± 80.1 | |
WP | g·(kg DM)−1 | 0.7 ± 0.1 | 0.3 ± 0.0 | 3.2 ± 0.2 | 8.5 ± 0.3 | 23.0 ± 1.2 | 38.6 ± 2.0 |
Limit | mg·(kg DM)−1 | 150.0 | 1.5 | 100.0 | 100.0 | 50.0 | 400.0 |
BW | KW | GWD | GW | M1 | M2 | M3 | ||
---|---|---|---|---|---|---|---|---|
Biogas | kWh·(p·a)−1 | 61 | 68 | 1.89 | - | 141 | 174 | - |
MAP recycling | g P·(p·a)−1 [27] | 149 | 14 | 10 | - | 163 | 173 | - |
g Mg·(p·a)−1 | 113 | 11 | 7 | - | 128 | 135 | - | |
% Mg from inflow | 117 | 45 | 86 | - | 140 | 135 | - | |
g N·(p·a)−1 | 67 | 7 | 4 | - | 74 | 78 | - | |
% N from inflow | 3 | 2 | 2 | - | 3 | 3 | - | |
Plant charcoal | kg·(p·a)−1 | - | - | - | 9.37 | - | 21 | |
Polymers | kg PHA·(p·a)−1 | 1.03 [29] | 1.40 [31] | 0.03 [31] | - | 2.43 | 2.46 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fendel, V.; Maurer, C.; Kranert, M.; Huang, J.; Schäffner, B. The Potential of the Co-Recycling of Secondary Biodegradable Household Resources Including Wild Plants to Close Nutrient and Carbon Cycles in Agriculture in Germany. Sustainability 2022, 14, 5277. https://doi.org/10.3390/su14095277
Fendel V, Maurer C, Kranert M, Huang J, Schäffner B. The Potential of the Co-Recycling of Secondary Biodegradable Household Resources Including Wild Plants to Close Nutrient and Carbon Cycles in Agriculture in Germany. Sustainability. 2022; 14(9):5277. https://doi.org/10.3390/su14095277
Chicago/Turabian StyleFendel, Veronika, Claudia Maurer, Martin Kranert, Jingjing Huang, and Benjamin Schäffner. 2022. "The Potential of the Co-Recycling of Secondary Biodegradable Household Resources Including Wild Plants to Close Nutrient and Carbon Cycles in Agriculture in Germany" Sustainability 14, no. 9: 5277. https://doi.org/10.3390/su14095277
APA StyleFendel, V., Maurer, C., Kranert, M., Huang, J., & Schäffner, B. (2022). The Potential of the Co-Recycling of Secondary Biodegradable Household Resources Including Wild Plants to Close Nutrient and Carbon Cycles in Agriculture in Germany. Sustainability, 14(9), 5277. https://doi.org/10.3390/su14095277