Tool for the Establishment of Agro-Management Zones Using GIS Techniques for Precision Farming in Egypt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Data
2.2.1. Soil Samples
2.2.2. Deriving of Soil Productivity Maps
2.2.3. Field Management Practices—Salhiya Site
2.3. Statistical Analyses
- A.
- A simple correlation procedure was applied by computing simple correlation coefficients matrix between peanut yield and soil characteristics [53]. Correlation analysis is utilized to quantify the degree to which yield data and soil variables are related.
- B.
- Multiple linear regression (MLR) accompanied with (R2), which refers to partial coefficient of determination, was calculated for yield to evaluate the relative contribution of each of soil properties and to simulate the prediction model for peanut yield (Y) with a measure of goodness of fit.
- C.
- Multiple Linear Regression analysis using a Stepwise selection procedure was used to determine each variable accounting for the yield variability majority as, multiple linear regression involves the fitting of a response to more than one predictor variable [53]. The stepwise selection method can be a forward, backward, or mixed selection method. In the current study, stepwise forward selection method computed a sequence of multiple linear regressions in the iterations of stepwise procedure by adding one variable predictor to the prediction equation at each stage of the procedure similar to a forward selection procedure. The tradeoff or eliminating variable to obtain another for the extra computational effort is the capacity to erase non-significant indicators as variables are added in addition to the ability to include new indicators taking after erasure. The additional variable was the one which incited the best diminishment in the error total of squares. It was additionally the variable which had the most partial correlation with the one of the soil properties as a dependent variable for fixed estimations of those variables included. In addition, it was the variable which had the highest F value.
- D.
- Ranking sum equation was used to manipulate weights for ranked soil criteria [22,24]. It calculates a ranked weight for a number (n) of different criteria (k) using Equation (3). Table 2 shows the weight vectors for various numbers of criteria according to Equation (1):
2.4. Kriging
2.5. Accuracy Assessment of Mapping Peanut Productivity
3. Results and Discussion
3.1. Soil Properties
3.1.1. Morphological, Physical, and Chemical Attributes
3.1.2. Contents of Available Nutrients in the Site
3.1.3. Salhiya Digital Soil Maps of Available Nutrients and Soil Units
- Soil unit 1 is characterized by non-saline soil with ECe ranging from 0 to 2 dS m−1, low % CaCO3 less than 3%, and sandy clay loam texture.
- Soil unit 2 is characterized by non-saline ECe, sandy clay, and low CaCO3.
- Soil map unit 3 is characterized by very slightly saline ECe ranging from 2–4 dS m−1, low CaCO3, and sandy clay loam texture.
- Soil map unit 4 is characterized by slightly saline soil with ECe more than 4 dS m−1, low CaCO3 content, and sandy clay loam texture.
- Zone 1: this area represents soils having a high content of available Phosphorus, Potassium, Iron, and Manganese.
- Zone 2: this area had fair amounts of soil fertility elements with high soil content of available K, Fe, Mn and medium soil content of available P.
- Zone 3: this area had a flat elevated area with medium soil content of available P and K in addition to high soil content of available Fe.
- Zone 4: characterized by a flat area with medium soil content of available Phosphorus, medium soil content of available K, and medium soil content of available Fe.
- Zone 5: relatively elevated soils and contains low content of most soil fertility elements such as available Phosphorus, low Fe, and moderate amount of available K.
- Zone 6: characterized by nutrient stress due to the low contents of most fertility elements such as available P, K, and Fe with high elevated soils.
3.1.4. Correlation between Peanut Yield and Soil Characteristics
3.2. Soil Productivity Assessment
3.2.1. Mapping Soil Productivity
3.2.2. Accuracy Assessment of Mapping Peanut Productivity
3.3. Nitrogen Management Zones
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ratnaparkhi, S.; Khan, S.; Arya, C.; Khapre, S.; Singh, P.; Diwakar, M.; Shankar, A. Smart agriculture sensors in IOT: A review. Mater. Today Proc. 2020. [Google Scholar] [CrossRef]
- Chandra Pandey, P.; Tripathi, A.K.; Sharma, J.K. An evaluation of GPS opportunity in market for precision agriculture. In GPS and GNSS Technology in Geosciences; Petropoulos, G.P., Srivastava, P.K., Eds.; Chapter 16; Elsevier: Oxford, UK, 2021; pp. 337–349. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M.; Oster, J.D.; Kaffka, S.R. Monitoring management-induced spatio–temporal changes in soil quality through soil sampling directed by apparent electrical conductivity. Geoderma 2006, 131, 369–387. [Google Scholar] [CrossRef]
- Castrignano, A.; Giugliarini, L.; Risaliti, R.; Martinelli, N. Study of spatial relationships among some soil physico-chemical properties of a field in central Italy using multivariate geostatistics. Geoderma 2000, 97, 39–60. [Google Scholar] [CrossRef]
- Pecze, Z.; Neményi, M.; Mesterházi, P.Á.; Stépán, Z. The Function of the Geographic Information System (GIS) in Precision Farming. In Proceedings of the IFAC/CIGR Workshop on Artificial Intelligence in Agriculture 2001, Budapest, Hungary, 6–8 June 2001; Volume 34, pp. 15–18. [Google Scholar] [CrossRef]
- Buttafuoco, G.; Tallarico, A.; Falcone, G.; Guagliardi, I. A geostatistical approach for mapping and uncertainty assessment of geogenic radon gas in soil in an area of southern Italy. Environ. Earth Sci. 2010, 61, 491–505. [Google Scholar] [CrossRef]
- Vašát, R.; Heuvelink, G.B.M.; Borůvka, L. Sampling design optimization for multivariate soil mapping. Geoderma 2010, 155, 147–153. [Google Scholar] [CrossRef]
- Mylavarapu, R.S.; Lee, W.D. UF/IFAS Nutrient Management Series: Soil Sampling Strategies for Precision Agriculture 1. Florida, USA, 2002. Available online: https://edis.ifas.ufl.edu/publication/SS402 (accessed on 11 February 2022).
- Corwin, D.L.; Lesch, S.M. Characterizing soil spatial variability with apparent soil electrical conductivity. Part II. Case study. Comput. Electron. Agric. 2005, 46, 135–152. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Z.; Cao, R. An efficient and robust Kriging-based method for system reliability analysis. Reliab. Eng. Syst. Saf. 2021, 216, 107953. [Google Scholar] [CrossRef]
- Jadidoleslam, N.; Mantilla, R.; Krajewski, W.F.; Cosh, M.H. Data-driven stochastic model for basin and sub-grid variability of SMAP satellite soil moisture. J. Hydrol. 2019, 576, 85–97. [Google Scholar] [CrossRef]
- Lark, R.M. Designing sampling grids from imprecise information on soil variability, an approach based on the fuzzy kriging variance. Geoderma 2000, 98, 35–59. [Google Scholar] [CrossRef]
- Issad, H.A.; Aoudjit, R.; Rodrigues, J.J.P.C. A comprehensive review of Data Mining techniques in smart agriculture. Eng. Agric. Environ. Food 2019, 12, 511–525. [Google Scholar] [CrossRef]
- Nelson, M.D.; Garner, J.D.; Tavernia, B.G.; Stehman, S.V.; Riemann, R.I.; Lister, A.J.; Perry, C.H. Assessing map accuracy from a suite of site-specific, non-site specific, and spatial distribution approaches. Remote Sens. Environ. 2021, 260, 112442. [Google Scholar] [CrossRef]
- Liu, F.; Rossiter, D.G.; Zhang, G.-L.; Li, D.-C. A soil colour map of China. Geoderma 2020, 379, 114556. [Google Scholar] [CrossRef]
- Owens, P.R.; Rutledge, E.M. Morphology. In Encyclopedia of Soils in the Environment; Hillel, D., Ed.; Elsevier: Oxford, UK, 2005; pp. 511–520. [Google Scholar]
- Huuskonen, J.; Oksanen, T. Soil sampling with drones and augmented reality in precision agriculture. Comput. Electron. Agric. 2018, 154, 25–35. [Google Scholar] [CrossRef]
- Vecchio, Y.; De Rosa, M.; Adinolfi, F.; Bartoli, L.; Masi, M. Adoption of precision farming tools: A context-related analysis. Land Use Policy 2020, 94, 104481. [Google Scholar] [CrossRef]
- McKinion, J.M.; Willers, J.L.; Jenkins, J.N. Spatial analyses to evaluate multi-crop yield stability for a field. Comput. Electron. Agric. 2010, 70, 187–198. [Google Scholar] [CrossRef]
- Lagacherie, P.; Buis, S.; Constantin, J.; Dharumarajan, S.; Ruiz, L.; Sekhar, M. Evaluating the impact of using digital soil mapping products as input for spatializing a crop model: The case of drainage and maize yield simulated by STICS in the Berambadi catchment (India). Geoderma 2022, 406, 115503. [Google Scholar] [CrossRef]
- López-Lozano, R.; Casterad, M.A.; Herrero, J. Site-specific management units in a commercial maize plot delineated using very high resolution remote sensing and soil properties mapping. Comput. Electron. Agric. 2010, 73, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Shamshiri, R.R.; Schirrmann, M.; Weltzien, C.; Shafian, S.; Laursen, M.S. UAV Oblique Imagery with an Adaptive Micro-Terrain Model for Estimation of Leaf Area Index and Height of Maize Canopy from 3D Point Clouds. Remote Sens. 2022, 14, 585. [Google Scholar] [CrossRef]
- Lei, L.; Qiu, C.; Li, Z.; Han, D.; Han, L.; Zhu, Y.; Wu, J.; Xu, B.; Feng, H.; Yang, H.; et al. Effect of Leaf Occlusion on Leaf Area Index Inversion of Maize Using UAV–LiDAR Data. Remote Sens. 2019, 11, 1067. [Google Scholar] [CrossRef] [Green Version]
- Mourad, R.; Jaafar, H.; Anderson, M.; Gao, F. Assessment of Leaf Area Index Models Using Harmonized Landsat and Sentinel-2 Surface Reflectance Data over a Semi-Arid Irrigated Landscape. Remote Sens. 2020, 12, 3121. [Google Scholar] [CrossRef]
- Gaso, D.V.; de Wit, A.; Berger, A.G.; Kooistra, L. Predicting within-field soybean yield variability by coupling Sentinel-2 leaf area index with a crop growth model. Agric. For. Meteorol. 2021, 308–309, 108553. [Google Scholar] [CrossRef]
- Coops, N.C.; Waring, R.H.; Hilker, T. Prediction of soil properties using a process-based forest growth model to match satellite-derived estimates of leaf area index. Remote Sens. Environ. 2012, 126, 160–173. [Google Scholar] [CrossRef]
- Fastellini, G.; Schillaci, C. Precision farming and IoT case studies across the world. In Agricultural Internet of Things and Decision Support for Precision Smart Farming; Castrignanò, A., Buttafuoco, G., Khosla, R., Mouazen, A.M., Moshou, D., Naud, O., Eds.; Chapter 7; Academic Press: Cambridge, MA, USA, 2020; pp. 331–415. [Google Scholar]
- Leopizzi, S.; Gondret, K.; Boivin, P. Spatial variability and sampling requirements of the visual evaluation of soil structure in cropped fields. Geoderma 2018, 314, 58–62. [Google Scholar] [CrossRef]
- Lawes, R.A.; Robertson, M.J. Whole farm implications on the application of variable rate technology to every cropped field. Field Crop. Res. 2011, 124, 142–148. [Google Scholar] [CrossRef]
- Orhan, O. Land suitability determination for citrus cultivation using a GIS-based multi-criteria analysis in Mersin, Turkey. Comput. Electron. Agric. 2021, 190, 106433. [Google Scholar] [CrossRef]
- Ziadat, F.M. Land suitability classification using different sources of information: Soil maps and predicted soil attributes in Jordan. Geoderma 2007, 140, 73–80. [Google Scholar] [CrossRef]
- Jafari, S.; Zaredar, N. Land Suitability Analysis using Multi Attribute. Int. J. Environ. Sci. Dev. 2010, 1, 441–445. [Google Scholar] [CrossRef]
- Boote, K.J. Growth Stages of Peanut (Arachis hypogaea L.). Peanut Sci. 1982, 9, 35–40. [Google Scholar] [CrossRef]
- CBI Ministry of Foreign Affairs. The European Market Potential for Groundnuts. Available online: https://www.cbi.eu/market-information/processed-fruit-vegetables-edible-nuts/groundnuts/market-potential (accessed on 7 April 2020).
- Dobrescu, M.; Slette, J. Food and Agricultural Import Regulations and Standards Country Report. J. Off. 2020, 22, 22. Available online: https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Food%20and%20Agricultural%20Import%20Regulations%20and%20Standards%20Country%20Report_Cairo_Egypt_12-31-2020 (accessed on 9 April 2022).
- Ustaoglu, E.; Sisman, S.; Aydınoglu, A.C. Determining agricultural suitable land in peri-urban geography using GIS and Multi Criteria Decision Analysis (MCDA) techniques. Ecol. Modell. 2021, 455, 109610. [Google Scholar] [CrossRef]
- Samanta, S.; Pal, B.; Pal, D.K. Land Suitability Analysis for Rice Cultivation Based on Multi-Criteria Decision Approach through GIS. Int. J. Sci. Emerg. Technol. 2011, 1, 12–20. [Google Scholar]
- Holland, J.E.; White, P.J.; Glendining, M.J.; Goulding, K.W.T.; McGrath, S.P. Yield responses of arable crops to liming—An evaluation of relationships between yields and soil pH from a long-term liming experiment. Eur. J. Agron. 2019, 105, 176–188. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, L.; Nabi, F. Introduction to Precision Agriculture. In Agriculture 5.0: Artificial Intelligence, IoT, and Machine Learning; CRC Press: Boca Raton, FL, USA, 2021; pp. 1–23. [Google Scholar] [CrossRef]
- Eppes, M.C.; Johnson, B.G. Describing Soils in the Field: A Manual for Geomorphologists. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Oxford, UK, 2021. [Google Scholar]
- Bouyoucos, G.J. Hydrometer Method Improved for Making Particle Size Analyses of Soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Soil Science Division Staff. Soil Science Division Staff. Soil survey manual. In USDA Handbook 18; Ditzler, C., Scheffe, K., Monger, H.C., Eds.; Government Printing Office: Washington, DC, USA, 2017. [Google Scholar]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P.N.; Tabatai, M.A.; Johnston, C.T.; Summer, M.E. (Eds.) Methods of Soil Analysis-Chemical Methods; Soil Science Society of America, Inc.: Madison, WI, USA; American Society of Agronomy, Inc.: Madison, WI, USA, 1996; Volume 70, pp. 342–343. [Google Scholar]
- Soltanpour, P.N.; Khan, A.; Lindsay, W.L. Factors affecting DTPA-extractable Zn, Fe, Mn, and Cu from soils. Commun. Soil Sci. Plant Anal. 1976, 7, 797–821. [Google Scholar] [CrossRef]
- Rossiter, D.G. A theoretical framework for land evaluation. Geoderma 1996, 72, 165–190. [Google Scholar] [CrossRef]
- Walke, N.; Obi Reddy, G.P.; Maji, A.K.; Thayalan, S. GIS-based multicriteria overlay analysis in soil-suitability evaluation for cotton (Gossypium spp.): A case study in the black soil region of Central India. Comput. Geosci. 2012, 41, 108–118. [Google Scholar] [CrossRef]
- Carver, S.J. Integrating multi-criteria evaluation with geographical information systems. Int. J. Geogr. Inf. Syst. 1991, 5, 321–339. [Google Scholar] [CrossRef] [Green Version]
- FAO. A Framework for Land Evaluation; Soils Bulletin 32; FAO: Rome, Italy, 1976; p. 72. ISBN 92-5-100111-1. [Google Scholar]
- Wackernagel, H. Geostatistical models and kriging. IFAC Proc. Vol. 2003, 36, 543–548. [Google Scholar] [CrossRef]
- McBratney, A.B.; Mendonça Santos, M.L.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Vaidya, O.S.; Kumar, S. Analytic hierarchy process: An overview of applications. Eur. J. Oper. Res. 2006, 169, 1–29. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision Making with the Analytic Hierarchy Process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Szulc, S. (Ed.) The correlation coefficient and regression lines. In Statistical Methods; Chapter 15; Pergamon: Oxford, UK, 1965; pp. 425–460. [Google Scholar]
- Malczewski, J. Ordered weighted averaging with fuzzy quantifiers: GIS-based multicriteria evaluation for land-use suitability analysis. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 270–277. [Google Scholar] [CrossRef]
- Ronald, E.J.; Wei-gen, J.; Peter, A. Raster procedures for multi-criteria/multi-objective decisions. Photogramm. Eng. Remote Sens. 1995, 61, 539–547. [Google Scholar]
- Farg, E.; Arafat, S.; Abd El-Wahed, M.S.; El-Gindy, A. Evaluation of water distribution under pivot irrigation systems using remote sensing imagery in eastern Nile delta. Egypt. J. Remote Sens. Sp. Sci. 2017, 20, S13–S19. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Feng, C.; Sun, Z.; Zhang, L.; Feng, L.; Zheng, J.; Bai, W.; Gu, C.; Wang, Q.; Xu, Z.; van der Werf, W. Maize/peanut intercropping increases land productivity: A meta-analysis. Field Crop. Res. 2021, 270, 108208. [Google Scholar] [CrossRef]
(a) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Land Characteristics | Class, Degree of Limitation, and Rating Scale | |||||||||
Rank of Groups | Rank of Soil Layers | 100–95 | 95–85 | 85–60 | 60–40 | 40–25 | 25–0 | |||
1 | Soilsalinity | 1 | ECe dS m−1 | 0–2 | 2–4 | 4–6 | 6–8 | 8–12 | >12 | |
2 | ESP | 8–10 | 10–15 | 15–20 | 15–20 | -- | >20 | |||
3 | pH | 6.8–7.0 | 7.0–7.5 | 7.5–8 | 8–8.2 | -- | >8.2 | |||
4 | O.M.% | >2 | 2–1.2 | 1.2–0.8 | <0.8 | -- | -- | |||
2 | Soil Fertility | 1 | Available P mg kg−1 | 6–5 | 5–4 | 4–3 | 3–2 | <2 | -- | |
2 | Available K mg kg−1 | 60–50 | 50–45 | 45–40 | 40–30 | <30 | -- | |||
3 | Available Fe mg kg−1 | 4–3.5 | 3.5–3 | 3–2.5 | 2.5–2.1 | <2 | -- | |||
4 | Available Mn mg kg−1 | 2–1.9 | 1.9–1.7 | 1.7–1.5 | <1.5 | -- | -- | |||
5 | Available Zn mg kg−1 | >1.5 | 1.5–1 | 1–0.9 | <0.9 | -- | -- | |||
3 | Soil physicalcharacteristics | 1 | Texture | L, SCL | SC, Cl, | C < 60, LS | C > 60 v, | S, cS | Cm, SicM | |
Si, SL | SiC, fS | |||||||||
2 | CaCO3 % | 0–12 | 12–25 | 25–35 | 35–50 | -- | >50 | |||
3 | Coarse fragments % | 0–1 | 1–3 | 3–15 | 15–35 | -- | >35 | |||
4 | Topography | 1 | Slope % | 0–1 | 1 -2 | 2–4 | 4–6 | -- | >6 | |
2 | DEM (m) | 0–15 | 15–30 | 30–45 | 45–60 | > 60 | -- | |||
3 | Location | 3–6 towers | 2nd tower | 1st tower | 7 pivot tower | -- | -- | |||
5 | Climate | 1 | Humidity % | 60–50 | 70–80<50 | 60–70 | >80 | -- | -- | |
2 | Day length | 15–13 | <13 | -- | -- | -- | -- | |||
(b) | ||||||||||
Field Practice | Measure Units | Application Rate | ||||||||
Before Plantation | After Plantation | |||||||||
1st Day | 15 Days | 30 Days | 45–65 Days | |||||||
Irrigation water | mm ha−1 | 750 | ||||||||
Ammonium sulfate | N unit ha−1 | 35.7 | 35.7 | 35.7 | ||||||
Super phosphate | kg ha−1 | 55 | ||||||||
Potassium sulfate | kg ha−1 | 42 | ||||||||
Micro nutrients Fe, zn, and mn (1, 1.5, 1) | 0.5 g L−1 | 7.15 L ha−1 | 950 L ha−1 |
Criteria | Criterion Weights | |||
---|---|---|---|---|
n | w1 | w2 | w3 | w4 |
2 | 0.66 | 0.33 | ||
3 | 0.50 | 0.33 | 0.17 | |
4 | 0.40 | 0.30 | 0.20 | 0.10 |
Sample No | GPS Map Location | Sand% | Silt% | Clay% | Textural Class | CaCO3 g kg−1 | S.P. | Elevationmeter |
---|---|---|---|---|---|---|---|---|
1 | 1 | 54 | 8 | 38 | sandy clay | 8.8 | 37 | 12 |
2 | 2 | 51 | 10 | 39 | sandy clay | 9. 8 | 36 | 16 |
3 | 3 | 51 | 16 | 33 | sandy clay loam | 15.1 | 30 | 18 |
4 | 4 | 55 | 10 | 35 | sandy clay | 36.1 | 37 | 15 |
5 | 6 | 48 | 11 | 41 | sandy clay | 61 | 35 | 20 |
6 | 8 | 56 | 7 | 37 | sandy clay | 12.9 | 32 | 15 |
7 | 9 | 52 | 17 | 31 | sandy clay loam | 15.1 | 32 | 12 |
8 | 10 | 54 | 11 | 35 | sandy clay loam | 15.1 | 31 | 14 |
9 | 13 | 54 | 9 | 37 | sandy clay | 8.8 | 32 | 13 |
10 | 14 | 63 | 9 | 28 | sandy clay loam | 23.7 | 36 | 14 |
11 | 16 | 55 | 7 | 38 | sandy clay loam | 19.1 | 32 | 16 |
12 | 21 | 64 | 5 | 31 | sandy clay loam | 14.6 | 35 | 13 |
13 | 23 | 51 | 13 | 36 | sandy clay | 12 | 35 | 14 |
14 | 25 | 53 | 10 | 37 | sandy clay | 52.9 | 30 | 18 |
15 | 27 | 51 | 9 | 40 | sandy clay | 38.8 | 33 | 18 |
16 | 30 | 55 | 10 | 35 | sandy clay | 11.8 | 37 | 18 |
17 | 31 | 52 | 9 | 39 | sandy clay | 20 | 35 | 16 |
18 | 32 | 50 | 11 | 39 | sandy clay | 5.9 | 29 | 14 |
19 | 33 | 49 | 14 | 37 | sandy clay | 25.9 | 33 | 14 |
20 | 36 | 56 | 8 | 36 | sandy clay | 11 | 33 | 16 |
Sample | GPS Map Location | ECe | pH | Ca | Mg | K | Na | Cl | HCO3 | ESP |
---|---|---|---|---|---|---|---|---|---|---|
No. | No. | dS m−1 | - | meq L−1 | ||||||
1 | 1 | 3.01 | 7.5 | 2.987 | 2.195 | 51.01 | 4.715 | 13.04 | 1.64 | 3 |
2 | 2 | 5.13 | 7.4 | 2.986 | 2.292 | 53.47 | 12.97 | 12.54 | 1.74 | 10 |
3 | 3 | 5.17 | 7.6 | 3.779 | 2.263 | 93.84 | 2.734 | 9.28 | 2.22 | 1 |
4 | 4 | 4.82 | 7.8 | 4.434 | 2.068 | 63.38 | 6.491 | 10.54 | 1.46 | 4 |
5 | 6 | 5.59 | 7.5 | 2.596 | 1.951 | 49.76 | 11.06 | 10.78 | 1.36 | 9 |
6 | 8 | 1.94 | 7.5 | 0.475 | 0.115 | 29.96 | 5.509 | 12.74 | 1.42 | 12 |
7 | 9 | 2.43 | 7.4 | 0.842 | 0.493 | 36.67 | 4.211 | 11.24 | 1.74 | 6 |
8 | 10 | 2.39 | 7.9 | 0.848 | 0.496 | 34.91 | 5.268 | 12.24 | 1.792 | 8 |
9 | 13 | 4.73 | 7.3 | 1.986 | 1.549 | 47.28 | 10.94 | 13.54 | 2.54 | 10 |
10 | 14 | 2.56 | 7.9 | 0.758 | 0.917 | 34.91 | 5.487 | 8.78 | 1.32 | 7 |
11 | 16 | 2.27 | 7.3 | 1.336 | 0.885 | 38.61 | 3.379 | 10.28 | 1.46 | 3 |
12 | 21 | 2.29 | 7.1 | 0.876 | 0.538 | 34.95 | 4.237 | 11.74 | 1.64 | 6 |
13 | 23 | 3.31 | 7.2 | 1.443 | 1.075 | 42.33 | 6.318 | 13.74 | 2.22 | 7 |
14 | 25 | 4.63 | 7.4 | 0.846 | 0.495 | 34.91 | 4.211 | 11.28 | 2.26 | 6 |
15 | 27 | 3.87 | 7.5 | 0.947 | 0.758 | 29.96 | 3.259 | 11.54 | 1.26 | 4 |
16 | 30 | 2.31 | 7.2 | 0.971 | 0.606 | 36.15 | 3.279 | 13.24 | 1.32 | 4 |
17 | 31 | 4.16 | 7.3 | 1.821 | 1.105 | 48.52 | 11.09 | 12.04 | 1.64 | 11 |
18 | 32 | 2.42 | 7.7 | 0.994 | 0.617 | 36.15 | 3.139 | 14.24 | 3.12 | 4 |
19 | 33 | 2.54 | 7.9 | 0.415 | 0.085 | 29.96 | 4.458 | 9.78 | 1.36 | 11 |
20 | 36 | 2.61 | 8.2 | 0.846 | 0.495 | 34.91 | 4.171 | 11.04 | 1.36 | 6 |
Sample | GPS Map Location | K | P | Fe | Mn | Zn |
---|---|---|---|---|---|---|
No | No | mg kg−1soil | ||||
1 | 1 | 325.6 | 11.7 | 2.4 | 2.8 | 0.4 |
2 | 2 | 337.3 | 10.5 | 2 | 0.8 | 0.5 |
3 | 3 | 384.8 | 9 | 5.5 | 6.9 | 1 |
4 | 4 | 534.1 | 6.5 | 5.1 | 6.4 | 0.7 |
5 | 6 | 319.8 | 11.1 | 3.5 | 8.3 | 1 |
6 | 8 | 228.5 | 10.2 | 2.2 | 2.1 | 0.2 |
7 | 9 | 251 | 6.8 | 3.1 | 5.4 | 0.6 |
8 | 10 | 251 | 9.8 | 2.6 | 3.5 | 0.1 |
9 | 13 | 308.2 | 13.5 | 1.5 | 0.6 | 0.8 |
10 | 14 | 245.3 | 7.8 | 3.2 | 7.5 | 0.7 |
11 | 16 | 268 | 10.3 | 2.5 | 5.3 | 0.8 |
12 | 21 | 251 | 8.7 | 2.3 | 0.3 | 0.1 |
13 | 23 | 285.1 | 12.5 | 2.3 | 7.2 | 0.5 |
14 | 25 | 251 | 13 | 3 | 7 | 0.8 |
15 | 27 | 228.5 | 9.6 | 2.2 | 2.5 | 0.4 |
16 | 30 | 256.6 | 10.9 | 3.2 | 1.7 | 0.7 |
17 | 31 | 314 | 9.8 | 3.9 | 7.7 | 0.4 |
18 | 32 | 256.6 | 13.8 | 3 | 2.7 | 0.9 |
19 | 33 | 228.5 | 9.8 | 7.6 | 4.7 | 1.8 |
20 | 36 | 251 | 8.4 | 8.8 | 2.6 | 0.2 |
Different Units Based on Soil Properties | Hectare | % | |
---|---|---|---|
Unit 1 | Non-saline ECe, low CaCO3, scl texture | 0.7 | 1.11 |
Unit 2 | Non-saline ECe, low CaCO3, scl texture | 51 | 75.56 |
Unit 3 | Very slightly saline ECe, low CaCO3, scl texture | 7.5 | 11.48 |
Unit 4 | Slightly saline ECe, low CaCO3, scl texture | 7.8 | 11.85 |
Soil Characteristics | Texture | ECe | pH | OM | SP | CaCO3 | K available | P available | Fe | Mn | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|
Texture | 1 | ||||||||||
ECe | 0.11 | 1 | |||||||||
pH | 0.08 | −0.30 | 1 | ||||||||
OM | −0.02 | 0.38 | 0.03 | 1 | |||||||
SP | 0.44 | 0.24 | −0.35 | 0.38 | 1 | ||||||
CaCO3 | −0.18 | 0.48 | 0.09 | −0.11 | −0.23 | 1 | |||||
K available | 0.12 | 0.91 | −0.31 | 0.32 | 0.23 | 0.42 | 1 | ||||
Pavailable | −0.01 | 0.45 | −0.50 | 0.45 | 0.39 | −0.34 | 0.31 | 1 | |||
Fe | −0.17 | −0.08 | 0.30 | 0.41 | 0.02 | −0.05 | −0.10 | −0.14 | 1 | ||
Mn | −0.22 | −0.02 | 0.02 | −0.09 | −0.22 | 0.18 | 0.01 | −0.20 | 0.14 | 1 | |
Zn | −0.17 | −0.08 | 0.30 | 0.41 | 0.02 | −0.05 | −0.10 | −0.14 | 1.00 | 0.14 | 1 |
Factors | Intercept | Slope | Generated Model | R |
---|---|---|---|---|
SP | 63.2 | 1.91 | Y = 1.91 × SP − 63.2 | 0.77 |
OM | 80.62 | −10.6 | Y = −10.6 × OM + 80.62 | 0.73 |
ECe | 13.13 | 0.7 | Y = 0.7 ×ECe + 2.13 | 0.60 |
CaCO3 | −245.67 | 3.43 | Y = 3.43 × CaCO3− 245.67 | 0.54 |
pH | 14.5 | 2 | Y = 2 × pH − 14.5 | 0.40 |
Yield Fitted Model | Factors | R2 | RMSE |
---|---|---|---|
2 | 0.61 | 11.27 | |
2 | 0.63 | 9.42 | |
3 | 0.83 | 6.71 | |
5 | 0.92 | 5.35 |
Soil Properties | Unit | High Production | Low Production |
---|---|---|---|
ECe | dS m−1 | 0.3 to 3.9 | 1.3 to 5.2 |
Soil pH | - | 7.1 to 7.8 | 7.7 to 8.2 |
Available potassium | mg kg−1 | 20 to 30 | 1.5 to 1.6 |
Fe | mg kg−1 | 1 to 2.3 | 0.9 to 0.5 |
Mn | mg kg−1 | 1.7 to 2.4 | 1.1 to 0.2 |
CaCO3 | g kg−1 | 1.1 to 4.3 | ≥5.6 |
Production Levels | Production Levels | Zones Test | ||
---|---|---|---|---|
High | Moderate | Low | ||
High production | 13 | 1 | 0 | 14 |
Moderate production | 1 | 11 | 3 | 15 |
Low production | 0 | 0 | 8 | 8 |
Total | 14 | 12 | 11 | 37 |
Production Levels | Omission Error | Commission Error | Omission and Commission Errors | Producer’s Accuracy | User’s Accuracy |
---|---|---|---|---|---|
High | 7.14 | 0 | 7.14 | 92.31% | 85.71% |
Moderate | 0 | 6.67 | 6.67 | 90.90% | 83.33% |
Low | 0 | 27.27 | 27.27 | 80.00% | 72.72% |
Classes Peanut Soil Productivity | Total Examined Cells | Classified Cells | Correctly Classified Cells | Accuracy | |
---|---|---|---|---|---|
Producers | Users | ||||
High production | 14 | 13 | 12 | 92.31% | 85.71% |
Moderate production | 12 | 11 | 10 | 90.90% | 83.33% |
Low production | 11 | 10 | 8 | 80.00% | 72.72% |
Totals | 37 | 34 | 30 | 88.24% | 81.08% |
Overall classification accuracy = 86.49% | |||||
Overall kappa statistics = 79.8% |
Zone n° | Zone Area | Soil Available P | Required P (kg ha−1) | Price EGP ha−1 | Price EGP/Zone | ||
---|---|---|---|---|---|---|---|
(ha) | mg kg−1 | Kg ha−1 | Unit | Fertilizer (Super Phosphate) | |||
Zone 1 | 3 | 13 | 1169 | 90 | 181 | 809 | 2362.6 |
Zone 2 | 15 | 12 | 1123 | 93 | 183 | 826 | 11,795.1 |
Zone 3 | 9 | 11 | 1081 | 133 | 267 | 1197 | 8049.5 |
Zone 4 | 17 | 10 | 990 | 143 | 288 | 1295 | 16,833.4 |
Zone 5 | 22 | 7 | 900 | 155 | 305 | 1392 | 29,634.1 |
Zone 6 | 1 | 4 | 809 | 162 | 309 | 1490 | 1671.3 |
Total | 67 | 70,346.0 |
Zone no. | Zone Area | Available K in Soil | Required K (kg ha−1) | Price EGP ha−1 | Price EGP/Zone | ||
---|---|---|---|---|---|---|---|
(ha) | mg kg−1 | kg ha−1 | Unit | Fertilizer (Potassium Sulfate) | |||
Zone 1 | 3 | 280 | 58 | 68 | 452 | 677 | 2822 |
Zone 2 | 15 | 250 | 54 | 79 | 524 | 786 | 12,402 |
Zone 3 | 9 | 240 | 49 | 89 | 597 | 895 | 10,761 |
Zone 4 | 17 | 220 | 45 | 100 | 669 | 1004 | 21,695 |
Zone 5 | 22 | 200 | 31 | 133 | 887 | 1331 | 30,986 |
Zone 6 | 1 | 180 | 18 | 166 | 998 | 1657 | 1501 |
Total | 67 | 80,168 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsharkawy, M.M.; Sheta, A.E.A.S.; D’Antonio, P.; Abdelwahed, M.S.; Scopa, A. Tool for the Establishment of Agro-Management Zones Using GIS Techniques for Precision Farming in Egypt. Sustainability 2022, 14, 5437. https://doi.org/10.3390/su14095437
Elsharkawy MM, Sheta AEAS, D’Antonio P, Abdelwahed MS, Scopa A. Tool for the Establishment of Agro-Management Zones Using GIS Techniques for Precision Farming in Egypt. Sustainability. 2022; 14(9):5437. https://doi.org/10.3390/su14095437
Chicago/Turabian StyleElsharkawy, Mohamed M., Abd El Aziz S. Sheta, Paola D’Antonio, Mohammed S. Abdelwahed, and Antonio Scopa. 2022. "Tool for the Establishment of Agro-Management Zones Using GIS Techniques for Precision Farming in Egypt" Sustainability 14, no. 9: 5437. https://doi.org/10.3390/su14095437
APA StyleElsharkawy, M. M., Sheta, A. E. A. S., D’Antonio, P., Abdelwahed, M. S., & Scopa, A. (2022). Tool for the Establishment of Agro-Management Zones Using GIS Techniques for Precision Farming in Egypt. Sustainability, 14(9), 5437. https://doi.org/10.3390/su14095437