Spatial and Temporal Evolution of the Chinese Artificial Intelligence Innovation Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Method
2.1.1. Network Centrality Model
2.1.2. Network Complexity
2.2. Data Resource
3. Topological Structure of AI Innovation Network
3.1. Network Evolution and Agglomeration
3.2. Network Complexity
4. Spatial Pattern of AI Innovation Network
4.1. Network Connection
4.2. Centrality of Node
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, M.; Chandio, A.A.; Solangi, Y.A.; Shah, S.A.A.; Shahzad, F.; Rehman, A.; Jabeen, G. Dynamic interactive links among sustainable energy investment, air pollution, and sustainable development in regional China. Environ. Sci. Pollut. Res. 2021, 28, 1502–1518. [Google Scholar] [CrossRef] [PubMed]
- Halkos, G.; Argyropoulou, G. Using environmental indicators in performance evaluation of sustainable development health goals. Ecol. Econ. 2022, 192, 107263. [Google Scholar] [CrossRef]
- Meng, Y.; Liu, L.; Wang, J.; Ran, Q.; Yang, X.; Shen, J. Assessing the Impact of the National Sustainable Development Planning of Resource-Based Cities Policy on Pollution Emission Intensity: Evidence from 270 Prefecture-Level Cities in China. Sustainability 2021, 13, 7293. [Google Scholar] [CrossRef]
- Ullah, A.; Ahmed, M.; Raza, S.A.; Ali, S. A threshold approach to sustainable development: Nonlinear relationship between renewable energy consumption, natural resource rent, and ecological footprint. J. Environ. Manag. 2021, 295, 113073. [Google Scholar] [CrossRef]
- Romer, P.M. Increasing Returns and Long-Run Growth. J. Polit. Econ. 1986, 94, 1002–1037. [Google Scholar] [CrossRef] [Green Version]
- Crescenzi, R. Innovation and Regional Growth in the Enlarged Europe: The Role of Local Innovative Capabilities, Peripherality, and Education. Growth Chang. 2005, 36, 471–507. [Google Scholar] [CrossRef]
- Laperche, B.; Liu, Z. SMEs and knowledge-capital formation in innovation networks: A review of literature. J. Innov. Entrep. 2013, 2, 21. [Google Scholar] [CrossRef] [Green Version]
- Toivanen, H.; Ponomariov, B. African regional innovation systems: Bibliometric analysis of research collaboration patterns 2005–2009. Scientometrics 2011, 88, 471–493. [Google Scholar] [CrossRef]
- Peri, G. Determinants of Knowledge Flows and Their Effect on Innovation. Rev. Econ. Stat. 2005, 87, 308–322. [Google Scholar] [CrossRef]
- Powell, W.W.; Koput, K.W.; Smith-Doerr, L. Interorganizational collaboration and the locus of innovation: Networks of learning in biotechnology. Adm. Sci. Q. 1996, 41, 116–145. [Google Scholar] [CrossRef] [Green Version]
- Griliches, Z. The Search for R&D Spillovers. Scand. J. Econ. 1992, 94, S29–S47. [Google Scholar]
- Freeman, C. Networks of innovators: A synthesis of research issues. Res. Policy 1991, 20, 499–514. [Google Scholar] [CrossRef]
- Jaffe, A.B.; Trajtenberg, M.; Henderson, R. Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations. Q. J. Econ. 1993, 108, 577–598. [Google Scholar] [CrossRef]
- Maurseth, P.B.; Verspagen, B. Knowledge Spillovers in Europe: A Patent Citations Analysis. Scand. J. Econ. 2002, 104, 531–545. [Google Scholar] [CrossRef]
- Fischer, M.M.; Scherngell, T.; Jansenberger, E. The Geography of Knowledge Spillovers between High-Technology Firms in Europe: Evidence from a Spatial Interaction Modeling Perspective. Geogr. Anal. 2006, 38, 288–309. [Google Scholar] [CrossRef] [Green Version]
- Jaffe, A.B.; Trajtenberg, M. Patents, Citations, and Innovations: A Window on the Knowledge Economy; The MIT Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Adams, J.D. Comparative localization of academic and industrial spillovers. J. Econ. Geogr. 2002, 2, 253–278. [Google Scholar] [CrossRef]
- De Noni, I.; Orsi, L.; Belussi, F. The role of collaborative networks in supporting the innovation performances of lagging-behind European regions. Res. Policy 2018, 47, 1–13. [Google Scholar] [CrossRef]
- Ter Wal, A.; Boschma, R. Applying Social Network Analysis in Economic Geography: Framing Some Key Analytic Issues. Ann. Reg. Sci. 2009, 43, 739–756. [Google Scholar] [CrossRef] [Green Version]
- De Prato, G.; Nepelski, D. Global technological collaboration network. Network analysis of international co-inventions. J. Technol. Transf. 2014, 39, 358–375. [Google Scholar] [CrossRef] [Green Version]
- Li, D.D.; Wei, Y.D.; Wang, T. Spatial and temporal evolution of urban innovation network in China. Habitat Int. 2015, 49, 484–496. [Google Scholar] [CrossRef]
- Breschi, S.; Lissoni, F. Mobility of skilled workers and co-invention networks: An anatomy of localized knowledge flows. J. Econ. Geogr. 2009, 9, 439–468. [Google Scholar] [CrossRef] [Green Version]
- Ter Wal, A.L.J. The dynamics of the inventor network in German biotechnology: Geographic proximity versus triadic closure. J. Econ. Geogr. 2013, 14, 589–620. [Google Scholar] [CrossRef]
- Guan, J.; Yan, Y.; Zhang, J.J. The impact of collaboration and knowledge networks on citations. J. Informetr. 2017, 11, 407–422. [Google Scholar] [CrossRef]
- Wang, C.C.; Sung, H.Y.; Chen, D.Z.; Huang, M.H. Strong ties and weak ties of the knowledge spillover network in the semiconductor industry. Technol. Forecast. Soc. Chang. 2017, 118, 114–127. [Google Scholar] [CrossRef]
- Anselin, L.; Varga, A.; Acs, Z. Geographical spillovers and university research: A spatial econometric perspective. Growth Chang. 2000, 31, 501–515. [Google Scholar] [CrossRef]
- Mansfield, E. Academic research underlying industrial innovations: Sources, characteristics, and financing. Rev. Econ. Stat. 1995, 77, 55–65. [Google Scholar] [CrossRef]
- Vinuesa, R.; Azizpour, H.; Leite, I.; Balaam, M.; Dignum, V.; Domisch, S.; Felländer, A.; Langhans, S.D.; Tegmark, M.; Nerini, F.F. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat. Commun. 2020, 11, 233. [Google Scholar] [CrossRef] [Green Version]
- Mhlanga, D. Artificial Intelligence in the Industry 4.0, and Its Impact on Poverty, Innovation, Infrastructure Development, and the Sustainable Development Goals: Lessons from Emerging Economies? Sustainability 2021, 13, 5788. [Google Scholar] [CrossRef]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255. [Google Scholar] [CrossRef]
- Wu, J.; Guo, S.; Huang, H.; Liu, W.; Xiang, Y. Information and Communications Technologies for Sustainable Development Goals: State-of-the-Art, Needs and Perspectives. IEEE Commun. Surv. Tutor. 2018, 20, 2389–2406. [Google Scholar] [CrossRef] [Green Version]
- Palomares, I.; Martínez-Cámara, E.; Montes, R.; García-Moral, P.; Chiachio, M.; Chiachio, J.; Alonso, S.; Melero, F.J.; Molina, D.; Fernández, B.; et al. A panoramic view and swot analysis of artificial intelligence for achieving the sustainable development goals by 2030: Progress and prospects. Appl. Intell. 2021, 51, 6497–6527. [Google Scholar] [CrossRef]
- Lu, X.; Zhu, W.; Tsai, F.S. Social Responsibility toward the Employees and Career Development Sustainability during Manufacturing Transformation in China. Sustainability 2019, 11, 4778. [Google Scholar] [CrossRef] [Green Version]
- Shi, C.; Feng, X.; Jin, Z. Sustainable development of China’s smart energy industry based on artificial intelligence and low-carbon economy. Energy Sci. Eng. 2022, 10, 243–252. [Google Scholar] [CrossRef]
- Lee, H.J.; Oh, H. A Study on the Deduction and Diffusion of Promising Artificial Intelligence Technology for Sustainable Industrial Development. Sustainability 2020, 12, 5609. [Google Scholar] [CrossRef]
- Guan, J.; Liu, N. Exploitative and exploratory innovations in knowledge network and collaboration network: A patent analysis in the technological field of nano-energy. Res. Policy 2016, 45, 97–112. [Google Scholar] [CrossRef]
- Fischer, M.M.; Scherngell, T.; Jansenberger, E. Geographic localisation of knowledge spillovers: Evidence from high-tech patent citations in Europe. Ann. Reg. Sci. 2009, 43, 839–858. [Google Scholar] [CrossRef]
- Maggioni, M.A.; Uberti, T.E.; Usai, S. Treating Patents as Relational Data: Knowledge Transfers and Spillovers across Italian Provinces. Ind. Innov. 2011, 18, 39–67. [Google Scholar] [CrossRef]
- Kang, D.; Dall’erba, S. An Examination of the Role of Local and Distant Knowledge Spillovers on the US Regional Knowledge Creation. Int. Reg. Sci. Rev. 2016, 39, 355–385. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.T.; Fang, C.L.; Pang, B.; Wang, S.J. Structure of Chinese city network as driven by technological knowledge flows. Chin. Geogr. Sci. 2015, 25, 498–510. [Google Scholar] [CrossRef] [Green Version]
- Euler, L. Leonhard Euler and the Koenigsberg bridges. Sci. Am. 1953, 189, 66–72. [Google Scholar] [CrossRef]
- Amstutz, P. Théorie des graphes et ses applications deC. Berge. Ann. Telecommun. 1961, 16, 61. [Google Scholar] [CrossRef]
- Ponds, R.; Van Oort, F.; Frenken, K. The geographical and institutional proximity of research collaboration. Pap. Reg. Sci. 2007, 86, 423–443. [Google Scholar] [CrossRef] [Green Version]
- Varga, A.; Parag, A. Academic knowledge transfers and the structure of international research networks. In University Knowledge Transfers Regional Development: Geography, Entrepreneurship Policy; Edward Elgar Publishers: Northampton, UK, 2009. [Google Scholar]
- Alderson, A.S.; Beckfield, J.; Sprague-Jones, J. Intercity Relations and Globalisation: The Evolution of the Global Urban Hierarchy, 1981–2007. Urban Stud. 2010, 47, 1899–1923. [Google Scholar] [CrossRef]
- Eisingerich, A.B.; Bell, S.J.; Tracey, P. How can clusters sustain performance? The role of network strength, network openness, and environmental uncertainty. Res. Policy 2010, 39, 239–253. [Google Scholar] [CrossRef] [Green Version]
- Neal, R.M. MCMC using Hamiltonian Dynamics. In Handbook of Markov Chain Monte Carlo; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Freeman, L.C. Centrality in social networks conceptual clarification. Soc. Netw. 1978, 1, 215–239. [Google Scholar] [CrossRef] [Green Version]
- Wasserman, S.; Faust, K. Social Network Analysis: Methods and Applications; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Albert, R.; Barabási, A.L. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002, 74, 47–97. [Google Scholar] [CrossRef] [Green Version]
- Strogatz, S.H. Exploring complex networks. Nature 2001, 410, 268–276. [Google Scholar] [CrossRef] [Green Version]
- Wagner, C.S.; Leydesdorff, L. Network structure, self-organization, and the growth of international collaboration in science. Res. Policy 2005, 34, 1608–1618. [Google Scholar] [CrossRef] [Green Version]
- Barabási, A.L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef] [Green Version]
- Newman, M.E.J. Assortative Mixing in Networks. Phys. Rev. Lett. 2002, 89, 208701. [Google Scholar] [CrossRef] [Green Version]
- Chabchoub, N.; Niosi, J. Explaining the propensity to patent computer software. Technovation 2005, 25, 971–978. [Google Scholar] [CrossRef]
- Coombs, R.; Hull, R. ‘Knowledge management practices’ and path-dependency in innovation. Res. Policy 1998, 27, 237–253. [Google Scholar] [CrossRef]
- Rubera, G.; Chandrasekaran, D.; Ordanini, A. Open innovation, product portfolio innovativeness and firm performance: The dual role of new product development capabilities. J. Acad. Mark. Sci. 2016, 44, 166–184. [Google Scholar] [CrossRef]
- Almirall, E.; Casadesus-Masanell, R. Open versus closed innovation: A model of discovery and divergence. Acad. Manag. Rev. 2010, 35, 27–47. [Google Scholar]
- Prabhu, J.C.; Chandy, R.K.; Ellis, M.E. The impact of acquisitions on innovation: Poison pill, placebo, or tonic? J. Mark. 2005, 69, 114–130. [Google Scholar] [CrossRef]
- Ahuja, G.; Katila, R. Technological acquisitions and the innovation performance of acquiring firms: A longitudinal study. Strateg. Manag. J. 2001, 22, 197–220. [Google Scholar] [CrossRef]
- Laursen, K.; Salter, A. Open for innovation: The role of openness in explaining innovation performance among UK manufacturing firms. Strateg. Manag. J. 2006, 27, 131–150. [Google Scholar] [CrossRef]
- Clauset, A.; Shalizi, C.R.; Newman, M.E.J. Power-Law Distributions in Empirical Data. SIAM Rev. 2009, 51, 661–703. [Google Scholar] [CrossRef] [Green Version]
- Cowan, R.; Jonard, N. Network structure and the diffusion of knowledge. J. Econ. Dyn. Control. 2004, 28, 1557–1575. [Google Scholar] [CrossRef] [Green Version]
- Howells, J. Tacit Knowledge, Innovation and Economic Geography. Urban Stud. 2002, 39, 871–884. [Google Scholar] [CrossRef]
- Howells, J.; Bessant, J. Introduction: Innovation and economic geography: A review and analysis. J. Econ. Geogr. 2012, 12, 929–942. [Google Scholar] [CrossRef]
- Jaffe, A.B.; de Rassenfosse, G. Patent citation data in social science research: Overview and best practices. J. Assoc. Inf. Sci. Tech. 2017, 68, 1360–1374. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, Y.; Liu, Y. High-level talent flow and its influence on regional unbalanced development in China. Appl. Geogr. 2018, 91, 89–98. [Google Scholar] [CrossRef]
- Chien, S.S.; Gordon, I. Territorial Competition in China and the West. Reg. Stud. 2008, 42, 31–49. [Google Scholar] [CrossRef] [Green Version]
- Crescenzi, R.; Rodríguez-Pose, A.; Storper, M. The territorial dynamics of innovation in China and India. J. Econ. Geogr. 2012, 12, 1055–1085. [Google Scholar] [CrossRef]
- Naqshbandi, M.M.; Kamel, Y. Intervening role of realized absorptive capacity in organizational culture–open innovation relationship: Evidence from an emerging market. J. Gen. Manag. 2017, 42, 5–20. [Google Scholar] [CrossRef]
- Huizingh, E. Open innovation: State of the art and future perspectives. Technovation 2011, 31, 2–9. [Google Scholar] [CrossRef]
- Flor, M.L.; Cooper, S.Y.; Oltra, M.J. External knowledge search, absorptive capacity and radical innovation in high-technology firms. Eur. Manag. J. 2018, 36, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Parida, V.; Westerberg, M.; Frishammar, J. Inbound open innovation activities in high-tech SMEs: The impact on innovation performance. J. Small Bus. Manag. 2012, 50, 283–309. [Google Scholar] [CrossRef] [Green Version]
- Eppinger, E. How Open Innovation Practices Deliver Societal Benefits. Sustainability 2021, 13, 1431. [Google Scholar] [CrossRef]
- Sharma, S.; Thomas, V. Inter-country R&D efficiency analysis: An application of data envelopment analysis. Scientometrics 2008, 76, 483–501. [Google Scholar]
- Wang, X.; Huang, M.; Wang, H.; Lei, M.; Zhu, D.; Ren, J.; Jabeen, M. International collaboration activity index: Case study of dye-sensitized solar cells. J. Informetr. 2014, 8, 854–862. [Google Scholar] [CrossRef]
- Fu, X.; Li, Y.; Li, J.; Chesbrough, H. When do latecomer firms undertake international open innovation: Evidence from China. Glob. Strateg. J. 2022, 12, 31–56. [Google Scholar] [CrossRef]
Year 2000 | Year 2005 | Year 2011 | Year 2013 | Year 2016 | |
---|---|---|---|---|---|
Number of nodes | 9 | 35 | 90 | 114 | 217 |
Number of edges | 8 | 39 | 181 | 346 | 1457 |
Average Degree Centrality | 0.89 | 1.11 | 2.01 | 3.04 | 6.71 |
Average Betweenness Centrality | 0 | ||||
Average Strength Centrality | 40 | 49.09 | 120.67 | 154.33 | 495.33 |
Average Clustering Coefficient | 0 | 0.064 | 0.078 | 0.114 | 0.245 |
Average Path Length | 1 | 1 | 1.34 | 1.88 | 2.11 |
Rank | Degree Centrality | Betweenness Centrality | Strength Centrality | |||
---|---|---|---|---|---|---|
City | Value | City | Value | City | Value | |
2000 | ||||||
1 | Germany | 7 | Germany | 0 | Germany | 179 |
2 | Taipei | 2 | Taipei | 0 | Beijing | 80 |
3 | Beijing | 1 | Beijing | 0 | Nanjing | 30 |
4 | Shanghai | 1 | Shanghai | 0 | Taipei | 20 |
5 | Nanjing | 1 | Nanjing | 0 | Shenzhen | 20 |
6 | Guangzhou | 1 | Guangzhou | 0 | Shanghai | 10 |
7 | Shenzhen | 1 | Shenzhen | 0 | Guangzhou | 10 |
8 | Foshan | 1 | Foshan | 0 | Foshan | 10 |
9 | USA | 1 | USA | 0 | USA | 1 |
10 | N/A | N/A | N/A | |||
2011 | ||||||
1 | Germany | 77 | Shenzhen | 5.92 × 10−3 | Germany | 5064 |
2 | Shenzhen | 24 | Dongguan | 4.47 × 10−3 | Beijing | 847 |
3 | Beijing | 18 | Hangzhou | 4.26 × 10−4 | Shanghai | 509 |
4 | EPO | 15 | Beijing | 2.98 × 10−4 | Shenzhen | 443 |
5 | Shanghai | 14 | Guangzhou | 1.28 × 10−4 | Suzhou | 330 |
6 | Shenyang | 14 | N/A | Hangzhou | 233 | |
7 | Dongguan | 12 | N/A | Nanjing | 190 | |
8 | Hangzhou | 11 | N/A | Jinan | 188 | |
9 | Harbin | 9 | N/A | Xi’an | 179 | |
10 | Changzhou | 9 | N/A | Chengdu | 169 | |
2013 | ||||||
1 | Germany | 86 | Shenzhen | 1.34 × 10−2 | Germany | 7520 |
2 | Shenzhen | 35 | Suzhou | 9.85 × 10−3 | Beijing | 1359 |
3 | Beijing | 33 | Beijing | 9.07 × 10−3 | Shenzhen | 842 |
4 | Suzhou | 32 | Hefei | 7.29 × 10−3 | Suzhou | 725 |
5 | EPO | 30 | Shanghai | 5.24 × 10−3 | Shanghai | 583 |
6 | Shanghai | 24 | Hangzhou | 4.20 × 10−3 | Chengdu | 494 |
7 | Hangzhou | 23 | Xi’an | 3.78 × 10−3 | Nanjing | 376 |
8 | USA | 22 | Foshan | 2.21 × 10−3 | Guangzhou | 338 |
9 | Japan | 22 | Dongguan | 2.02 × 10−3 | EPO | 302 |
10 | Hefei | 21 | Guangzhou | 1.86 × 10−3 | Xi’an | 258 |
2016 | ||||||
1 | Germany | 178 | Shenzhen | 5.04 × 10−2 | Germany | 44,103 |
2 | Shenzhen | 123 | Beijing | 2.65 × 10−2 | Shenzhen | 9249 |
3 | Beijing | 105 | Dongguan | 1.80 × 10−2 | Beijing | 8567 |
4 | Dongguan | 87 | Chengdu | 1.34 × 10−2 | Chengdu | 3303 |
5 | Shanghai | 83 | Hangzhou | 1.30 × 10−2 | Shanghai | 3209 |
6 | Hangzhou | 81 | Guangzhou | 1.20 × 10−2 | Guangzhou | 2296 |
7 | EPO | 78 | Shanghai | 1.10 × 10−2 | Dongguan | 2051 |
8 | Guangzhou | 74 | Wuhan | 6.50 × 10−3 | EPO | 2007 |
9 | Chengdu | 70 | Xi’an | 5.08 × 10−3 | Suzhou | 1981 |
10 | Wuhan | 58 | Taizhou | 4.23 × 10−3 | Hangzhou | 1550 |
Unweighted Preferential Attachment | Weighted Preferential Attachment | |||
---|---|---|---|---|
Year | Correlation Coefficient | p-Value | Correlation Coefficient | p-Value |
2011 | 0.241 | 0.000 | 0.043 | 0.256 |
2013 | 0.285 | 0.000 | 0.016 | 0.676 |
2016 | 0.184 | 0.001 | −0.077 | 0.177 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, M.; Dall'erba, S.; Ye, M. Spatial and Temporal Evolution of the Chinese Artificial Intelligence Innovation Network. Sustainability 2022, 14, 5448. https://doi.org/10.3390/su14095448
Tu M, Dall'erba S, Ye M. Spatial and Temporal Evolution of the Chinese Artificial Intelligence Innovation Network. Sustainability. 2022; 14(9):5448. https://doi.org/10.3390/su14095448
Chicago/Turabian StyleTu, Menger, Sandy Dall'erba, and Mingque Ye. 2022. "Spatial and Temporal Evolution of the Chinese Artificial Intelligence Innovation Network" Sustainability 14, no. 9: 5448. https://doi.org/10.3390/su14095448
APA StyleTu, M., Dall'erba, S., & Ye, M. (2022). Spatial and Temporal Evolution of the Chinese Artificial Intelligence Innovation Network. Sustainability, 14(9), 5448. https://doi.org/10.3390/su14095448