Characteristics of Cyclist Crashes Using Polytomous Latent Class Analysis and Bias-Reduced Logistic Regression
Abstract
:1. Introduction
2. Materials and Methods
Methods
3. Results
3.1. Polytomous Latent Clustering Analysis
3.1.1. Selection of Number of Classes
3.1.2. Estimation Results
3.2. Bias-Reduced Logistic Regression
4. Discussion
4.1. Accident Classification
4.2. Intersection Accidents
4.3. Non-Intersection Accidents
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klop, J.R.; Khattak, A.J. Factors Influencing Bicycle Crash Severity on Two-Lane, Undivided Roadways in North Carolina. Transp. Res. Rec. 1999, 1674, 78–85. [Google Scholar] [CrossRef]
- Wang, Y.; Nihan, N.L. Estimating the risk of collisions between bicycles and motor vehicles at signalized intersections. Accid. Anal. Prev. 2004, 36, 313–321. [Google Scholar] [CrossRef]
- Kim, J.-K.; Kim, S.; Ulfarsson, G.F.; Porrello, L.A. Bicyclist injury severities in bicycle-motor vehicle accidents. Accid. Anal. Prev. 2007, 39, 238–251. [Google Scholar] [CrossRef] [PubMed]
- Eluru, N.; Bhat, C.R.; Hensher, D.A. A mixed generalized ordered response model for examining pedestrian and bicyclist injury severity level in traffic crashes. Accid. Anal. Prev. 2008, 40, 1033–1054. [Google Scholar] [CrossRef] [Green Version]
- Moore, D.N.; Schneider IV, W.H.; Savolainen, P.T.; Farzaneh, M. Mixed logit analysis of bicyclist injury severity resulting from motor vehicle crashes at intersection and non-intersection locations. Accid. Anal. Prev. 2011, 43, 621–630. [Google Scholar] [CrossRef]
- Yan, X.; Ma, M.; Huang, H.; Abdel-Aty, M.; Wu, C. Motor vehicle-bicycle crashes in Beijing: Irregular maneuvers, crash patterns, and injury severity. Accid. Anal. Prev. 2011, 43, 1751–1758. [Google Scholar] [CrossRef]
- Klassen, J.; El-Basyouny, K.; Islam, M.T. Analyzing the severity of bicycle-motor vehicle collision using spatial mixed logit models: A City of Edmonton case study. Saf. Sci. 2014, 62, 295–304. [Google Scholar] [CrossRef]
- Hu, F.; Lv, D.; Zhu, J.; Fang, J. Related Risk Factors for Injury Severity of E-bike and Bicycle Crashed in Hefei. Traffic Inj. Prev. 2014, 15, 319–323. [Google Scholar] [CrossRef]
- Rivara, F.P.; Thompson, D.C.; Thompson, R.S. Epidemiology of bicycle injuries and risk factors for serious injury. Inj. Prev. 2015, 21, 47–51. [Google Scholar] [CrossRef]
- Wang, C.; Lu, L.; Lu, J. Statistical analysis of bicyclists’ injury severity at unsignalized intersections. Traffic Inj. Prev. 2015, 16, 507–512. [Google Scholar] [CrossRef]
- Chen, P.; Shen, Q. Built environment effects on cyclist injury severity in automobile-involved bicycle crashes. Accid. Anal. Prev. 2016, 86, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Silvano, A.P.; Koutsopoulos, H.N.; Ma, X. Analysis of vehicle-bicycle interactions at unsignalized crossings: A probabilistic approach and application. Accid. Anal. Prev. 2016, 97, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Asgarzadeh, M.; Verma, S.; Mekary, R.A.; Courtney, T.K.; Christiani, D.C. The role of intersection and street design on severity of bicycle-motor vehicle crashes. Inj. Prev. 2017, 23, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Wang, T.; Zheng, C.; Yu, M. Determinants of Bicyclist Injury Severity Resulting from Crashes at Roundabouts, Crossroads, and T-Junctions. J. Adv. Transp. 2020, 2020, 6513128. [Google Scholar] [CrossRef]
- Billot-Grasset, A.; Amoros, E.; Hours, M. How cyclist behavior affects bicycle accident configurations? Res. Part F Traffic Psychol. Behav. 2016, 41, 261–276. [Google Scholar] [CrossRef]
- Ma, Y.; Zheng, Y.; Li, N.; Cheng, J. Personality and behavioral predictors of cyclist involvement in crash-related conditions. Int. J. Environ. Res. Public Health 2019, 16, 4881. [Google Scholar] [CrossRef] [Green Version]
- Fountas, G.; Fonzone, A.; Olowosegun, A.; McTigue, C. Addressing unobserved heterogeneity in the analysis of bicycle crash injuries in Scotland: A correlated random parameters ordered probit approach with heterogeneity in means. Anal. Methods Accid. Res. 2021, 32, 100181. [Google Scholar] [CrossRef]
- Macioszek, E.; Granà, A. The Analysis of the Factors Influencing the Severity of Bicyclist Injury in Bicyclist-Vehicle Crashes. Sustainability 2022, 14, 215. [Google Scholar] [CrossRef]
- Reynolds, C.C.; Harris, M.A.; Teschke, K.; Cripton, P.A.; Winters, M. The impact of transportation infrastructure on bicycling injuries and crashes: A review of the literature. Environ. Health 2009, 21, 8–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goerke, D.; Zolfaghari, E.; Marek, A.P.; Endorf, F.W.; Nygaard, R.M. Incidence and Profile of Severe Cycling Injuries After Bikeway Infrastructure Changes. J. Community Health 2020, 45, 542–549. [Google Scholar] [CrossRef]
- Helak, K.; Jehle, D.; McNabb, D.; Battisti, A.; Sanford, S.; Lark, M.C. Factors Influencing Injury Severity of Bicyclists Involved in Crashes with Motor Vehicles: Bike Lanes, Alcohol, Lighting, Speed, and Helmet Use. South. Med. J. 2017, 110, 441–444. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, S.; Prato, C.G. Cyclist-motorist crash patterns in Denmark: A latent class clustering approach. Traffic Inj. Prev. 2013, 14, 725–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prati, G.; De Angelis, M.; Marín Puchades, V.; Fraboni, F.; Pietrantoni, L. Characteristics of cyclist crashes in Italy using latent class analysis and association rule mining. PLoS ONE 2017, 12, e0171484. [Google Scholar] [CrossRef] [PubMed]
- Myhrmann, M.S.; Janstrup, K.H.; Møller, M.; Mabit, S.E. Factors influencing the injury severity of single-bicycle crashes. Accid. Anal. Prev. 2021, 149, 105875. [Google Scholar] [CrossRef] [PubMed]
- Samerei, S.A.; Aghabayk, K.; Shiwakoti, N.; Mohammadi, A. Using latent class clustering and binary logistic regression to model Australian cyclist injury severity in motor vehicle–bicycle crashes. J. Saf. Res. 2021, 79, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Lin, Z.; Fan, W. Investigating contributing factors to injury severity levels in crashes involving pedestrians and cyclists using latent class clustering analysis and mixed logit models. J. Transp. Saf. Secur. 2021, 13, 223–245. [Google Scholar] [CrossRef]
- Furukura, S. Manifestations of the Characteristics of Bicycle Accidents, Column, Bicycle Parking Improvement Centre. 2021. (In Japanese). Available online: https://onl.la/TPCfzNr (accessed on 22 March 2022).
- Nakai, H. What increases a risk of mortality from crossing collision (cyclists against vehicles)? In Proceedings of the 57th Annual Conference of the Japan Ergonomics Society, Mie, Japan, 25–26 June 2016; Volume 57, pp. 392–393. (In Japanese). [Google Scholar]
- Kosmidis, I.; Firth, D. Jeffreys-prior penalty, finiteness and shrinkage in binomial response generalized linear models. Biometrika 2021, 108, 71–82. [Google Scholar] [CrossRef]
- Bandeen-Roche, K.; Miglioretti, D.L.; Zeger, S.L.; Rathouz, P.J. Latent Variable Regression for Multiple Discrete Outcomes. J. Am. Stat. Assoc. 1997, 92, 1375–1386. [Google Scholar] [CrossRef]
- Linzer, D.A.; Lewis, J.B. poLCA: An R Package for Polytomous Variable Latent Class Analysis. J. Stat. Softw. 2011, 42, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Kosmidis, I. brglm: Bias Reduction in Binary-Response Generalized Linear Models. R Package Version 0.7.2. 2021. Available online: https://cran.r-project.org/package=brglm (accessed on 22 March 2022).
- Hagita, K.; Yokozeki, T. Comparison of Bicycle Volumes and Accidents Concerning Direction of Bicycle on Space for Cycling. J. Jpn. Soc. Civ. Eng. Ser. D3 2019, 75, I_493–I_506. (In Japanese) [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Fan, W. Mixed logit model based diagnostic analysis of bicycle-vehicle crashes at daytime and nighttime. Int. J. Transp. Sci. Technol. 2021, in press. [Google Scholar] [CrossRef]
- Wang, T.; Chen, J.; Wang, C.; Ye, X. Understand e-bicyclist safety in China: Crash severity modeling using a generalized ordered logit model. Adv. Mech. Eng. 2018, 10, 1687814018781625. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, S.J.; Figliozzi, A.M.; Unnikrishnan, A. Evidence from Urban Roads without Bicycle Lanes on the Impact of Bicycle Traffic on Passenger Car Travel Speeds. Transp. Res. Rec. J. Transp. Res. Board 2020, 2674, 87–98. [Google Scholar] [CrossRef]
- Beck, B.; Chong, D.; Olivier, J.; Perkins, M.; Tsay, A.; Rushford, A.; Li, L.; Cameron, P.; Fry, R.; Johnson, M. How much space do drivers provide when passing cyclists? Understanding the impact of motor vehicle and infrastructure characteristics on passing distance. Accid. Anal. Prev. 2019, 128, 253–260. [Google Scholar] [CrossRef]
- Marshall, E.W.; Ferenchak, N.N. Why cities with high bicycling rates are safer for all road users. J. Transp. Health 2019, 13, 100539. [Google Scholar] [CrossRef]
- Shinar, D.; Valero-Mora, P.; Van Strijp-Houtenbos, M.; Haworth, N.; Schramm, A.; De Bruyne, G.; Cavallo, V.; Chliaoutakis, J.; Dias, J.; Ferraro, O.E. Under-reporting bicycle accidents to police in the COST TU1101 international survey: Cross-country comparisons and associated factors. Accid. Anal. Prev. 2018, 110, 177–186. [Google Scholar] [CrossRef]
Variable | Category | n | % |
---|---|---|---|
Crash location | Between intersections | 43,337 | 31.0 |
Intersections | 93,367 | 66.7 | |
Sidewalks | 3251 | 2.3 | |
Stop sign | Not applicable * | 47,866 | 34.2 |
YES | 22,672 | 16.2 | |
NO | 69,417 | 49.6 | |
Restricted speed | 20 | 2573 | 1.8 |
30 | 20,967 | 15.0 | |
40 | 32,888 | 23.5 | |
50 | 16,107 | 11.5 | |
60 | 69,420 | 49.6 | |
Median strip | Yes | 16,452 | 11.8 |
High-brightness paint | 170 | 0.1 | |
Chatter bar | 453 | 0.3 | |
Postcorn | 495 | 0.4 | |
Paint | 55,093 | 39.4 | |
None | 67,292 | 48.1 | |
Boundary between sidewalk and roadway | Guard rail | 12,015 | 8.6 |
Curb | 80,437 | 57.5 | |
White line | 23,959 | 17.1 | |
None | 23,544 | 16.8 | |
Road type | National | 19,113 | 13.7 |
Trunk- Prefectural | 19,222 | 13.7 | |
Trunk- Municipal | 1535 | 1.1 | |
Prefectural | 14,184 | 10.1 | |
Municipal | 85,901 | 61.4 | |
Alignment | Right curve - up | 292 | 0.2 |
Right curve - down | 313 | 0.2 | |
Right curve - flat | 1441 | 1.0 | |
Left curve - up | 227 | 0.2 | |
Left curve - down | 286 | 0.2 | |
Left curve - flat | 1213 | 0.9 | |
Straight - down | 2667 | 1.9 | |
Straight - flat | 4694 | 3.4 | |
Straight - up | 128,819 | 92.0 | |
Land uses | (ref) Urban - DID | 86,535 | 61.8 |
Urban - non DID | 38,523 | 27.5 | |
Rural | 14,897 | 10.6 | |
Surface conditions | Dry | 124,271 | 88.8 |
Wet | 15,506 | 11.1 | |
Frozen | 69 | 0.0 | |
Snow cover | 39 | 0.0 | |
Unpaved | 70 | 0.1 | |
Weather | Clear | 99,374 | 71.0 |
Cloudy | 27,269 | 19.5 | |
Rainy | 13,083 | 9.3 | |
Foggy | 28 | 0.0 | |
Snowy | 201 | 0.1 | |
Time period | After dawn | 4353 | 3.1 |
Daytime | 93,833 | 67.0 | |
Before sunset | 10,086 | 7.2 | |
After sunset | 10,471 | 7.5 | |
Nighttime | 19,769 | 14.1 | |
Before dawn | 1443 | 1.0 | |
Collision partner | Cars | 64,697 | 46.2 |
Kei-cars | 31,527 | 22.5 | |
Large truck | 4643 | 3.3 | |
Small/Medium truck | 16,495 | 11.8 | |
Motorcycle 126+cc | 1134 | 0.8 | |
Motorcycle -125cc | 5735 | 4.1 | |
Bicycle | 5438 | 3.9 | |
Pedestrian | 5140 | 3.7 | |
Obstacles | 794 | 0.6 | |
None | 4352 | 3.1 | |
Cyclist’s age | 0–24 | 48,602 | 34.7 |
25–34 | 17,230 | 12.3 | |
35–44 | 16,598 | 11.9 | |
45–54 | 17,090 | 12.2 | |
55–64 | 12,188 | 8.7 | |
65–74 | 13,893 | 9.9 | |
75– | 14,354 | 10.3 | |
Collision part | None | 2785 | 2.0 |
Front | 56,729 | 40.5 | |
Right | 43,647 | 31.2 | |
Rear | 4979 | 3.6 | |
Left | 31,815 | 22.7 | |
Accident type | Injury | 139,148 | 99.4 |
Fatality | 807 | 0.6 |
Crash Location (Fatality Rate) | Intersections (0.4%) | Between Intersections (0.8%) | Sidewalks (3.0%) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Coef. | z Value | Fatality | n | Coef. | z Value | Fatality | n | Coef. | z Value | Fatality | n | ||||
Cyclist’s age | (ref) 0–24 | 47 | 34,898 | 12 | 12,846 | 1 | 858 | |||||||||
25–34 | −0.42 | −1.20 | 9 | 11,360 | 0.15 | 0.31 | 6 | 5490 | 2.50 | 2.43 | * | 3 | 380 | |||
35–44 | −0.45 | −1.22 | 8 | 10,629 | 1.20 | 3.33 | *** | 18 | 5510 | 2.85 | 2.80 | ** | 3 | 418 | ||
45–54 | 0.49 | 1.92 | 22 | 10,832 | 1.69 | 5.15 | *** | 34 | 5820 | 1.90 | 1.99 | * | 5 | 438 | ||
55–64 | 1.29 | 5.85 | *** | 36 | 7817 | 1.86 | 5.56 | *** | 29 | 4035 | 3.19 | 3.57 | *** | 15 | 336 | |
65–74 | 1.90 | 10.37 | *** | 79 | 8923 | 2.84 | 9.40 | *** | 80 | 4573 | 3.42 | 3.96 | *** | 29 | 397 | |
75– | 2.71 | 16.61 | *** | 178 | 8908 | 3.39 | 11.56 | *** | 150 | 5022 | 3.43 | 4.01 | *** | 43 | 424 | |
Land uses | (ref) Urban-DID | 185 | 56,928 | 120 | 27,671 | 24 | 1936 | |||||||||
Urban-non DID | 0.34 | 2.77 | ** | 112 | 26,813 | 0.57 | 3.91 | *** | 87 | 10,772 | 1.16 | 3.50 | *** | 25 | 938 | |
Rural | 1.04 | 7.61 | *** | 82 | 9626 | 1.36 | 10.03 | *** | 122 | 4894 | 1.87 | 6.23 | *** | 50 | 377 | |
Road type | (ref) National | 98 | 12,724 | 83 | 6152 | 1 | 237 | |||||||||
Trunk-Prefectural | −0.48 | −2.88 | ** | 57 | 12,340 | −0.36 | −2.04 | * | 59 | 6497 | −0.06 | −0.05 | 1 | 385 | ||
Trunk-Municipal | −0.20 | −0.46 | 5 | 1087 | 0.80 | 1.61 | 4 | 425 | 0.42 | 0.24 | - | 23 | ||||
Prefectural | −0.39 | −2.17 | * | 48 | 9083 | −0.30 | −1.61 | 51 | 4782 | 2.27 | 2.30 | * | 14 | 319 | ||
Municipal | −0.81 | −5.81 | *** | 171 | 58,133 | −0.95 | −5.79 | *** | 132 | 25,481 | 1.47 | 1.59 | 83 | 2287 | ||
Median strip | (ref) Yes | 32 | 10,279 | 31 | 5887 | |||||||||||
High-brightness paint | −0.44 | −6.91 | *** | 109 | 1.87 | 2.12 | * | 1 | 59 | |||||||
Chatter bar | 1.41 | 2.12 | * | 2 | 228 | 1.00 | 1.67 | . | 3 | 224 | ||||||
Postcorn | 1.12 | 1.68 | . | 2 | 306 | −0.60 | −0.42 | - | 183 | |||||||
Paint | 0.53 | 2.65 | ** | 135 | 32,958 | 0.57 | 2.83 | ** | 198 | 21,113 | ||||||
None | 0.87 | 4.36 | *** | 208 | 49,487 | 0.46 | 1.98 | * | 96 | 15,871 | ||||||
Stop sign | (ref) Yes | 23 | 22,507 | |||||||||||||
No | 1.41 | 6.63 | *** | 336 | 68,926 | |||||||||||
Not applicable * | 2.10 | 6.90 | *** | 20 | 1934 | |||||||||||
Boundary between sidewalk and roadway | (ref) Guard rail | 72 | 7250 | |||||||||||||
Curb | −1.03 | −7.37 | *** | 219 | 53,166 | |||||||||||
White line | −1.22 | −6.14 | *** | 48 | 16,390 | |||||||||||
None | −1.58 | −7.28 | *** | 39 | 16,561 | |||||||||||
Collision partner | (ref) Bicycle | 2 | 2274 | |||||||||||||
Cars | 1.40 | 2.20 | * | 76 | 16,986 | |||||||||||
Kei-cars | 1.39 | 2.15 | * | 44 | 7964 | |||||||||||
Large truck | 2.97 | 4.63 | *** | 61 | 1736 | |||||||||||
Small/Medium truck | 1.97 | 3.06 | ** | 44 | 4683 | |||||||||||
Motorcycle 126+cc | 2.40 | 3.21 | ** | 6 | 375 | |||||||||||
Motorcycle -125cc | 0.36 | 0.44 | 3 | 1736 | ||||||||||||
Pedestrian | 0.52 | 0.67 | 4 | 3743 | ||||||||||||
Obstacles | 2.80 | 4.16 | *** | 17 | 629 | |||||||||||
None | 2.47 | 3.88 | *** | 72 | 3185 | |||||||||||
Time period | (ref) Except for nighttime | 211 | 36,687 | |||||||||||||
Nighttime | 1.45 | 11.78 | *** | 118 | 6650 | |||||||||||
Crach part | (ref) Except for front | 42 | 1875 | |||||||||||||
Front | 1.26 | 4.91 | *** | 57 | 1376 | |||||||||||
Intercept | −7.22 | −22.16 | *** | −9.29 | 13.06 | *** | −11.57 | −8.53 | *** | |||||||
AIC | 4210 | 3004 | 442 | |||||||||||||
AIC (null) | 4933 | 3869 | 888 | |||||||||||||
Number of samples | 93,367 | 43,337 | 3251 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sekiguchi, Y.; Tanishita, M.; Sunaga, D. Characteristics of Cyclist Crashes Using Polytomous Latent Class Analysis and Bias-Reduced Logistic Regression. Sustainability 2022, 14, 5497. https://doi.org/10.3390/su14095497
Sekiguchi Y, Tanishita M, Sunaga D. Characteristics of Cyclist Crashes Using Polytomous Latent Class Analysis and Bias-Reduced Logistic Regression. Sustainability. 2022; 14(9):5497. https://doi.org/10.3390/su14095497
Chicago/Turabian StyleSekiguchi, Yuta, Masayoshi Tanishita, and Daisuke Sunaga. 2022. "Characteristics of Cyclist Crashes Using Polytomous Latent Class Analysis and Bias-Reduced Logistic Regression" Sustainability 14, no. 9: 5497. https://doi.org/10.3390/su14095497
APA StyleSekiguchi, Y., Tanishita, M., & Sunaga, D. (2022). Characteristics of Cyclist Crashes Using Polytomous Latent Class Analysis and Bias-Reduced Logistic Regression. Sustainability, 14(9), 5497. https://doi.org/10.3390/su14095497