Mopane Worm (Gonimbrasia belina Westwood) Meal as a Potential Protein Source for Sustainable Quail Production: A Review
Abstract
:1. Introduction
2. Quail Production and Nutrient Requirements
3. Mopane Worm
4. Mass Production of Mopane Worms
5. Sustainability in Harvesting Mopane Worms
6. Chemical Components of Mopane Larvae
6.1. Protein and Amino Acids in Mopane Worms
6.2. Mineral Profile of Mopane Worms
6.3. Fatty Acid Profile of Mopane Worms
7. Feed Value of Mopane Worm Meal
8. Prospects and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mnisi, C.M.; Mlambo, V. Canola meal as an alternative dietary protein source in quail (Coturnix coturnix) diets A review. Acta Agric. Scand. Sect. A Anim. Sci. 2019, 68, 207–218. [Google Scholar] [CrossRef]
- Marareni, M.; Mnisi, C.M. Growth performance, serum biochemistry and meat quality traits of Jumbo quails fed with mopane worm (Imbrasia belina) meal-containing diets. Vet. Anim. Sci. 2020, 10, 100141. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.A.; Hmar, L.; Devi, L.I.; Prava, M.; Lallianchhunga, M.C.; Tolenkhomba, T.C. Effect of age on the haematological and biochemical profile of Japanese quails (Coturnix coturnix japonica). Int. Multidiscip. Res. J. 2012, 2, 32–35. [Google Scholar]
- Mahlake, S.K.; Mnisi, C.M.; Lebopa, C.; Kumanda, C. The effect of green tea (Camellia sinensis) leaf powder on growth performance, selected hematological indices, carcass characteristics and meat quality parameters of Jumbo quail. Sustainability 2021, 13, 7080. [Google Scholar] [CrossRef]
- Arru, B.; Furesi, R.; Gasco, L.; Madau, F.A.; Pulina, P. The introduction of insect meal into fish diet: The first economic analysis on European sea bass farming. Sustainability 2019, 11, 1697. [Google Scholar] [CrossRef] [Green Version]
- Van Huis, A. Potential of insects as food and feed in assuring food security. Annu. Rev. Entomol. 2013, 58, 563–583. [Google Scholar] [CrossRef]
- Gahukar, R.T. Entomophagy and human food security. Int. J. Trop. Insect. Sci. 2011, 31, 129–144. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.V. The contribution of edible forest insects to human nutrition and to forest management: Current status and future potential. In Forest Insects as Food: Humans Bite Back, Proceedings of the a Workshop on Asia-Pacific Resources and Their Potential for Development, Chiang Mai, Thailand, 19–21 February 2008; Durst, P.B., Johnson, D.V., Leslie, R.N., Shono, K., Eds.; FAO Regional Office for Asia and the Pacific: Bangkok, Thailand, 2010; pp. 5–22. [Google Scholar]
- Xiaoming, C.; Ying, F.; Hong, Z. Review of the nutrition value of edible insects. In Forest Insects as Food: Humans Bite Back, Proceedings of the a Workshop on Asia-Pacific Resources and Their Potential for Development, Chiang Mai, Thailand, 19–21 February 2008; Durst, P.B., Johnson, D.V., Leslie, R.N., Shono, K., Eds.; FAO Regional Office for Asia and the Pacific: Bangkok, Thailand, 2010; pp. 85–92. [Google Scholar]
- Kwiri, R.; Winini, C.; Muredzi, P.; Tongonya, J.; Gwala, W.; Mujuru, F.; Gwala, S.T. Mopane worm (Gonimbrasia belina) utilisation, a potential source of protein in fortified blended foods in Zimbabwe. A review. Glob. J. Sci. Front. Res. 2014, 14, 55–67. [Google Scholar]
- Cassidy, E.S.; West, P.C.; Gerber, J.S.; Foley, J.A. Redefining agricultural yields: From tonnes to people nourished per hectare. Environ. Res. Lett. 2013, 8, 034015. [Google Scholar] [CrossRef]
- FAO. Edible Insects’ Future Prospects for Food and Feed Security; Forestry Paper 171; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; Volume IX, pp. 9–12. [Google Scholar]
- Sánchez-Muros, M.J.; Barroso, F.G.; Manzano-Agugliaro, F. Insect meal as renewable source of food for animal feeding: A review. J. Clean. Prod. 2014, 65, 16–27. [Google Scholar] [CrossRef]
- Bovera, F.; Loponte, R.; Marono, S.; Piccolo, G.; Parisi, G.; Iaconisi, V.; Gasco, L.; Nizza, A. Use of Tenebrio molitor larvae meal as protein source in broiler diet: Effect on growth performance, nutrient digestibility, and carcass and meat traits. J. Anim. Sci. 2016, 94, 639–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dabbou, S.; Gai, F.; Biasato, I.; Capucchio, M.T.; Biasibetti, E.; Dezzutto, D.; Meneguz, M.; Plachà, I.; Gasco, L.; Schiavone, A. Black soldier fly defatted meal as a dietary protein source for broiler chickens: Effects on growth performance, blood traits, gut morphology and histological features. J. Anim. Sci. Biotechnol. 2018, 9, 49. [Google Scholar] [CrossRef] [PubMed]
- Manyeula, F.; Tsopito, C.; Kamau, J.; Mogotsi, K.K.; Nsoso, S.J.; Moreki, J.C. Effect of Imbrasia belina (westwood), Tylosema esculentum (Burchell) Schreiber and Vigna subterranean (L.) Verde as protein sources on growth and laying performance of Tswana hens raised under intensive production system. Agric. Adv. 2013, 2, 1–8. [Google Scholar]
- Moyo, S.; Masika, P.J.; Muchenje, V.; Jaja, I.F. Effect of Imbrasia belina meal on growth performance, quality characteristics and sensory attributes of broiler chicken meat. Ital. J. Anim. Sci. 2020, 19, 1450–1461. [Google Scholar] [CrossRef]
- Karousa, M.M.; Souad, A.; Elaithy, S.M.; Eman, A.E. Effect of housing system and sex ratio of quails on egg production, fertility and hatchability. Benha. Vet. Medic. J. 2015, 28, 241–247. [Google Scholar]
- Musundire, M.T. Influence of Age and Sex on Carcass and Meat Quality Traits of Scavenging Guinea Fowls. Ph.D. Thesis, University of KwaZulu Natal, Pietermaritzburg, South Africa, 2016. [Google Scholar]
- Marangon, S.; Busani, L. The use of vaccination in poultry production. Revis. Sci. Technol. 2006, 26, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, S.D.; Ahmed, S.; Hamid, M.A. Improved feeding of chicken reared in confinement. Banglad. Vet. 2006, 23, 29–35. [Google Scholar]
- Awad, E.A.; Zulkifli, I.; Farjam, A.S.; Chwen, L.T.; Hossain, M.A.; Aljuobori, A. Effect of low-protein diet, gender and age on the apparent ileal amino acid digestibility in broiler chickens raised under hot-humid tropical condition. Indian J. Anim. Sci. 2016, 86, 696–701. [Google Scholar]
- National Research Council (NRC); Subcommittee on Poultry Nutrition. Nutrient requirements of Ring-Necked pheasants, Japanese quail, and Bobwhite quail. In Nutrient Requirements of Poultry, 9th ed.; The National Academies Press, National Academy of Sciences: Washington, DC, USA, 1994; pp. 44–45. [Google Scholar]
- Altine, S.; Sabo, M.N.; Muhammad, N.; Abubakar, A.; Saulawa, L.A. Basic nutrient requirements of the domestic quails under tropical conditions: A review. World Sci. News 2016, 49, 223–235. [Google Scholar]
- Rapatsa, M.M.; Moyo, N.A.G. Enzyme activity and histological analysis of Clarias gariepinus fed on Imbrasia belina meal used for partial replacement of fishmeal. Fish Physiol. Biochem. 2019, 45, 1309–1320. [Google Scholar] [CrossRef]
- Madibela, O.R.; Seitiso, T.K.; Thema, T.F.; Letso, M. Effect of traditional processing methods on chemical composition and in vitro true dry matter digestibility of Mophane worm (Imbrasia belina). J. Arid. Environ. 2007, 68, 492–500. [Google Scholar] [CrossRef]
- Timberlake, J.; Chidumayo, E. Miombo Ecoregion Vision Report; Occasional Publications in Biodiversity No. 20; Biodiversity Foundation for Africa: Bulawayo, Zimbabwe, 2010; pp. 2–77. [Google Scholar]
- Makhado, R.; Potgieter, M.; Timberlake, J.; Gumbo, D. A review of the significance of mopane products to rural people’s livelihoods in southern Africa. Trans. R. Soc. S. Afr. 2014, 69, 117–122. [Google Scholar] [CrossRef]
- Gondo, T.; Frost, P.; Kozanayi, W.; Stack, J.; Mushongahande, M. Linking knowledge and practice: Assessing options for sustainable use of mopane worms (Imbrasia belina) in southern Zimbabwe. J. Sustain. Dev. Afr. 2010, 12, 281–305. [Google Scholar]
- Dube, S.; Dube, C. Towards improved utilisation of macimbi Imbrasia belina Linnaeus, 1758 as food and financial resource for people in the Gwanda district of Zimbabwe. J. Sci. Technol. 2010, 5, 28–36. [Google Scholar]
- Thomas, B. Sustainable harvesting and trading of mopane worms (Imbrasia belina) in Northern Namibia: An experience from the Uukwaluudhi area. Int. J. Environ. Stud. 2013, 70, 494–502. [Google Scholar] [CrossRef]
- Van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Gahukar, R.T. Edible insects farming: Efficiency and impact on family livelihood, food security, and environment compared with livestock and crops. In Insects as Sustainable Food Ingredients; Academic Press: Cambridge, MA, USA, 2016; pp. 85–111. [Google Scholar]
- Rapatsa, M.M.; Moyo, N.A.G. Evaluation of Imbrasia belina meal as a fishmeal substitute in Oreochromis mossambicus diets: Growth performance, histological analysis and enzyme activity. Aquac. Rep. 2017, 5, 18–26. [Google Scholar] [CrossRef]
- Gardiner, A.J. Internal Final Report: Mopane Woodlands and the Mopane Worm: Enhancing Rural Livelihoods and Resource Sustainability, DFID Project No. R7822. The Domestication of Mopane Worms (Imbrasia belina); Veld Products Research and Development: Gaborone, Botswana, 2003. [Google Scholar]
- Hope, R.A.; Frost, P.G.H.; Gardiner, A.; Ghazoul, J. Experimental analysis of adoption of domestic mopane worm farming technology in Zimbabwe. Dev. S. Afr. 2009, 26, 29–46. [Google Scholar] [CrossRef]
- Mufandaedza, E.; Moyo, D.Z.; Makoni, P. Management of non-timber forest products harvesting: Rules and regulations governing (Imbrasia belina) access in the South-Eastern Lowveld of Zimbabwe. Afr. J. Agric. Res. 2015, 10, 1521–1530. [Google Scholar] [CrossRef] [Green Version]
- Akpalu, W.; Muchapondwa, E.; Zikhali, P. Can the Restrictive Harvest Period Policy Conserve Mopane Worms in Southern Africa? A Bio-Economic Modeling Approach. Working Paper. Number 65. University of Pretoria/University of Cape Town/Götenborg University, South Africa. 2007. Available online: https://efdinitiative.org/sites/default/files/wp65.pdf (accessed on 9 March 2022).
- Dobermann, D.; Swift, J.A.; Field, L.M. Opportunities and hurdles of edible insects for food and feed. Nutr. Bull. 2017, 42, 293–308. [Google Scholar] [CrossRef] [Green Version]
- Wessels, D.C.J.; Van der Waal, C.; de Boer, W.F. Induced chemical defences in Colophospermum mopane trees. Afr. J. Range Forage Sci. 2007, 24, 141–147. [Google Scholar] [CrossRef]
- Madibela, O.R.; Mokwena, K.K.; Nsoso, S.J.; Thema, T.F. Chemical composition of Mopane worm sampled at three sites in Botswana and subjected to different processing. Trop. Anim. Health Prod. 2009, 41, 935–942. [Google Scholar] [CrossRef] [PubMed]
- Lautenschläger, T.; Neinhuis, C.; Kikongo, E.; Henle, T.; Forster, A. Impact of different preparations on the nutritional value of the edible caterpillar Imbrasia epimethea from northern Angola. Eur. Food Res. Technol. 2017, 243, 769–778. [Google Scholar] [CrossRef]
- da Silva, J.B.; Carrão-Panizzi, M.C.; Prudâncio, S.H. Chemical and physical composition of grain-type and food-type soybean for food processing. Pesqui. Agropecu. Bras. 2009, 44, 777–784. [Google Scholar] [CrossRef]
- Gümüş, E. Fatty acid composition of fry mirror carp (Cyprinus carpio) fed graded levels of sand smelt (Atherina boyeri) meal. Asian-Australas. J. Anim. Sci. 2011, 24, 264–271. [Google Scholar] [CrossRef]
- Moreki, J.C.; Tiroesele, B.; Chiripasi, S.C. Prospects of utilizing insects as alternative sources of protein in poultry diets in Botswana: A review. J. Anim. Sci. Adv. 2012, 2, 649–658. [Google Scholar]
- Gilles, T. Fish Meal, Protein 65%. Available online: https://www.feedtables.com/content/fish-meal-protein-65 (accessed on 21 April 2022).
- Santos, L.V.; Robério, R.S.; Fabiano, F.S.; João, W.D.S.; Daniele, S.B.; Ana, P.G.S.; Sinvaldo, O.S.; Marceliana, C.S. Increasing levels of palm kernel cake (Elaeis guineensis Jacq.) in diets for feedlot cull cows. Chil. J. Agric. Res. 2019, 79, 628–635. [Google Scholar] [CrossRef] [Green Version]
- Simone, B.; Losasso, C.; Maggioletti, M.; Alonzi, C.C.; Paoletti, M.G.; Ricci, A. Edible insects in a food safety and nutritional perspective: A critical review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 296–313. [Google Scholar] [CrossRef]
- Kim, E.J. Amino Acid Digestibility of Various Feedstuffs Using Different Methods. Ph.D. Thesis, University of Illinois, Urbana, IL, USA, 2010. [Google Scholar]
- Mojeremane, W.; Lumbile, A.U. The characteristics and economic value of Colophospermum mopane (Kirk ex Benth.) J. Léonard in Botswana. Pak. J. Biol. Sci. 2005, 8, 781–784. [Google Scholar]
- Nobo, G.; Moreki, J.C.; Nsoso, S.J. Growth and carcass characteristics of helmeted guinea fowl (Numida meleagris) fed varying levels of Phane meal (Imbrasia belina) as replacement of fishmeal under intensive system. Int. J. Agro Vet. Med. Sci. 2012, 6, 296–306. [Google Scholar] [CrossRef] [Green Version]
- McDonald, P.; Edwards, R.A.; Greenhalgh, J.F.D.; Morgan, C.A. Animal Nutrition, 6th ed.; Pearson Education Limited: Harlow, UK, 2002. [Google Scholar]
- Lucas, L.T. The Evolution and Impacts of Mopane Worm Harvesting: Perceptions of Harvesting in Central Botswana. Master’s Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2010. [Google Scholar]
- Harlıoğlu, A.G. Effect of solvent extracted soybean meal and full-fat soya on the protein and amino acid digestibility and body amino acid composition in rainbow trout (Oncorhynchus mykiss). Iran. J. Fish. Sci. 2012, 11, 504–517. Available online: http://hdl.handle.net/1834/37298 (accessed on 10 March 2022).
- Henry, M.; Gasco, L.; Piccolo, G.; Fountoulaki, E. Review on the use of insects in the diet of farmed fish: Past and future. Anim. Feed Sci. Technol. 2015, 203, 1–22. [Google Scholar] [CrossRef]
- Stack, J.; Dorward, A.; Gondo, T.; Frost, P.; Taylor, F.; Kurebgaseka, N. Mopane worm utilisation and rural livelihoods in Southern Africa. In Proceedings of the International Conference on Rural Livelihoods, Forests and Biodiversity, Bonn, Germany, 19–23 May 2003. [Google Scholar]
- Hurrell, R.; Egli, I. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr. 2010, 91, 1461–1467. [Google Scholar] [CrossRef] [PubMed]
- Banaszkiewicz, T. Nutritional Value of Soybean Meal. Soybean and Nutrition; El-Shemy, H., Ed.; IntechOpen: London, UK, 2011. [Google Scholar] [CrossRef] [Green Version]
- Yeboah, S.O.; Mitei, Y.C. Further lipid profiling of the oil from the mophane caterpillar, Imbrasia belina. J. Am. Oil Chem. Soc. 2009, 86, 1047. [Google Scholar] [CrossRef]
- Emmanuel, D.C.; Oyeagu, C.E.; Ogwuegbu, M.C.; Ozochi, C.U.; Ezema, C.; Akuru, A.E.; Lewu, F.B. Egg lipid profile, growth traits, blood biomarkers and physical egg characteristics of heavy Ecotype laying hens fed Oregano (Origanum vulgare) meals. Int. J. Vet. Sci. 2022. [Google Scholar] [CrossRef]
- Maitane, I.; David, J.L.; Pablo, V.E. The effect of natural and synthetic fatty acids on membrane structure, microdomain organization, cellular functions and human health. Biochem. Biophys. Acta–Biomembr. 2014, 1838, 1518–1528. [Google Scholar] [CrossRef] [Green Version]
- Van Eys, J.E.; Offner, A.; Bach, A. Manual of Quality Analyses for Soybean Products in the Feed Industry; American Soybean Association: St. Louis, MO, USA, 2004. [Google Scholar]
- Romero-Bernal, J.; Almaraz, E.M.; Ortega, O.A.C.; Salas, N.P.; González-Ronquillo, M. Chemical composition and fatty acid profile in meat from grazing lamb diets supplemented with ryegrass hay, fishmeal and soybean meal as PUFA sources. Cienc. Rural 2017, 47, e20160533. [Google Scholar] [CrossRef] [Green Version]
- Barrows, F.T.; Bellis, D.; Krogdahl, Å.; Silverstein, J.T.; Herman, E.M.; Sealey, W.M.; Rust, M.B.; Gatlin, D.M. Report of the plant products in aquafeed strategic planning workshop: An integrated, interdisciplinary research roadmap for increasing utilisation of plants feedstuffs in diets for carnivorous fish. Rev. Fish. Sci. 2008, 16, 449–455. [Google Scholar] [CrossRef]
- Haryanto, A.; Miharja, K.; Wijayanti, N. Effects of banana peel meal on the feed conversion ratio and blood lipid profile of broiler chickens. Int. J. Poult. Sci. 2016, 15, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Oyeagu, C.E.; Mlambo, V.; Muchenje, V. Effect of dietary Aspergillus xylanase on nutrient digestibility and utilization, growth performance and size of internal organs in broiler chickens offered maize-soybean meal based-diet. Pak. J. Nutr. 2019, 18, 852–865. [Google Scholar] [CrossRef]
- Radulovic, S.; Pavlovic, M.; Sefer, D.; Katoch, S.; Hadzi-Mili, M.; Jovanovic, D.; Grdovic, S.; Markovic, R. Effects of housefly larvae (Musca domestica) dehydrated meal on production performances and sensory properties of broiler meat. Thai. J. Vet. Med. 2018, 48, 63–70. [Google Scholar]
- Pretorius, Q.; Pieterse, E. The Evaluation of Larvae of Musca domestica (Common House Fly) as Protein Source for Broiler Production. Ph.D. Thesis, University of Stellenbosch, Stellenbosch, South Africa, 2011. [Google Scholar]
- Hwangbo, J.; Hong, E.C.; Jang, A.; Kang, H.K.; Oh, J.S.; Kim, B.W.; Park, B.S. Utilisation of house fly-maggots as feed supplement in the production of broiler chickens. J. Environ. Biol. 2009, 30, 609–614. [Google Scholar] [PubMed]
- Schiavone, A.; Cullere, M.; De Marco, M. Partial or total replacement of soybean oil by black soldier fly larvae (Hermetia illucens L.) fat in broiler diets: Effect on growth performances, feed-choice, blood traits. Ital. J. Anim. Sci. 2017, 16, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Loponte, R.; Nizza, S.; Bovera, F.; De Riu, N.; Fliegerova, K.; Lombardi, P.; Vassalotti, G.; Mastellone, V.; Nizza, A.; Moniello, G. Growth performance, blood profiles and carcass traits of Barbary partridge (Alectoris barbara) fed two different insect larvae meals (Tenebrio molitor and Hermetia illucens). Res. Vet. Sci. 2017, 115, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Bahadori, Z.; Esmaielzadeh, L.; Karimi-Torshizi, M.A.; Seidavi, A.; Olivares, J.; Rojas, S.; Salem, A.Z.M.; Khusro, A.L.; Opez, S. The effect of earthworm (Eisenia foetida) meal with vermihumus on growth performance, hematology, immunity, intestinal microbiota, carcass characteristics, and meat quality of broiler chickens. Livest. Sci. 2017, 202, 74–81. [Google Scholar] [CrossRef]
- Veldkamp, T.; Duinkerken, G.; Van Huis, A.; Van Lakemond, C.; Ottevanger, E.; Bosch, G.; Boekel, M. Insects as a Sustainable Feed Ingredient in Pig and Poultry Diets—A Feasibility Study; Wageningen UR Livestock Research: Lelystad, The Netherland, 2012. [Google Scholar]
- Abdulla, R.N.; Mohd Zamri, A.N.; Sabow, A.B.; Kareem, K.Y.; Nurhazirah, S.; Ling, F.H.; Sazili, A.Q.; Loh, C. Physico-chemical properties of breast muscle in broiler chickens fed probiotics, antibiotics or antibiotic–probiotic mix. J. Appl. Anim. Res. 2017, 45, 64–70. [Google Scholar] [CrossRef]
- Lonergan, E.H.; Zhang, W.; Lonergan, S.M. Biochemistry of postmortem muscle—Lessons on mechanisms of meat tenderization. Meat Sci. 2010, 86, 184–195. [Google Scholar] [CrossRef]
- Gunya, B.; Muchenje, V.; Masika, P.J. The effect of earthworm Eisenia foetida meal as a protein source on carcass characteristics and physico-chemical attributes of broilers. Pak. J. Nutr. 2019, 18, 657–664. [Google Scholar] [CrossRef] [Green Version]
- Teye, G.A.; Baffoe, F.; Teye, M. Effects of Moringa (Moringa oleifera) leaf powder and dawadawa (Parkia biglobosa), on sensory characteristics and nutritional quality of frankfurtertype sausages—A preliminary study. Glob. Adv. Res. J. Agric. Sci. 2013, 2, 29–33. [Google Scholar]
- Muchenje, V.; Chimonyo, M.; Dzama, K.; Strydom, P.E.; Ndlovu, T.; Raats, J.G. Relationship between off-flavor descriptors and flavor scores in beef from cattle raised on natural pasture. J. Muscle Foods. 2010, 21, 424–432. [Google Scholar] [CrossRef]
- Moyo, S.; Masika, P.J.; Muchenje, V. The potential of Imbrasia belina worm as a poultry and fish feed. A review. J. Anim. Feed Sci. 2019, 28, 209–219. [Google Scholar] [CrossRef]
Nutrient | Starter and Grower | Breeder |
---|---|---|
Protein | 240 | 200 |
Lysine | 13.0 | 10.0 |
Histidine | 3.6 | 4.2 |
Glycine + serine | 11.5 | 11.7 |
Arginine | 12.5 | 12.6 |
Methionine | 5.0 | 4.5 |
Leucine | 16.9 | 14.2 |
Isoleucine | 9.8 | 9.0 |
Threonine | 10.2 | 7.4 |
Tryptophan | 2.2 | 1.9 |
Phenylalanine | 9.6 | 7.8 |
Phenylalanine + tyrosine | 18.0 | 14.0 |
Methionine + cysteine | 7.5 | 7.0 |
Valine | 9.5 | 9.2 |
Parameters | Mopane Meal | Reference | Fish Meal | Reference | Soybean Meal | Reference |
---|---|---|---|---|---|---|
Crude protein | 55–60 | b, c, e, f | 65.6 | d | 40.2–46.9 | a, d |
Ash | 6.8–10.5 | b, c, e, f | 17.0 | d | 6.14 | d |
NDF | 28.8 | a | 5.8 | g | 14.6 | d |
ADF | 17–59.4 | b, e, f | 0.5 | g | 9.6 | d |
ADL | 5.4 | b | 0.2 | g | 1.5 | h |
ADIN | 0.9 | b | 4.9 | g | 2.1 | h |
Fat | 13.9–16.8 | b, c, e, f | 13.0 | d | 18.3–21 | a, d |
Amino Acid | Mopane Meal | Reference | Fish Meal | Reference | Soybean Meal | Reference |
---|---|---|---|---|---|---|
Histidine | 1.9–3.5 | a, b, e | 1.6–4.3 | a, d | 1.5–1.9 | a, d |
Isoleucine | 2.6–3.5 | a, b, e | 2.6–2.7 | a, d | 2.2–2.6 | a, d |
Leucine | 3.8–7.6 | a, b, e | 4.7–8.4 | a, d | 3.49–3.5 | a, d |
Lysine | 3.8–4.9 | a, b, e | 5.0–11.1 | a, d | 2.9–3.1 | a, d |
Methionine | 1.6–2.4 | a, b, e | 1.6–2.5 | a, d | 0.7–0.9 | a, d |
Phenylalanine | 2.5–5.1 | a, b, e | 2.9–5.52 | a, d | 2.4–2.6 | a, d |
Threonine | 2.7–7.3 | a, b, e | 2.7–5.4 | a, d | 1.8–2.0 | a, d |
Tryptophan | 0.9–1.4 | a, c, e | 0.8–1.3 | a, d | 0.7–0.8 | a, d |
Valine | 3.2–4.1 | a, b, e | 3.22–3.1 | a, d | 2.3–2.4 | a, d |
Parameters | Mopane Meal | Reference | Fish Meal | Reference | Soybean Meal | Reference |
---|---|---|---|---|---|---|
Calcium | 0.8–17 | b, d, e | 3.8 | c | 3.14 | c |
Iron | 11.8–12.9 | b, d, e | 0.3 | c | 1.07 | f |
Magnesium | 4.3–56 | b, d, e | 0.0 | c | 2.81 | c |
Phosphorus | 0.46–14.8 | b, d, e | 2.7 | c | 6.59 | c |
Potassium | 1.2–36.3 | b, d, e | 0.6 | c | 19.78 | c |
Sodium | 26.9–33.5 | b, d, e | 0.9 | c | 0.19–0.5 | a, c |
Zinc | 1.9–2.3 | b, d, e | 0.0 | c | 0.12 | f |
Fatty Acids | Mopane Meal | Reference | Fish Meal | Reference | Soybean Meal | Reference |
---|---|---|---|---|---|---|
Lauric acid (C12:0) | 0.3 | c | 0.2–0.40 | b, d | 0.2 | d |
Myristic acid (C14:0) | 0.2 | c | 2.7–4.7 | b, d | 0.2–3.4 | a, b, d |
Palmitic acid (C16:0) | 5.3 | c | 2.3–27.5 | b, d | 12.4–27.3 | a, b, d |
Stearic acid (C18:0) | 1.8 | c | 21.9–7.3 | b, d | 3.7–21.2 | a, b, d |
Arachidic acid (C20:0) | 0.1 | c | 0.2 | d | 0.05 | a |
Palmitelaidic acid (C16:1) | 0.1 | c | 0.42 | b | 0.02 | d |
α-Linolenic acid (C18:2n6c) | 1.5 | c | 1.4 | d | 0.7–2.2 | a, b |
Linoleic acid (C18:2) | 1.7 | c | 2.58 | d | 1.6–11.7 | a, b, d |
Oleic acid (C18:1n9c) | 1.8 | c | 45.01 | d | 45.5 | d |
SFA | 48 | c | 40.2–52.5 | b, d | 4.2–53.1 | a, b, d |
MUFA | 1.8 | c | 18.6–45.0 | b, d | 8.5–45.5 | a, b, d |
PUFA | 55 | c | 39.2 | b | 27.8–46.4 | a, b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mnisi, C.M.; Oyeagu, C.E.; Ruzvidzo, O. Mopane Worm (Gonimbrasia belina Westwood) Meal as a Potential Protein Source for Sustainable Quail Production: A Review. Sustainability 2022, 14, 5511. https://doi.org/10.3390/su14095511
Mnisi CM, Oyeagu CE, Ruzvidzo O. Mopane Worm (Gonimbrasia belina Westwood) Meal as a Potential Protein Source for Sustainable Quail Production: A Review. Sustainability. 2022; 14(9):5511. https://doi.org/10.3390/su14095511
Chicago/Turabian StyleMnisi, Caven Mguvane, Chika Ethelbert Oyeagu, and Oziniel Ruzvidzo. 2022. "Mopane Worm (Gonimbrasia belina Westwood) Meal as a Potential Protein Source for Sustainable Quail Production: A Review" Sustainability 14, no. 9: 5511. https://doi.org/10.3390/su14095511