Association of Physical Activity and Sedentary Behaviors with the Risk of Refractive Error in Chinese Urban/Rural Boys and Girls
Abstract
:1. Introduction
Research Gaps and Objectives
2. Materials and Methods
2.1. Participants
2.2. PA and SED Survey
- In the last seven days, how many of these four activities (LPA, MPA, VPA, outdoor activity) did you do? What is the average number of minutes per day for each?
- In the last seven days, how many hours (outside of class time) did you spend on the following activities (watching television/using electronic devices) on average per day?
- In the last seven days, how many classes did you have on average per day in the classroom?
2.3. Eye Measurements
2.4. Statistical Analysis
3. Results
3.1. Descriptive Characteristics of Participants
3.2. The Association of PA/SED with Spherical Power and Cylinder Power
3.3. The Association between PA, SED, Myopia, and Astigmatism
4. Discussion
4.1. Strengths and Limitations
4.2. Practical Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. World Report on Vision. Volume 214. 2019. Available online: https://apps.who.int/iris/bitstream/handle/10665/328717/9789240008564-chi.pdf (accessed on 19 February 2022).
- Rayapoullé, A.; Gronfier, C.; Forhan, A.; Heude, B.; Charles, M.-A.; Plancoulaine, S. Longitudinal association between sleep features and refractive errors in preschoolers from the EDEN birth-cohort. Sci. Rep. 2021, 11, 9044. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-M.; Kang, M.-T.; Wang, N.-L.; Abariga, S.A. Wavefront excimer laser refractive surgery for adults with refractive errors. Cochrane Database Syst. Rev. 2020, 12, CD012687. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, Y.; Musch, D.C.; Wei, N.; Qi, X.; Ding, G.; Li, X.; Li, J.; Song, L.; Zhang, Y.; et al. Progression of Myopia in School-Aged Children After COVID-19 Home Confinement. JAMA Ophthalmol. 2021, 139, 293. [Google Scholar] [CrossRef]
- Stambolian, D.; Wojciechowski, R.; Oexle, K.; Pirastu, M.; Li, X.; Raffel, L.J.; Cotch, M.F.; Chew, E.Y.; Klein, B.; Klein, R.; et al. Meta-analysis of genome-wide association studies in five cohorts reveals common variants in RBFOX1, a regulator of tissue-specific splicing, associated with refractive error. Hum. Mol. Genet. 2013, 22, 2754–2764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Z.; Wang, X.; Zhao, X.; Li, D.; Duan, J. The effectiveness and safety of acupuncture for patients with myopia: A protocol for a systematic review and meta-analysis. Medicine 2020, 99, e20410. [Google Scholar] [CrossRef]
- Baldivia, S.; Levy, A.; Hegde, S.; Aper, S.J.A.; Merkx, M.M.; Grytz, R. A Novel Organ Culture Model to Quantify Collagen Remodeling in Tree Shrew Sclera. PLoS ONE 2016, 11, e0166644. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Banerjee, S.; So, C.; Qiu, C.; Sze, Y.; Lam, T.C.; To, C.-H.; Pan, F. The Effect of Low-Dose Atropine on Alpha Ganglion Cell Signaling in the Mouse Retina. Front. Cell. Neurosci. 2021, 15, 664491. [Google Scholar] [CrossRef]
- Łazarczyk, J.B.; Urban, B.; Konarzewska, B.; Szulc, A.; Bakunowicz-Łazarczyk, A.; Żmudzka, E.; Kowzan, U.; Waszkiewicz, N.; Juszczyk-Zajkowska, K. The differences in level of trait anxiety among girls and boys aged 13–17 years with myopia and emmetropia. BMC Ophthalmol. 2016, 16, 201. [Google Scholar] [CrossRef] [Green Version]
- Wu, A.; Gao, F.; Zhang, L.; Liu, Y.; Zhao, J.; Xu, Q. Vision and refraction and their associates among primary school students in Zhoushan city, 2019: A cross-sectional survey. Chin. J. Public Health 2021, 37, 792–796. (In Chinese) [Google Scholar]
- Xu, F.; Lou, X.; Wu, C.; Zhang, Y.; Wang, X.; Guo, W.; Gao, G. Prevalence of the poor vision among primary and secondary school students in Henan Province and analysis of the related factors. Chin. J. Dis. Control Prev. 2017, 21, 879–883,887. (In Chinese) [Google Scholar]
- Aleman, A.C.; Wang, M.; Schaeffel, F. Reading and Myopia: Contrast Polarity Matters. Sci. Rep. 2018, 8, 10840. [Google Scholar] [CrossRef]
- Ip, J.M.; Saw, S.-M.; Rose, K.A.; Morgan, I.G.; Kifley, A.; Wang, J.J.; Mitchell, P. Role of Near Work in Myopia: Findings in a Sample of Australian School Children. Investig. Ophthalmol. Vis. Sci. 2008, 49, 2903–2910. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.-H.; Liu, Y.-L.; Ma, I.-H.; Su, C.-C.; Lin, C.-W.; Lin, L.L.-K.; Hsiao, C.K.; Wang, I.-J. Evolution of the Prevalence of Myopia among Taiwanese Schoolchildren. Ophthalmology 2021, 128, 290–301. [Google Scholar] [CrossRef] [PubMed]
- Harrington, S.C.; Stack, J.; O’Dwyer, V. Risk factors associated with myopia in schoolchildren in Ireland. Br. J. Ophthalmol. 2019, 103, 1803–1809. [Google Scholar] [CrossRef]
- Chen, D.; Luo, Q.; Wu, Y.; Wang, Y.; Xiong, H.; Zhou, L. Influence of physical activity on eyesight among middle school students in Shenzhen. Chin. J. Sch. Health 2015, 36, 693–695. (In Chinese) [Google Scholar]
- Xiong, S.; Sankaridurg, P.; Naduvilath, T.; Zang, J.; Zou, H.; Zhu, J.; Lv, M.; He, X.; Xu, X. Time spent in outdoor activities in relation to myopia prevention and control: A meta-analysis and systematic review. Acta Ophthalmol. 2017, 95, 551–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Deng, G. Protective effects of increased outdoor time against myopia: A review. J. Int. Med. Res. 2019, 48, 0300060519893866. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.-X.; Hua, W.-J.; Jiang, X.; Wu, X.-Y.; Yang, J.-W.; Gao, G.-P.; Fang, Y.; Pei, C.-L.; Wang, S.; Zhang, J.-Z.; et al. Effect of outdoor activity on myopia onset and progression in school-aged children in northeast China: The Sujiatun Eye Care Study. BMC Ophthalmol. 2015, 15, 73. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Peregrina, C.; Sánchez-Tena, M.; Martinez-Perez, C.; Villa-Collar, C. The Relationship Between Screen and Outdoor Time with Rates of Myopia in Spanish Children. Front. Public Health 2020, 8, 560378. [Google Scholar] [CrossRef]
- Harb, E.N.; Wildsoet, C.F. Origins of Refractive Errors: Environmental and Genetic Factors. Annu. Rev. Vis. Sci. 2019, 5, 47–72. [Google Scholar] [CrossRef]
- Wu, P.-L.; Lee, C.-Y.; Cheng, H.-C.; Lin, H.-Y.; Lai, L.-J.; Wu, W.-C.; Chen, H.-C. Correction of Myopic Astigmatism with Topography-Guided Laser In Situ Keratomileusis (TOPOLINK). Healthcare 2020, 8, 477. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Maguire, M.G.; Ciner, E.; Kulp, M.; Cyert, L.A.; Quinn, G.E.; Orel-Bixler, D.; Moore, B.; Ying, G.-S. Risk Factors for Astigmatism in the Vision in Preschoolers Study. Optom. Vis. Sci. 2014, 91, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Saw, S.-M.; Carkeet, A.; Chan, W.-Y.; Wu, H.-M.; Tan, A.D. Prevalence Rates and Epidemiological Risk Factors for Astigmatism in Singapore School Children. Optom. Vis. Sci. 2002, 79, 606–613. [Google Scholar] [CrossRef]
- Wang, Z.; Tong, H.; Hao, Q.; Chen, X.; Zhu, H.; Huang, D.; Li, R.; Hu, Z.; Liu, H. Risk factors for astigmatic components and internal compensation: The Nanjing Eye Study. Eye 2020, 35, 499–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Tang, Y.; Chen, P.; Zhu, Z.; Cao, Z.; Zhang, J.; Liu, Y.; Zhuang, J. Construction of Evaluation Index System of Physical Activity and Fitness of Youth. China Sport Sci. Technol. 2019, 55, 29–36. (In Chinese) [Google Scholar]
- Holton, V.; Hinterlong, J.E.; Tsai, C.-Y.; Tsai, J.-C.; Wu, J.S.; Liou, Y.M. A Nationwide Study of Myopia in Taiwanese School Children: Family, Activity, and School-Related Factors. J. Sch. Nurs. 2019, 37, 117–127. [Google Scholar] [CrossRef]
- Sheeladevi, S.; Seelam, B.; Nukella, P.B.; Modi, A.; Ali, R.; Keay, L. Prevalence of refractive errors in children in India: A systematic review. Clin. Exp. Optom. 2018, 101, 495–503. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Cao, Z.-B. Physical activity among Chinese school-aged children: National prevalence estimates from the 2016 Physical Activity and Fitness in China—The Youth Study. J. Sport Health Sci. 2017, 6, 388–394. [Google Scholar] [CrossRef]
- Amiri, P.; Naseri, P.; Vahedi-Notash, G.; Jalali-Farahani, S.; Mehrabi, Y.; Hamzavi-Zarghani, N.; Azizi, F.; Hadaegh, F.; Khalili, D. Trends of low physical activity among Iranian adolescents across urban and rural areas during 2006–2011. Sci. Rep. 2020, 10, 21318. [Google Scholar] [CrossRef]
- Matz, C.J.; Stieb, D.M.; Brion, O. Urban-rural differences in daily time-activity patterns, occupational activity and housing characteristics. Environ. Health 2015, 14, 88. [Google Scholar] [CrossRef] [Green Version]
- Klinker, C.D.C.; Schipperijn, J.J.; Kerr, J.J.; Ersbã¸ll, A.K.; Troelsen, J.; Ersbøll, A.K. Context-Specific Outdoor Time and Physical Activity among School-Children Across Gender and Age: Using Accelerometers and GPS to Advance Methods. Front. Public Health 2014, 2, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, M.; Xiang, F.; Zeng, Y.; Mai, J.; Chen, Q.; Zhang, J.; Smith, W.W.; Rose, K.; Morgan, I.G. Effect of Time Spent Outdoors at School on the Development of Myopia among Children in China: A Randomized Clinical Trial. JAMA 2015, 314, 1142–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, L.; Zhang, Z. Pattern of myopia progression in Chinese medical students: A two-year follow-up study. Graefes Arch. Clin. Exp. Ophthalmol. 2012, 251, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.L.; Yang, J.; Mai, J.; Du, X.X.; Guo, Y.Y.; Li, P.P.; Yue, Y.Y.; Tang, D.D.; Lu, C.C.; Zhang, W.-H. Prevalence and associated factors of myopia among primary and middle school-aged students: A school-based study in Guangzhou. Eye 2016, 30, 796–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, D.; Lin, H.; Li, C.; Liu, L.; Xiao, H.; Lin, Y.; Huang, X.; Chen, Y. Longitudinal association between myopia and parental myopia and outdoor time among students in Wenzhou: A 2.5-year longitudinal cohort study. BMC Ophthalmol. 2021, 21, 11. [Google Scholar] [CrossRef]
- Sun, J.T.; An, M.; Yan, X.B.; Li, G.H.; Wang, D.B. Prevalence and Related Factors for Myopia in School-Aged Children in Qingdao. J. Ophthalmol. 2018, 2018, 9781987. [Google Scholar] [CrossRef]
- O’Donoghue, L.; Kapetanankis, V.V.; McClelland, J.F.; Logan, N.S.; Owen, C.; Saunders, K.; Rudnicka, A. Risk Factors for Childhood Myopia: Findings From the NICER Study. Investig. Ophtalmol. Vis. Sci. 2015, 56, 1524–1530. [Google Scholar] [CrossRef]
- Hansen, M.H.; Laigaard, P.P.; Olsen, E.M.; Skovgaard, A.M.; Larsen, M.; Kessel, L.; Munch, I.C. Low physical activity and higher use of screen devices are associated with myopia at the age of 16–17 years in the CCC2000 Eye Study. Acta Ophthalmol. 2019, 98, 315–321. [Google Scholar] [CrossRef]
- Nebbioso, M.; Plateroti, A.M.; Pucci, B.; Pescosolido, N. Role of the Dopaminergic System in the Development of Myopia in Children and Adolescents. J. Child Neurol. 2014, 29, 1739–1746. [Google Scholar] [CrossRef]
- Scheiman, M.; Zhang, Q.; Gwiazda, J.; Hyman, L.; Harb, E.; Weissberg, E.; Weise, K.K.; Dias, L.; The COMET Study Group. Visual activity and its association with myopia stabilisation. Ophthalmic Physiol. Opt. 2013, 34, 353–361. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Xu, J.; Lu, Y.; Feng, L. Research Progress on Myopia Prevention and Control by Promoting Outdoor Activity and Physical Exercise in Children and Adolescents. China Sport Sci. Technol. 2019, 55, 3–13. (In Chinese) [Google Scholar]
- Alvarez-Peregrina, C.C.; Sanchez-Tena, M.A.M.A.; Martinez-Perez, C.C.; Villa-Collar, C.C. Prevalence and Risk Factors of Myopia in Spain. J. Ophthalmol. 2019, 2019, 3419576. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, B.; Sun, Y.; Chen, Q.; Dang, J. Adolescent Vision Health During the Outbreak of COVID-19: Association Between Digital Screen Use and Myopia Progression. Front. Pediatr. 2021, 9, 662984. [Google Scholar] [CrossRef]
- Yang, G.-Y.; Huang, L.-H.; Schmid, K.L.; Li, C.-G.; Chen, J.-Y.; He, G.-H.; Liu, L.; Ruan, Z.-L.; Chen, W.-Q. Associations Between Screen Exposure in Early Life and Myopia amongst Chinese Preschoolers. Int. J. Environ. Res. Public Health 2020, 17, 1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saxena, R.; Vashist, P.; Tandon, R.; Pandey, R.M.; Bhardawaj, A.; Gupta, V.; Menon, V. Incidence and progression of myopia and associated factors in urban school children in Delhi: The North India Myopia Study (NIM Study). PLoS ONE 2017, 12, e0189774. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Ye, S.; Xi, W.; Zhang, X. Electronic devices and myopic refraction among children aged 6–14 years in urban areas of Tianjin, China. Ophthalmic Physiol. Opt. 2019, 39, 282–293. [Google Scholar] [CrossRef]
- Lin, Z.; Vasudevan, B.; Jhanji, V.; Mao, G.Y.; Gao, T.Y.; Wang, F.H.; Rong, S.S.; Ciuffreda, K.J.; Liang, Y.B. Near Work, Outdoor Activity, and their Association with Refractive Error. Optom. Vis. Sci. 2014, 91, 376–382. [Google Scholar] [CrossRef]
- Gwiazda, J.; Norton, T.T.; Hou, W.; Hyman, L.; Manny, R.; COMET Group. Longitudinal Changes in Lens Thickness in Myopic Children Enrolled in the Correction of Myopia Evaluation Trial (COMET). Curr. Eye Res. 2015, 41, 492–500. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.-J.; Wang, Y.; You, Q.S.; Duan, J.-L.; Luo, Y.-X.; Liu, L.-J.; Li, X.; Gao, Q.; Zhu, H.-P.; He, Y.; et al. Risk Factors of Myopic Shift among Primary School Children in Beijing, China: A Prospective Study. Int. J. Med. Sci. 2015, 12, 633–638. [Google Scholar] [CrossRef] [Green Version]
- Yotsukura, E.; Torii, H.; Inokuchi, M.; Tokumura, M.; Uchino, M.; Nakamura, K.; Hyodo, M.; Mori, K.; Jiang, X.; Ikeda, S.-I.; et al. Current Prevalence of Myopia and Association of Myopia with Environmental Factors Among Schoolchildren in Japan. JAMA Ophthalmol. 2019, 137, 1233–1239. [Google Scholar] [CrossRef]
Total (n = 8506) | Urban Boys (n = 2198) | Urban Girls (n = 2095) | Rural Boys (n = 2092) | Rural Girls (n = 2121) | p | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
LPA (min/day) | 37.48 | 40.63 | 39.12 | 45.91 | 35.74 | 35.69 | 37.62 | 37.98 | 37.34 | 41.85 | 0.058 |
MPA (min/day) | 24.30 | 30.42 | 25.90 | 38.86 | 21.51 | 29.19 | 25.71 | 24.64 | 24.00 | 26.35 | <0.001 ** |
VPA (min/day) | 17.82 | 24.37 | 21.93 | 28.77 | 15.20 | 24.72 | 19.66 | 24.23 | 14.35 | 17.42 | <0.001 ** |
Outdoor activity (min/day) | 48.17 | 54.88 | 50.44 | 57.21 | 43.09 | 50.43 | 52.34 | 56.33 | 46.72 | 54.76 | <0.001 ** |
SED (h/day) | 4.23 | 2.78 | 4.61 | 2.86 | 5.04 | 2.87 | 3.41 | 2.55 | 3.86 | 2.54 | <0.001 ** |
Digital screen time (h/day) | 3.77 | 3.45 | 3.31 | 3.06 | 2.90 | 2.76 | 4.69 | 3.97 | 4.20 | 3.62 | <0.001 ** |
Spherical power (right) (D) | −2.00 | 2.23 | −2.10 | 2.29 | −2.30 | 2.29 | −1.68 | 2.13 | −1.93 | 2.17 | <0.001 ** |
Spherical power (left) (D) | −1.68 | 2.25 | −1.75 | 2.30 | −1.94 | 2.35 | −1.42 | 2.17 | −1.63 | 2.17 | <0.001 ** |
Cylinder power (right) (D) | −0.57 | 0.61 | −0.71 | 0.80 | −0.60 | 0.68 | −0.56 | 0.69 | −0.66 | 0.71 | <0.001 ** |
Cylinder power (left) (D) | −0.72 | 0.73 | −0.87 | 0.83 | −0.76 | 0.74 | −0.66 | 0.71 | −0.57 | 0.61 | <0.001 ** |
Spherical Power (Right) (n = 7989 b) | Spherical Power (Left) (n = 7989 b) | Cylinder Power (Right) | Cylinder Power (Left) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B | SE | p | B | SE | p | B | SE | p | B | SE | p | |
LPA (h/day) | 0.038 | 0.033 | 0.239 | 0.027 | 0.034 | 0.415 | 0.030 | 0.011 | 0.005 ** | 0.027 | 0.012 | 0.019 * |
MPA (h/day) | 0.052 | 0.044 | 0.243 | 0.044 | 0.046 | 0.337 | 0.040 | 0.015 | 0.007 ** | 0.051 | 0.016 | 0.001 ** |
VPA (h/day) | 0.050 | 0.056 | 0.368 | 0.034 | 0.057 | 0.556 | 0.043 | 0.018 | 0.020 * | 0.045 | 0.019 | 0.021 * |
Outdoor activity (h/day) | 0.035 | 0.025 | 0.153 | 0.031 | 0.025 | 0.221 | 0.014 | 0.008 | 0.085 | 0.009 | 0.009 | 0.274 |
SED (h/day) | −0.038 | 0.008 | <0.001 ** | −0.039 | 0.008 | <0.001 ** | −0.013 | 0.003 | <0.001 ** | −0.017 | 0.003 | <0.001 ** |
Digital screen time (h/day) | 0.023 | 0.007 | <0.001 ** | 0.025 | 0.007 | <0.001 ** | <0.001 | 0.002 | 0.830 | −0.001 | 0.002 | 0.771 |
Myopia (Yes or No) | Astigmatism (Yes or No) | |||||
---|---|---|---|---|---|---|
O.R. | 95% C.I. | p | O.R. | 95% C.I. | p | |
LPA (h/day) | 0.926 | 0.852–1.006 | 0.068 | 0.885 | 0.810–0.967 | 0.007 ** |
MPA (h/day) | 0.845 | 0.765–0.932 | <0.001 ** | 0.806 | 0.703–0.922 | 0.002 ** |
VPA (h/day) | 0.821 | 0.719–0.938 | 0.004 ** | 0.750 | 0.644–0.873 | <0.001 ** |
Outdoor activity/h | 0.950 | 0.893–1.011 | 0.104 | 0.999 | 0.998–1.000 | 0.108 |
SED (h/day) | 1.050 | 1.024–1.076 | <0.001 ** | 1.050 | 1.030–1.070 | <0.001 ** |
Digital screen time (h/day) | 1.001 | 0.984–1.018 | 0.915 | 0.989 | 0.973–1.006 | 0.197 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, W.; Zhang, L.; Zhang, L.; Qiu, L.; Guo, J.; Li, Z.; Sun, Y. Association of Physical Activity and Sedentary Behaviors with the Risk of Refractive Error in Chinese Urban/Rural Boys and Girls. Sustainability 2022, 14, 5539. https://doi.org/10.3390/su14095539
Zhu W, Zhang L, Zhang L, Qiu L, Guo J, Li Z, Sun Y. Association of Physical Activity and Sedentary Behaviors with the Risk of Refractive Error in Chinese Urban/Rural Boys and Girls. Sustainability. 2022; 14(9):5539. https://doi.org/10.3390/su14095539
Chicago/Turabian StyleZhu, Wenfei, Longhai Zhang, Ling Zhang, Longkun Qiu, Jiawei Guo, Zheng’ao Li, and Yuliang Sun. 2022. "Association of Physical Activity and Sedentary Behaviors with the Risk of Refractive Error in Chinese Urban/Rural Boys and Girls" Sustainability 14, no. 9: 5539. https://doi.org/10.3390/su14095539
APA StyleZhu, W., Zhang, L., Zhang, L., Qiu, L., Guo, J., Li, Z., & Sun, Y. (2022). Association of Physical Activity and Sedentary Behaviors with the Risk of Refractive Error in Chinese Urban/Rural Boys and Girls. Sustainability, 14(9), 5539. https://doi.org/10.3390/su14095539