Methodology for Determining Sustainable Water Consumption Indicators for Buildings
Abstract
:1. Introduction
2. Literature Review
2.1. Importance of Water Management
2.2. The Use of Digital Technologies in Water Management
2.3. BIM–IoT Integration in Facility Management (FM)
2.4. Sustainable FM
2.5. Shewhart Control Charts
2.6. Corelated Works
3. Research Methodology
3.1. Rigor Cycle
3.1.1. Activity Categorization (I)
3.1.2. Data Capture (II)
3.1.3. Shewhart Chart (III)
3.1.4. Sustainable Water Consumption Indicators (IV)
- High-consumption range—values above the UCL indicated excessive water consumption.
- Standard-consumption range—values between the UCL and the LCL indicated consumption within the standard range.
- Atypical-consumption range—values below the LCL indicated unexpectedly low consumption, which should be analyzed (e.g., closed store).
3.1.5. Water Management Functionalities (V)
3.2. Design Cycle
4. Contributions of the Methodology Embedded in AquaBIM for Sustainable Management
4.1. Determination of Sustainable Water Consumption Indicators
4.2. Identification of Temporal Patterns of Consumption
4.3. AQUA-HQE Sustainability Certification
4.4. Interactive Management of Building Facilities with BIM
4.5. Management Reports
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguyen, K.A.; Stewart, R.A.; Zhang, H.; Sahin, O. An adaptive model for the autonomous monitoring and management of water end use. Smart Water 2018, 3, 2–21. [Google Scholar] [CrossRef] [Green Version]
- Maqsoom, A.; Aslam, B.; Ismail, S.; Thaheem, M.J.; Ullah, F.; Zahoor, H.; Musarat, M.A.; Vatin, N.I. Assessing Rainwater Harvesting Potential in Urban Areas: A Building Information Modelling (BIM) Approach. Sustainability 2021, 13, 12583. [Google Scholar] [CrossRef]
- McDaniel, R.D.; O’Donnell, F.C. Assessment of Hydrologic Alteration Metrics for Detecting Urbanization Impacts. Water 2019, 11, 1017. [Google Scholar] [CrossRef] [Green Version]
- Brears, R.C. Introduction. In Urban Water Security; Wiley Online Books: New York, NY, USA, 2017; pp. 1–4. [Google Scholar]
- Rogers, B.C.; Dunn, G.; Hammer, K.; Novalia, W.; de Haan, F.J.; Brown, L.; Brown, R.R.; Lloyd, S.; Urich, C.; Wong, T.H.F.; et al. Water Sensitive Cities Index: A diagnostic tool to assess water sensitivity and guide management actions. Water Res. 2020, 186, 116411. [Google Scholar] [CrossRef] [PubMed]
- Khatri, K.B.; Vairavamoorthy, K. Challenges for Urban Water Supply and Sanitation in the Developing Countries’; UNESCO-IHE Institute for Water Education: Delft, The Netherlands, 2007. [Google Scholar]
- Rabaey, K.; Vandekerckhove, T.; Van de Walle, A.; Sedlak, D.L. The third route: Using extreme decentralization to create resilient urban water systems. Water Res. 2020, 185, 116276. [Google Scholar] [CrossRef]
- Bröchner, J.; Haugen, T.; Lindkvist, C. Shaping tomorrow’s facilities management. Facilities 2018, 37, 366–380. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, S.B.; Sarasoj, A.; Galamba, K.R. Sustainability in facilities management: An overview of current research. Facilities 2016, 34, 535–563. [Google Scholar] [CrossRef] [Green Version]
- Becerik-Gerber, B.; Jazizadeh, F.; Li, N.; Calis, G. Application areas and data requirements for BIM-enabled facilities management. J. Constr. Eng. Manag. 2012, 138, 431–442. [Google Scholar] [CrossRef]
- Nika, C.; Vasilakia, V.; Expósitob, A.; Katsou, E. Water Cycle and Circular Economy: Developing a Circularity Assessment Framework for Complex Water Systems. Water Res. 2020, 187, 116423. [Google Scholar] [CrossRef]
- Šulyová, D.; Vodák, J.; Kubina, M. Effective Management of Scarce Water Resources: From Antiquity to Today and into the Future. Water 2021, 13, 2734. [Google Scholar] [CrossRef]
- Brears, R.C. Demand Management to Achieve Urban Water Security, Urban Water Security; John Wiley & Sons: New York, NY, USA, 2017; pp. 60–85. [Google Scholar]
- Antzoulatos, G.; Mourtzios, C.; Stournara, P.; Kouloglou, I.O.; Papadimitriou, N.; Spyrou, D.; Mentes, A.; Nikolaidis, E.; Karakostas, A.; Kourtesis, D.; et al. Making urban water smart: The SMART-WATER solution. Water Sci. Technol. 2020, 82, 2691–2710. [Google Scholar] [CrossRef] [PubMed]
- Willuweit, L.; O’Sullivan, J.J. A decision support tool for sustainable planning of urban water systems: Presenting the dynamic urban water simulation model. Water Res. 2013, 47, 7206–7220. [Google Scholar] [CrossRef] [PubMed]
- Flores, R.A.; Enedir Ghisi, E. Water Benchmarking in Buildings: A Systematic Review on Methods and Benchmarks for Water Conservation. Water Benchmarking in Buildings: A Systematic Review on Methods and Benchmarks for Water Conservation. Water 2022, 14, 473. [Google Scholar] [CrossRef]
- Worthington, A. Commercial and industrial water demand estimation: Theoretical and methodological guidelines for applied economics research. Estud. Econ. Apl. 2010, 28, 237–258. [Google Scholar]
- Tabassum, R.; Arsalan, M.; Imam, N. Estimation of water demand for commercial units in Karachi City. FRJ 2016, 2, 21–26. [Google Scholar]
- Eggimann, S.; Mutzner, L.; Wani, O.; Schneider, M.Y.; Spuhler, D.; de Moy Vitry, M.; Beutler, P.; Maurer, M. The potential of knowing more: A review of data-driven urban water management. Environ. Sci. Tec. 2017, 51, 2538–2553. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.; Olsson, G.; Cardell-Oliver, R.; van Schagen, K.; Marchi, A.; Deletic, A.; Urich, C.; Rauch, W.; Liu, Y.; Jiang, G. The role of instrumentation, control and automation in urban water systems. Water Res. 2019, 155, 381–402. [Google Scholar] [CrossRef]
- Hering, G.; Waite, T.D.; Luthy, R.G.; Drewes, J.; Sedlak, D.L. A changing framework for urban water systems. Environ. Sci. Tec. 2013, 47, 10721–10726. [Google Scholar] [CrossRef]
- Cominola, A.; Giuliani, M.; Piga, D.; Castelletti, A.; Rizzoli, A.E. Benefits and challenges of using smart meters for ad-vancing residential water demand modeling and management: A review. Environ. Model. Softw. 2015, 72, 198–214. [Google Scholar] [CrossRef] [Green Version]
- Gourmelon, N.; Bayer, S.; Mayle, M.; Bach, G.; Bebber, C.; Munck, C.; Sosna, C.; Maier, A. Implications of Experiment Set-Ups for Residential Water End-Use Classification. Water 2021, 13, 236. [Google Scholar] [CrossRef]
- Stewart, R.A.; Nguyen, K.; Beal, C.; Zhang, H.; Sahin, O.; Bertone, E.; Vieira, A.S.; Castelletti, A.; Cominola, A.; Giuliani, M.; et al. Integrated intelligent water-energy metering systems and informatics: Visioning a digital multi-utility service provider. Environ. Model. Softw. 2018, 105, 94–117. [Google Scholar] [CrossRef]
- Boyle, T.; Giurco, D.; Mukheibir, P.; Liu, A.; Moy, C.; White, S.; Stewart, R. Intelligent metering for urban water: A review. Water 2013, 3, 1052–1081. [Google Scholar] [CrossRef] [Green Version]
- Willis, R.M.; Stewart, R.A.; Giurco, D.P.; Talebpour, M.R.; Mousavinejad, A. End use water consumption in households: Impact of socio-demographic factors and efficient devices. J. Clean. Prod. 2013, 60, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.; Mukheibir, P. Digital metering feedback and changes in water consumption—A review. Resour. Conserv. Recycl. 2018, 134, 136–148. [Google Scholar] [CrossRef]
- Pärn, E.A.; Edwards, D.J.; Sing, M.C.P. The building information modelling trajectory in facilities management: A review. Autom. Constr. 2017, 75, 45–55. [Google Scholar] [CrossRef] [Green Version]
- ISO 41011; Facility Management—Vocabulary. ISO: Geneva, Switzerland, 2017.
- Chotipanich, S. Positioning facility management. Facilities 2004, 22, 364–372. [Google Scholar] [CrossRef]
- ISO 41001; Facility Management–Management Systems–Requirements with Guidance for Use. ISO: Geneva, Switzerland, 2018.
- Bilal, M.; Oyedele, L.O.; Qadir, J.; Munir, K.; Ajayi, S.O.; Akinade, O.; Owolabi, H.A.; Alaka, H.A.; Pasha, M. Big Data in the construction industry: A review of present status, opportunities, and future trends. Adv. Eng. Inform. 2016, 30, 500–521. [Google Scholar] [CrossRef]
- Eastman, C.; Teicholz, P.; Sacks, R.; Liston, K. BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Succar, B. Building information modelling framework: A research and delivery foundation for industry stakeholders. Autom. Constr. 2009, 18, 357–375. [Google Scholar] [CrossRef]
- Gao, X.; Pishdad-Bozorgi, P. BIM-enabled facilities operation and maintenance: A review. Adv. Eng. Inform. 2019, 39, 227–247. [Google Scholar] [CrossRef]
- Gürsel, I. CLIP—Computational Support for Lifecycle Integral Building Performance Assessment. Ph.D. Thesis, Faculty of Archi-tecture, Delft University of Technology, Delft, The Netherlands, 2010. [Google Scholar]
- Zhan, J.; Ge, X.J.; Huang, S.; Zhao, L.; Wong, J.K.W.; He, S.X. Improvement of the inspection-repair process with building information modelling and image classification. Facilities 2019, 37, 395–414. [Google Scholar] [CrossRef] [Green Version]
- Dixit, M.K.; Venkatraj, V.; Ostadalimakhmalbaf, M.; Pariafsai, F.; Lavy, S. Integration of facility management and building information modeling (BIM) A review of key issues and challenge. Facilities 2019, 7, 455–483. [Google Scholar] [CrossRef]
- Kelly, G.; Serginson, M.; Lockley, S.; Dawood, N.; Kassem, M. BIM for facility management: A review and a case study inves-tigating the value and challenges. In Proceedings of the 13th International Conference on Construction Applications of Virtual Reality, London, UK, 30–31 October 2013. [Google Scholar]
- Wong, J.K.W.; Ge, J.; He, S.X. Digitisation in facilities management: A literature review and future research directions. Autom. Constr. 2018, 92, 312–326. [Google Scholar] [CrossRef]
- Tang, S.; Shelden, D.S.; Charles, M.; Eastman, C.M.; Pishdad-Bozorgi, P.; Gao, P. review of building information modeling (BIM) and the internet of things (IoT) devices integration: Present status and future trends. Autom. Constr. 2019, 101, 127–139. [Google Scholar] [CrossRef]
- Kochovski, P.; Stankovski, V. Supporting smart construction with dependable edge computing infrastructures and applications. Autom Constr. 2018, 85, 182–192. [Google Scholar] [CrossRef]
- Windapo, A.O.; Moghayedi, A. Adoption of smart technologies and circular economy performance of buildings. Built Environ. Proj. Asset Manag. 2020, 10, 585–601. [Google Scholar] [CrossRef]
- Geng, Y.; Ji, W.; Wang, Z.; Lin, B.; Zhu, Y. A review of operating performance in green buildings: Energy use, indoor environmental quality and occupant satisfaction. Energy Build. 2018, 183, 500–514. [Google Scholar] [CrossRef]
- Azhar, S.; Khalfan, M.; Maqsood, T. Building information modelling (BIM): Now and beyond. Constr. Econ. Build. 2015, 12, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Hunhevicz, J.J.; Motie, M.; Daniel, M.; Hall, D.M. Digital building twins and blockchain for performance-based (smart) contracts. Autom. Constr. 2022, 133, 103981. [Google Scholar] [CrossRef]
- Chew, M.Y.L.; Conejos, S.; Asmone, A.S. Developing a research framework for the green maintainability of building. Facilities 2017, 39–63. [Google Scholar] [CrossRef]
- Santos, R.; Costab, A.A.; Silvestreb, J.D.; Pyla, L. Informetric analysis and review of literature on the role of BIM in sustainable construction. Autom. Constr. 2019, 103, 221–234. [Google Scholar] [CrossRef]
- Li, Y.; Kubicki, S.; Guerriero, A.; Rezgui, Y. Review of building energy performance certification schemes towards future improvement. Renew. Sust. Energy Rev. 2019, 113, 109244. [Google Scholar] [CrossRef]
- Abdelalim, A.; O’Brien, W.; Shi, Z. Data visualization and analysis of energy flow on a multi-zone building scale. Autom. Constr. 2017, 84, 258–273. [Google Scholar] [CrossRef]
- Opoku, A.; Lee, J.Y. The Future of Facilities Management: Managing Facilities for Sustainable Development. Sustainability 2022, 14, 1705. [Google Scholar] [CrossRef]
- Roper, K.O.; Beard, J.L. Justifying sustainable buildings—Championing green operations. J. Corp. Real Estate 2006, 8, 91–103. [Google Scholar] [CrossRef]
- Elmualim, A.A.; Czwakiel, A.; Valle, C.R.; Ludlow, G.; Shah, S. Barriers for implementing sustainable facilities management. In Proceedings of the World Sustainable Building Conference, Melbourne, Australia, 21–25 September 2008. [Google Scholar]
- Aaltonen, A.; Määttänen, E.; Kyrö, R.; Sarasoja, A.-L. Facilities management driving green building certification: A case from Finland. Facilities 2013, 31, 328–342. [Google Scholar] [CrossRef]
- Montgomery, D. Introdução ao Controle Estatístico da Qualidade, Translated by Ana Maria de Farias, Vera Regina de Farias e Flores. In Original Title Introduction to Statistical Quality Control, 4th ed.; LTC: Rio de Janeiro, Brazil, 2012; p. 513. [Google Scholar]
- Qiu, P. Introduction to Statistical Process Control; Texts in Statistical Science Series; Chapman and Hall/CRC: New York, NY, USA, 2013; p. 520. [Google Scholar]
- MacCarthy, B.; Wasusri, T. A review of non-standard applications of statistical process control (SPC) charts. Int. J. Qual. Reliab. Manag. 2002, 19, 295–320. [Google Scholar] [CrossRef]
- Durmusoglu, A. Updating technology forecasting models using statistical control charts. Kybernetes 2017, 47, 672–688. [Google Scholar] [CrossRef]
- Elevli, S.; Uzgören, N.; Bingöl, D.; Elevli, B. Drinking water quality control: Control charts for turbidity and pH. J. Water, Sanit. Hyg. Dev. 2016, 6, 511–518. [Google Scholar] [CrossRef]
- Iglesias, C.; Sancho, J.; Piñeiro, J.; Martínez, J.; Pastor, J.; Taboada, J. Shewhart-type control charts and functional data analysis for water quality analysis based on a global indicator. Desalination Water Treat. 2015, 57, 1–16. [Google Scholar] [CrossRef]
- Paroissin, C.; Penalva, L.; Pétrau, A.; Verdier, G. New control chart for monitoring and classification of environmental data. Environmetrics 2016, 27, 182–193. [Google Scholar] [CrossRef]
- Da Conceição, K.Z.; Vilas Boas, M.A.; Sampaio, S.C.; Remor, M.B.; Bonaparte, D.I. Statistical control of the process applied to the monitoring of the water quality index. Eng. Agrícola 2018, 38, 951–960. [Google Scholar] [CrossRef] [Green Version]
- Romano, M.; Woodward, K.; Kapelan, Z. Statistical Process Control Based System for Approximate Location of Pipe Bursts and Leaks in Water Distribution Systems. Procedia Eng. 2017, 186, 236–243. [Google Scholar] [CrossRef]
- Freitas, L.L.G.; Henning, E.; Kalbusch, A.; Konrath, A.C.; Walter, O.M.F.C. Analysis of water consumption in toilets employing Shewhart, EWMA, and Shewhart-EWMA combined control charts. J. Clean. Prod. 2019, 233, 1146–1157. [Google Scholar] [CrossRef]
- Hörisch, J.; Ortas, E.; Schaltegger, S.; Álvarez, I. Environmetal effects of sustainability management tools: A empirical analysis of large companies. Ecol. Econ. 2015, 120, 241–249. [Google Scholar] [CrossRef]
- Lu, Z.; Broesicke, O.A.; Chang, M.E.; Yan, J.; Xu, M.; Derrible, S.; Mihelcic, J.R.; Schwegler, B.R.; Crittenden, J.C. Seven Approaches to Manage Complex Coupled Human and Natural Systems: A Sustainability Toolbox. Environ. Sci. Technol. 2019, 53, 9341–9351. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Corry, E.; Curry, E.; Turner, W.J.N.; O’Donnell, J. Building performance optimisation: A hybrid architecture for the integration of contextual information and time-series data. Autom. Constr. 2016, 70, 51–61. [Google Scholar] [CrossRef]
- Bonci, A.; Carbonari, A.; Cucchiarelli, A.; Messi, L.; Pirani, M.; Vaccarini, M. A cyber-physical system approach for building efficiency monitoring. Autom. Constr. 2019, 102, 68–85. [Google Scholar] [CrossRef]
- Tagliabue, L.C.; Cecconi, F.R.C.; Maltese, S.; Rinaldi, S.; Ciribini, A.L.C.; Flammini, A. Leveraging Digital Twin for Sustainability Assessment of an Educational Building. Sustainability 2021, 13, 480. [Google Scholar] [CrossRef]
- Braga, L.; Braga, A.; Braga, C. On the characterization and monitoring of building energy demand using statistical process control methodologies. Energy Build. 2013, 65, 205–219. [Google Scholar] [CrossRef]
- Wieringa, R. Design science as nested problem solving. In Proceedings of the 4th International Conference on Design Science Research in Information Systems and Technology, DESRIST 09, Kristiansand, Norway, 4–6 August 2021; pp. 1–12. [Google Scholar]
- Hevner, A.R. A Three Cycle View of Design Science Research. Scand. J. Inf. Syst. 2007, 19, 87–92. [Google Scholar]
- About SQLite. Available online: https://www.sqlite.org/about.html (accessed on 18 June 2020).
- Walpole, R.E.; Myers, R.H.; Myers, S.L.; Ye, K. Probabilidade e Estatística Para Engenharia e Ciências. Original Title: Probability & Statisties for Engineers & Scientists; Pearson Prentice Hall: São Paulo, Brazil, 2009. [Google Scholar]
- What Is R? Available online: https://www.r-project.org/about.html (accessed on 20 June 2020).
- The Popularity of Data Science Software. R4stats. Available online: http://r4stats.com/articles/popularity/ (accessed on 23 November 2019).
- Yan, H.; Yang, N.; Peng, Y.; Ren, Y. Data mining in the construction industry: Present status, opportunities, and future trends. Autom. Constr. 2020, 119, 103331. [Google Scholar] [CrossRef]
- Scrucca, L. qcc: An R package for quality control charting and statistical process control. R News 2004, 1, 11–17. [Google Scholar]
- HQE. Guia prático AQUA-HQE™ Edifícios em Operação Gestão Sustentável Referencial Técnico—Gestão Sustentável, Brasil. Available online: https://vanzolini.org.br/aqua/certificacao-aqua-hqe/ (accessed on 24 March 2022).
Type of Function (Analysis) | Type of Function (Analysis) | Water Management Tools | Graphic Presentation |
---|---|---|---|
For individual stores | Current (in the month) | For the accumulated in the month | Chart |
Historic | For evolution in a quarter | Chart | |
On a global scale of the building (by activity category) | Current (in the month) | For the accumulated in the month | Chart |
Historic | For the month | Chart | |
By activity category | Current (on the day) | For the current day | Chart |
Current (in the month) | For the accumulated in the month | Chart | |
Historic (set day) | To date set | Chart | |
Historic (month defined) | For chosen month | Chart | |
Reports | Yearly | Global consumption | Chart |
Yearly | Consumption by categories | Chart | |
Yearly | Consumption analysis | Spreadsheet | |
Yearly | Consumption analysis | Spreadsheet |
Activity Categories | Description |
---|---|
Bars | Retail business establishment that serves alcoholic beverages (beer, cocktails), soft drinks, and snack foods |
Hair Salon/Barber shop | Hair salon or barber shop |
Craft | Craft shop |
Dairy | Dairy stores (Milk products, especially handmade regional cheeses) |
Dried foods | Assorted food store (Chocolate, flour, cookies, nuts, etc.) |
Drinks | Bottled industrialized beverages shop (cachaças) |
Flower shop | Flower shop |
Groceries | Retail shop that primarily sells food, either fresh or preserved and assorted non-food products |
Herbs | Medicinal herb shop |
Horticulture | Fresh fruits and vegetables shop |
Houseware | Housewares shop (Small household items such as kitchen utensils, tableware, and decorative objects) |
Industrialized | Assorted manufactured products (cleaning products, packaging, religious articles...) |
Pets | Pet shops |
Meat market | Meat, poultry, fish |
Restaurants | Small restaurants and snack bars |
Spices | Spice shop (Cinnamon, paprika, oregano, chili, etc.) |
Supplements | Nutritional supplements shop |
Activity Categories | Sustainable Water Consumption Indicator (L/m2/Month) |
---|---|
Bars | 1402 |
Hair salon/ Barber shop | 239 |
Craft | 41 |
Dairy | 553 |
Dried foods | 182 |
Drinks | 114 |
Flower shop | 183 |
Grocery | 154 |
Herbs | 148 |
Horticulture | 758 |
Houseware | 84 |
Industrialized | 50 |
Pets | 437 |
Meat Market | 1027 |
Restaurants | 1261 |
Spices | 256 |
Supplements | 94 |
Atypical | Standard | High | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Category | UCL 1 (L/m2) | Consumption (L/m2) | Consumption (L) | IGC 2 % | SWI 3 (L/m2) | Consumption (L/m2) | Consumption (L) | IGC 2 (%) | LCL 4 (L/m2) | Consumption (L/m2) | Consumption (L) | IGC 2 (%) |
Bars | ≤774 | 696,051 | 818,203 | 3.4 | 1402 | 1206 | 1911,091 | 7.9 | ≥2031 | 3178 | 1,070,870 | 4.4 |
Hair salon/ Barber shop | 0 | 301,888 | 0 | 0.0 | 239 | 198 | 212,995 | 0.9 | ≥554 | 456 | 32,857 | 0.1 |
Craf | ≤22 | 32,857 | 22,199 | 0.1 | 41 | 38 | 35,662 | 0.1 | ≥59 | 229 | 696,051 | 2.9 |
Dairy | ≤402 | 1,560,970 | 693,786 | 2.9 | 553 | 537 | 891,276 | 3.7 | ≥704 | 922 | 1,587,188 | 6.5 |
Dried foods | ≤54 | 590,979 | 65,812 | 0.3 | 182 | 134 | 310,071 | 1.3 | ≥310 | 577 | 590,979 | 2.4 |
Drinks | 0 | 1,587,188 | 0 | 0.0 | 114 | 62 | 120,390 | 0.5 | ≥274 | 518 | 99,508 | 0.4 |
Flora | ≤10 | 51,015 | 0 | 0.0 | 183 | 217 | 249,590 | 1.0 | ≥355 | 167 | 51,015 | 0.2 |
Groceries | ≤59 | 122,101 | 92,397 | 0.4 | 154 | 147 | 548,756 | 2.3 | ≥250 | 438 | 258,273 | 1.1 |
Herbs | ≤17 | 99,508 | 2232 | 0.0 | 148 | 76 | 189,595 | 0.8 | ≥278 | 435 | 158,517 | 0.7 |
Horticulture | 0 | 258,273 | 0 | 0.0 | 758 | 201 | 474,270 | 2.0 | ≥1552 | 3025 | 1,560,970 | 6.4 |
Houseware | 0 | 130,286 | 0 | 0.0 | 84 | 34 | 122,642 | 0.5 | ≥175 | 423 | 124,679 | 0.5 |
Industrial | ≤23 | 158,517 | 54,433 | 0.2 | 50 | 42 | 92,892 | 0.4 | ≥78 | 133 | 111,354 | 0.5 |
Meat market | ≤183 | 1,912,922 | 38,933 | 0.2 | 1027 | 785 | 2,665,867 | 11.0 | ≥1871 | 2748 | 1,912,922 | 79 |
Pets | ≤124 | 1,070,870 | 23,381 | 0.1 | 437 | 365 | 562,490 | 2.3 | ≥751 | 994 | 301,888 | 1.2 |
Restaurants | ≤661 | 111,354 | 401,005 | 1.7 | 1261 | 1252 | 1,723,739 | 7.1 | ≥1860 | 2177 | 2,398,461 | 9.9 |
Spices | 0 | 0 | 0 | 0.0 | 256 | 150 | 333,622 | 1.4 | ≥550 | 0 | 0 | 0.0 |
Suplements | 0 | 2,398,461 | 0 | 0.0 | 94 | 34 | 125,247 | 0.5 | ≥187 | 350 | 130,286 | 0.5 |
Global consumption | - | - | 2.212.381 | 9.11 | - | 5479.9 | 10.570.195 | 43.5 | - | - | 11,085,818 | 45.6 |
Number of Stores | ULC 1 (L) | HCR 2 (L) | Excessive Cons (L) | Cost ($) | IGC3 (%) | |
---|---|---|---|---|---|---|
Bars | 4 | 21,715 | 696,051 | 522,414 | $2.899 | 2.15 |
Hair salon/Barber shop | 2 | 20,595 | 301,888 | 64,572 | $752 | 0.27 |
Craf | 14 | 2556 | 32,857 | 2941 | $6.067 | 0.01 |
Dairy | 3 | 75,192 | 1,560,970 | 780,314 | $4.430 | 3.21 |
Dried foods | 1 | 33,486 | 590,979 | 256,179 | $531 | 1.05 |
Drinks | 3 | 106,488 | 1,587,188 | 377,012 | $766 | 1.55 |
Flora | 0 | 3520 | 51,015 | 15,160 | $244 | 0.06 |
Groceries | 2 | 6089 | 122,101 | 72,529 | $7.250 | 0.30 |
Herbs | 4 | 5347 | 99,508 | 46,900 | $9.076 | 0.19 |
Horticulture | 6 | 13,221 | 258,273 | 116,523 | $431 | 0.48 |
Houseware | 12 | 6506 | 130,286 | 57,917 | $4.361 | 0.24 |
Industrialized | 4 | 10,004 | 158,517 | 57,881 | $1.328 | 0.24 |
Meat market | 5 | 120,711 | 1,912,922 | 610,706 | $3.950 | 2.51 |
Pets | 1 | 65,956 | 1,070,870 | 386,423 | $34 | 1.59 |
Restaurants | 2 | 5652 | 111,354 | 41,756 | $692 | 0.17 |
Spices | 0 | 0 | 0 | 0 | $0 | 0.00 |
Suplements | 3 | 178,155 | 2,398,461 | 346,881 | $891 | 1.43 |
Total | - | - | 11,083,240.0 | 3,756,107.9 | 43,700.5 | 15.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batista, L.T.; Franco, J.R.Q.; Fakury, R.H.; Porto, M.F.; Braga, C.M.P. Methodology for Determining Sustainable Water Consumption Indicators for Buildings. Sustainability 2022, 14, 5695. https://doi.org/10.3390/su14095695
Batista LT, Franco JRQ, Fakury RH, Porto MF, Braga CMP. Methodology for Determining Sustainable Water Consumption Indicators for Buildings. Sustainability. 2022; 14(9):5695. https://doi.org/10.3390/su14095695
Chicago/Turabian StyleBatista, Luciana Teixeira, José Ricardo Queiroz Franco, Ricardo Hall Fakury, Marcelo Franco Porto, and Carmela Maria Polito Braga. 2022. "Methodology for Determining Sustainable Water Consumption Indicators for Buildings" Sustainability 14, no. 9: 5695. https://doi.org/10.3390/su14095695
APA StyleBatista, L. T., Franco, J. R. Q., Fakury, R. H., Porto, M. F., & Braga, C. M. P. (2022). Methodology for Determining Sustainable Water Consumption Indicators for Buildings. Sustainability, 14(9), 5695. https://doi.org/10.3390/su14095695