Grapevine Resistant Cultivars: A Story Review and the Importance on the Related Wine Consumption Inclination
Abstract
:1. Introduction
2. Vitis Vinifera: The Story of Actual Diseases
3. Driving towards a New Viticulture
Genetic and Breeding to Improve Cultivars
4. The Wine Industry and the New Cultivars
5. Consumers Attitude Importance in Wine Consumption and Proposed Pilot Study
5.1. Pilot Study
5.1.1. Materials and Methods
5.1.2. Results and Discussion of the Pilot Study
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haseeb, S.; Alexander, B.; Baranchuk, A.; Electrophysiology, C. Wine and cardiovascular health: A comprehensive review. Am. Heart Assoc. 2017, 136, 1434–1448. [Google Scholar] [CrossRef] [PubMed]
- Mian, G.; Belfiore, N.; Musetti, R.; Tomasi, D.; Cantone, P.; Lovat, L.; Lupinelli, S.; Iacumin, L.; Celotti, E.; Golinelli, F. Effect of a triacontanol-rich biostimulant on the ripening dynamic and wine must technological parameters in Vitis vinifera cv. ‘Ribolla Gialla’. Plant Physiol. Biochem. 2022, 188, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Fiore, M.; Alaimo, L.S.; Chkhartishvil, N. The amazing bond among wine consumption, health and hedonistic well-being. Br. Food J. 2020, 122, 2707–2723. [Google Scholar] [CrossRef]
- Tomasi, D.; Lonardi, A.; Boscaro, D.; Nardi, T.; Marangon, C.M.; De Rosso, M.; Flamini, R.; Lovat, L.; Mian, G. Effects of Traditional and Modern Post-Harvest Withering Processes on the Composition of the Vitis v. Corvina Grape and the Sensory Profile of Amarone Wines. Molecules 2021, 26, 5198. [Google Scholar] [CrossRef]
- Töpfer, R.; Trapp, O. A cool climate perspective on grapevine breeding: Climate change and sustainability are driving forces for changing varieties in a traditional market. Theor. Appl. Genet. 2022, 135, 3947–3960. [Google Scholar] [CrossRef]
- OIV—OIV 2019 Report on the World Vitivinicultural Situation. Available online: https://www.oiv.int/en/oiv-life/oiv-2019-report-on-the-world-vitivinicultural-situation (accessed on 24 April 2021).
- Pivetta, D.; Rech, S.; Lazzaretto, A. Choice of the Optimal Design and Operation of Multi-Energy Conversion Systems in a Prosecco Wine Cellar. Energies 2020, 13, 6252. [Google Scholar] [CrossRef]
- Tomasi, D.; Marcuzzo, P.; Nardi, T.; Lonardi, A.; Lovat, L.; Flamini, R.; Mian, G. Influence of Soil Chemical Features on Aromatic Profile of V. vinifera cv. Corvina Grapes and Wines: A Study-Case in Valpolicella Area (Italy) in a Calcareous and Non-Calcareous Soil. Agriculture 2022, 12, 1980. [Google Scholar] [CrossRef]
- Magris, G.; Jurman, I.; Fornasiero, A.; Paparelli, E.; Schwope, R.; Marroni, F.; Di Gaspero, G.; Morgante, M. The genomes of 204 Vitis vinifera accessions reveal the origin of European wine grapes. Nat. Commun. 2021, 12, 1–12. [Google Scholar] [CrossRef]
- Feechan, A.; Anderson, C.; Torregrosa, L.; Jermakow, A.; Mestre, P.; Wiedemann-Merdinoglu, S.; Merdinoglu, D.; Walker, A.R.; Cadle-Davidson, L.; Reisch, B.; et al. Genetic dissection of a TIR-NB-LRR locus from the wild North American grapevine species Muscadinia rotundifolia identifies paralogous genes conferring resistance. Wiley Online Libr. 2013, 76, 661–674. [Google Scholar] [CrossRef]
- Mian, G.; Cipriani, G.; Saro, S.; Martini, M.; Ermacora, P. Evaluation of germplasm resources for resistance to kiwifruit vine decline syndrome (KVDS). Acta Hortic. 2022, 125–130. [Google Scholar] [CrossRef]
- Tomasi, D.; Gaiotti, F.; Petoumenou, D.; Lovat, L.; Belfiore, N.; Boscaro, D.; Mian, G. Winter Pruning: Effect on Root Density, Root Distribution and Root/Canopy Ratio in Vitis vinifera cv. Pinot Gris. Agronomy 2020, 10, 1509. [Google Scholar] [CrossRef]
- Pauquet, J.; Bouquet, A.; This, P.; Adam-Blondon, A.F. Establishment of a local map of AFLP markers around the powdery mildew resistance gene Run1 in grapevine and assessment of their usefulness for marker assisted selection. Theor. Appl. Genet. 2001, 103, 1201–1210. [Google Scholar] [CrossRef]
- Mian, G.; Cantone, P.; Golinelli, F. First evidence of the effect of a new biostimulant made by Fabaceae tissue on ripening dynamics and must technological main parameters in Vitis vinifera ‘Ribolla Gialla.’. Acta Hortic. 2022, 1333, 317–322. [Google Scholar] [CrossRef]
- Graniti, A.; Mugnai, L.; Surico, G. Esca of Grapevine: A Disease Complez or a Complex of Diseases. Esca Grapevine 2000, 1000–1005. [Google Scholar]
- Hallenn, F.; Crous, P.W. A review of black foot disease of grapevine. A Rev. Black Foot Dis. Grapevine 2006, 1000–1013. [Google Scholar]
- Ripamonti, M.; Cerone, L.; Abbà, S.; Rossi, M.; Ottati, S.; Palmano, S.; Marzachì, C.; Galetto, L. Silencing of ATP Synthase β Impairs Egg Development in the Leafhopper Scaphoideus titanus, Vector of the Phytoplasma Associated with Grapevine Flavescence Dorée. Int. J. Mol. Sci. 2022, 23, 765. [Google Scholar] [CrossRef]
- Bernardini, C.; Santi, S.; Mian, G.; Levy, A.; Buoso, S.; Suh, J.H.; Wang, Y.; Vincent, C.; van Bel, A.J.E.; Musetti, R. Increased susceptibility to Chrysanthemum Yellows phytoplasma infection in Atcals7ko plants is accompanied by enhanced expression of carbohydrate transporters. Planta 2022, 256, 43. [Google Scholar] [CrossRef]
- Eurostat. The Use of Plant Protection Products in the European Union; Eurostat: Luxembourg, 1992. [Google Scholar]
- Gisi, U.; Waldner, M.; Kraus, N.; Dubuis, P.H.; Sierotzki, H. Inheritance of resistance to carboxylic acid amide (CAA) fungicides in Plasmopara viticola. Plant Pathol. 2007, 56, 199–208. [Google Scholar] [CrossRef]
- Mian, G.; Celotti, E.; Falginella, L.; de Cantão, F.R.O.; Belfiore, N. Effect of manure application timing on roots, canopy and must quality in Vitis vinifera “Merlot”: A case study in Italy, North-East. VITIS J. Grapevine Res. 2022, 61, 87–92. [Google Scholar] [CrossRef]
- Montaigne, E.; Coelho, A.; Zadmehran, S. A Comprehensive Economic Examination and Prospects on Innovation in New Grapevine Varieties Dealing with Global Warming and Fungal Diseases. Sustainability 2021, 13, 13254. [Google Scholar] [CrossRef]
- Occupational Health Risks of Wine Industry Workers | British Columbia Medical Journal. Available online: https://bcmj.org/articles/occupational-health-risks-wine-industry-workers (accessed on 19 June 2022).
- Vezzulli, S.; Dolzani, C.; Migliaro, D.; Banchi, E.; Stedile, T.; Zatelli, A.; Dallaserra, M.; Clementi, S.; Dorigatti, C.; Velasco, R.; et al. The Fondazione Edmund Mach grapevine breeding program for downy and powdery mildew resistances: Toward a green viticulture. Acta Hortic. 2019, 1248, 109–114. [Google Scholar] [CrossRef]
- Falginella, L.; Gaiotti, F.; Belfiore, N.; Mian, G.; Lovat, L.; Tomasi, D. Effect of early cane pruning on yield components, grape composition, carbohydrates storage and phenology in Vitis vinifera L. cv. Merlot. OENO One 2022, 56, 19–28. [Google Scholar] [CrossRef]
- Khan, M.M.; Akram, M.T.; Qadri, R.W.K.; Al-Yahyai, R. Role of grapevine rootstocks in mitigating environmental stresses: A review. J. Agric. Mar. Sci. 2020, 25, 1–12. [Google Scholar] [CrossRef]
- Mian, G.; Cipriani, G.; Saro, S.; Martini, M.; Ermacora, P. Potential of Different Actinidia Genotypes as Resistant Rootstocks for Preventing Kiwifruit Vine Decline Syndrome. Horticulturae 2022, 8, 627. [Google Scholar] [CrossRef]
- Eibach, R.; Töpfer, R. 1—Traditional grapevine breeding techniques. In Grapevine Breeding Programs for the Wine Industry; Reynolds, A., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Oxford, UK, 2015; pp. 3–22. ISBN 978-1-78242-075-0. [Google Scholar]
- Bellin, D.; Peressotti, E.; Merdinoglu, D.; Wiedemann-Merdinoglu, S.; Adam-Blondon, A.-F.; Cipriani, G.; Morgante, M.; Testolin, R.; Di Gaspero, G. Resistance to Plasmopara viticola in grapevine ‘Bianca’ is controlled by a major dominant gene causing localised necrosis at the infection site. Theor. Appl. Genet. 2009, 120, 163–176. [Google Scholar] [CrossRef] [Green Version]
- Poltronieri, P.; Marrazzo, M.T.; Cipriani, G. Grapevine: Resistance genes, sRNAs and immunity. In Applied Plant Biotechnology for Improving Resistance to Biotic Stress; Elsevier: Amsterdam, The Netherlands, 2020; pp. 151–179. [Google Scholar]
- Flor, A.H. Host-parasite interactions in flax rust-its genetics and other implications. Phytopathology 1955, 45, 680–685. [Google Scholar]
- Di Gaspero, G.; Cipriani, G.; Marrazzo, M.T.; Andreetta, D.; Castro, M.J.P.; Peterlunger, E.; Testolin, R. Isolation of (AC)n-microsatellites in Vitis vinifera L. and analysis of genetic background in grapevines under marker assisted selection. Mol. Breed. 2005, 15, 11–20. [Google Scholar] [CrossRef]
- Barker, C.L.; Donald, T.; Pauquet, J.; Ratnaparkhe, M.B.; Bouquet, A.; Adam-Blondon, A.-F.; Thomas, M.R.; Dry, I. Genetic and physical mapping of the grapevine powdery mildew resistance gene, Run1, using a bacterial artificial chromosome library. Theor. Appl. Genet. 2005, 111, 370–377. [Google Scholar] [CrossRef]
- Schwander, F.; Eibach, R.; Fechter, I.; Hausmann, L.; Zyprian, E.; Töpfer, R. Rpv10: A new locus from the Asian Vitis gene pool for pyramiding downy mildew resistance loci in grapevine. Theor. Appl. Genet. 2012, 124, 163–176. [Google Scholar] [CrossRef]
- Possamai, T.; Migliaro, D.; Gardiman, M.; Velasco, R.; De Nardi, B. Rpv Mediated Defense Responses in Grapevine Offspring Resistant to Plasmopara viticola. Plants 2020, 9, 781. [Google Scholar] [CrossRef]
- Yepuri, V.; Jalali, S.; Mudunuri, V.; Pothakani, S.; Kancharla, N.; Arockiasamy, S. Genotyping by sequencing-based linkage map construction and identification of quantitative trait loci for yield-related traits and oil content in Jatropha (Jatropha curcas L.). Mol. Biol. Rep. 2022, 49, 4293–4306. [Google Scholar] [CrossRef] [PubMed]
- Foria, S.; Monte, C.; Testolin, R.; Di Gaspero, G.; Cipriani, G. Pyramidizing resistance genes in grape: A breeding program for the selection of elite cultivars. Acta Hortic. 2019, 1248, 549–554. [Google Scholar] [CrossRef]
- Mundt, C.C. Pyramiding for Resistance Durability: Theory and Practice. Phytopathology 2018, 108, 792–802. [Google Scholar] [CrossRef]
- Schneider, C.; Onimus, C.; Prado, E.; Dumas, V.; Wiedemann-Merdinoglu, S.; Dorne, M.A.; Lacombe, M.C.; Piron, M.C.; Umar-Faruk, A.; Duchêne, E.; et al. INRA-ResDur: The French grapevine breeding programme for durable resistance to downy and powdery mildew. Acta Hortic. 2019, 1248, 207–214. [Google Scholar] [CrossRef]
- Son, S.; Park, S.R. Challenges Facing CRISPR/Cas9-Based Genome Editing in Plants. Front. Plant Sci. 2022, 13, 902413. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, V.M.G.; Brambilla, V.; Rogowsky, P.; Marocco, A.; Lanubile, A. The Enhancement of Plant Disease Resistance Using CRISPR/Cas9 Technology. Front. Plant Sci. 2018, 9, 1245. [Google Scholar] [CrossRef]
- Wasan, P. Sustainable Technology in Hospitality Industry. In Managing Sustainability in the Hospitality and Tourism Industry Paradigms and Directions for the Future; Jauhari, V., Ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 101–135. ISBN 978-1-4822-2356-9. [Google Scholar]
- Manikandan, A.; Muthukumaran, P.; Poorni, S.; Priya, M.; Rajeswari, R.; Kamaraj, M.; Aravind, J. Microbial Approaches for Bioconversion of Agro-Industrial Wastes: A Review. In Strategies and Tools for Pollutant Mitigation: Research Trends in Developing Nations; Aravind, J., Kamaraj, M., Karthikeyan, S., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 151–180. ISBN 978-3-030-98241-6. [Google Scholar]
- Institut Français de la de la Vigne et du Vin Occitanie-Sud-Ouest-Languedoc-Roussillon. Available online: https://www.vignevin-occitanie.com (accessed on 19 June 2022).
- Unione Italiana Vini Report 2019. Available online: https://www.unioneitalianavini.it (accessed on 19 June 2022).
- Borrello, M.; Cembalo, L.; Vecchio, R. Consumers’ acceptance of fungus resistant grapes: Future scenarios in sustainable winemaking. J. Clean. Prod. 2021, 307, 127318. [Google Scholar] [CrossRef]
- Mian, G.; Iseppi, L.; Traversari, G.; Ermacora, P.; Cipriani, G.; Nassivera, F. Consumers Perceptions and Motivations in the Choice of Kiwifruits: A Study-Case in Italy, North-East. QAS 2022, 23, 163–175. [Google Scholar] [CrossRef]
- Sellers-Rubio, R.; Nicolau-Gonzalbez, J.L. Estimating the willingness to pay for a sustainable wine using a Heckit model. Wine Econ. Policy 2016, 5, 96–104. [Google Scholar] [CrossRef]
- Schäufele, I.; Hamm, U. Consumers’ perceptions, preferences and willingness-to-pay for wine with sustainability characteristics: A review. J. Clean. Prod. 2017, 147, 379–394. [Google Scholar] [CrossRef]
- Borrello, M.; Cembalo, L.; Vecchio, R. Role of information in consumers’ preferences for eco-sustainable genetic improvements in plant breeding. PLoS ONE 2021, 16, e0255130. [Google Scholar] [CrossRef] [PubMed]
- Holme, I.B.; Wendt, T.; Holm, P.B. Intragenesis and cisgenesis as alternatives to transgenic crop development. Plant Biotechnol. J. 2013, 11, 395–407. [Google Scholar] [CrossRef] [PubMed]
- Mielby, H.; Sandøe, P.; Lassen, J. Multiple aspects of unnaturalness: Are cisgenic crops perceived as being more natural and more acceptable than transgenic crops? Agric. Hum. Values 2013, 30, 471–480. [Google Scholar] [CrossRef]
- Telem, R.S.; Wani, S.H.; Singh, N.B.; Nandini, R.; Sadhukhan, R.; Bhattacharya, S.; Mandal, N. Cisgenics—A Sustainable Approach for Crop Improvement. Curr. Genom. 2013, 14, 468–476. [Google Scholar] [CrossRef] [Green Version]
- Scott, S.E.; Inbar, Y.; Wirz, C.D.; Brossard, D.; Rozin, P. An Overview of Attitudes toward Genetically Engineered Food. Annu. Rev. Nutr. 2018, 38, 459–479. [Google Scholar] [CrossRef]
- Saliba, A.J.; Moran, C.C. The influence of perceived healthiness on wine consumption patterns. Food Qual. Prefer. 2010, 21, 692–696. [Google Scholar] [CrossRef]
- Mancini, M.C.; Antonioli, F. To What Extent Are Consumers’ Perception and Acceptance of Alternative Meat Production Systems Affected by Information? The Case of Cultured Meat. Animals 2020, 10, 656. [Google Scholar] [CrossRef]
- Marris, C. The Construction of Imaginaries of the Public as a Threat to Synthetic Biology. Sci. Cult. 2015, 24, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Rahman, I.; Geng-Qing Chi, C. Can knowledge and product identity shift sensory perceptions and patronage intentions? The case of genetically modified wines. Int. J. Hosp. Manag. 2016, 53, 152–160. [Google Scholar] [CrossRef]
- Vecchio, R.; Pomarici, E.; Giampietri, E.; Borrello, M. Consumer acceptance of fungus-resistant grape wines: Evidence from Italy, the UK, and the USA. PLoS ONE 2022, 17, e0267198. [Google Scholar] [CrossRef]
- “Risparmio di 1.100 Euro per Ettaro con le viti Resistenti”. 21 Milioni Di Euro In Tre Anni Per Il Progetto Cloni. Available online: https://www.winemag.it/risparmio-di-1100-euro-per-ettaro-con-le-viti-resistenti (accessed on 20 June 2022).
- Tu, V.H.; Kopp, S.W.; Trang, N.T.; Kontoleon, A.; Yabe, M. UK Consumers’ Preferences for Ethical Attributes of Floating Rice: Implications for Environmentally Friendly Agriculture in Vietnam. Sustainability 2021, 13, 8354. [Google Scholar] [CrossRef]
- Feucht, Y.; Zander, K. Consumers’ Willingness to Pay for Climate-Friendly Food in European Countries. Proc. Food Syst. Dyn. 2017, 360–377. [Google Scholar] [CrossRef]
- Hanley, N.; Wright, R.E.; Alvarez-Farizo, B. Estimating the economic value of improvements in river ecology using choice experiments: An application to the water framework directive. J. Environ. Manag. 2006, 78, 183–193. [Google Scholar] [CrossRef]
- Yang, Y.; Paladino, A. The case of wine: Understanding Chinese gift-giving behavior. Mark. Lett. 2015, 26, 335–361. [Google Scholar] [CrossRef]
- Pomarici, E.; Vecchio, R. Millennial generation attitudes to sustainable wine: An exploratory study on Italian consumers. J. Clean. Prod. 2014, 66, 537–545. [Google Scholar] [CrossRef]
- Teissedre, P.L. Composition of grape and wine from resistant vines varieties. OENO One 2018, 52, 197. [Google Scholar] [CrossRef]
- Furlan, R.; Martone, D. La conjoint analysis per la ricerca sociale e di marketing. 2011. Available online: https://www.torrossa.com/en/resources/an/2652367 (accessed on 20 June 2022).
- Molteni, L.; Troilo, G. Ricerche di Marketing; McGraw-Hill: New York, NY, USA, 2007. [Google Scholar]
- Ryu, J.P.; Shin, J.T.; Kim, J.; Kim, Y.W. Consumer preference for edible insect-containing cookies determined by conjoint analysis: An exploratory study of Korean consumers. Entomol. Res. 2017, 47, 74–83. [Google Scholar] [CrossRef]
- Nesselhauf, L.; Fleuchaus, R.; Theuvsen, L. What about the environment?A choice-based conjoint study about wine from fungus-resistant grape varieties. Int. J. Wine Bus. Res. 2019, 32, 96–121. [Google Scholar] [CrossRef]
- Zito, S.; Caffarra, A.; Richard, Y.; Castel, T.; Bois, B. Climate change and vine protection: The case of mildews management in Burgundy. E3S Web Conf. 2018, 50, 01006. [Google Scholar] [CrossRef] [Green Version]
- Risius, A.; Klann, B.-O.; Meyerding, S.G.H. Choosing a lifestyle? Reflection of consumer extrinsic product preferences and views on important wine characteristics in Germany. Wine Econ. Policy 2019, 8, 141–154. [Google Scholar] [CrossRef]
Attributes | Levels |
---|---|
Wine name | Prosecco; Ribolla gialla. |
Certification * | DOC; absent. |
Price (€/bottle) | 5; 9. |
Pesticide information ** | Level 1; Level 2; Level 3; Level 4; Level 5. |
Test A: Level 1 = Absent; Level 2 = 20%; Level 3 = 40%; Level 4 = 60%; Level 5 = 80% | |
Test B: Level 1 = Absent; Level 2 = 8%; Level 3 = 20%; Level 4 = 32%; Level 5 = 40% | |
Test C: Level 1 = Absent; Level 2 = 8%; Level 3 = 12%; Level 4 = 16%; Level 5 = 20% | |
Test D: Level = Absent; Level 2 = 3%; Level 3 = 8%; Level 4 = 14%; Level 5 = 20% | |
Test E: Level 1= Absent; Level 2 = 12%; Level 3 = 36%; Level 4 = 60%; Level 5 = 80% |
Test | |||||||
---|---|---|---|---|---|---|---|
A (n = 119) | B (n = 106) | C (n = 118) | D (n = 299) | E (n = 268) | Total (n = 910) | ||
Gender | Male | 52.9 | 59.4 | 40.7 | 54.5 | 65.0 | 56.2 |
Female | 47.1 | 40.6 | 59.3 | 45.5 | 35.0 | 43.8 | |
Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | |
Age | 18–23 | 84.6 | 94.2 | 83.8 | 76.9 | 90.8 | 84.9 |
24–26 | 12.0 | 3.9 | 12.8 | 20.4 | 8.8 | 13.0 | |
27–30 | 3.4 | 1.9 | 3.4 | 2.7 | 0.4 | 2.1 | |
Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | |
Per capita income of the household | <1.000 | 6.7 | 2.8 | 4.2 | 7.4 | 4.6 | 5.6 |
1.000–2.000 | 26.1 | 27.4 | 28.8 | 25.8 | 29.5 | 27.4 | |
2.000–3.000 | 33.6 | 28.3 | 30.5 | 28.1 | 34.2 | 30.8 | |
3.000–4.000 | 16.0 | 19.8 | 16.9 | 16.4 | 18.1 | 17.3 | |
4.000–5.000 | 7.6 | 5.7 | 7.6 | 8.7 | 5.1 | 7.1 | |
>5.000 | 10.1 | 16.0 | 11.9 | 13.7 | 8.4 | 11.8 | |
Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | |
Do you buy wine? | 1 Never | 16.8 | 9.4 | 14.4 | 13.0 | 21.6 | 15.8 |
2 | 16.8 | 19.8 | 17.8 | 20.1 | 20.5 | 19.5 | |
3 | 13.4 | 18.9 | 22.0 | 16.7 | 16.8 | 17.3 | |
4 | 20.2 | 20.8 | 20.3 | 14.7 | 15.7 | 17.1 | |
5 | 19.3 | 17.0 | 14.4 | 16.4 | 12.7 | 15.5 | |
6 | 7.6 | 11.3 | 8.5 | 10.7 | 6.7 | 8.9 | |
7 Always | 5.9 | 2.8 | 2.5 | 8.4 | 6.0 | 5.9 | |
Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | |
Do you consume wine? | 1 Never | 6.7 | 4.7 | 6.8 | 6.4 | 9.7 | 7.3 |
2 | 15.1 | 11.3 | 8.5 | 11.0 | 17.5 | 13.2 | |
3 | 13.4 | 11.3 | 11.9 | 13.0 | 16.8 | 13.8 | |
4 | 16.0 | 22.6 | 20.3 | 13.4 | 16.0 | 16.5 | |
5 | 23.5 | 29.2 | 27.1 | 24.4 | 20.5 | 24.1 | |
6 | 17.6 | 17.0 | 16.9 | 17.7 | 13.1 | 16.2 | |
7 Always | 7.6 | 3.8 | 8.5 | 14.0 | 6.3 | 9.0 | |
Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Test | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
A (n = 119) | B (n = 106) | C (n = 118) | D (n = 299) | E (n = 268) | |||||||
Attributes | Levels | Mean | Std.E. | Mean | Std.E. | Mean | Std.E. | Mean | Std.E. | Mean | Std.E. |
Wine name | Prosecco | 1.26 | 0.43 | 2.85 | 0.46 | 1.09 | 0.47 | −0.65 | 0.44 | 1.33 | 0.32 |
Ribolla gialla | −1.26 | 0.43 | −2.85 | 0.46 | −1.09 | 0.47 | 0.65 | 0.44 | −1.33 | 0.32 | |
Certification | DOC | 2.78 | 0.24 | ||||||||
Absent | −2.78 | 0.24 | |||||||||
Price (€/bott.) | 5 | 2.80 | 0.43 | 1.82 | 0.46 | 3.18 | 0.47 | 1.48 | 0.44 | 2.25 | 0.39 |
9 | −2.80 | 0.43 | −1.82 | 0.46 | -3.18 | 0.47 | −1.48 | 0.44 | −2.25 | 0.39 | |
Pesticide information | Level 1 | −21.02 | 0.81 | −18.68 | 0.87 | −25.03 | 0.89 | −18.70 | 0.88 | −14.05 | 0.73 |
Level 2 | −14.56 | 0.81 | −14.09 | 0.87 | −10.40 | 0.89 | −12.25 | 0.69 | −11.14 | 0.57 | |
Level 3 | −1.08 | 0.81 | −2.77 | 0.87 | 2.28 | 0.89 | −2.47 | 0.50 | −3.38 | 0.41 | |
Level 4 | 12.83 | 1.05 | 12.59 | 1.13 | 11.07 | 1.15 | 10.55 | 0.70 | 8.36 | 0.51 | |
Level 5 | 23.83 | 1.05 | 22.95 | 1,13 | 22.08 | 1.15 | 22.87 | 1.06 | 20.21 | 0.78 | |
Constant | 47.97 | 0.46 | 45.74 | 0.49 | 50.42 | 0.50 | 45.54 | 0.91 | 57.98 | 0.75 | |
Correlations between the total observed and the estimated preferences | |||||||||||
Value | Sig. | Value | Sig. | Value | Sig. | Value | Sig. | Value | Sig. | ||
R of Pearson | 0.997 | 0.000 | 0.996 | 0.000 | 0.996 | 0.000 | 0.998 | 0.000 | 0.993 | 0.000 | |
Tau of Kendall | 0.983 | 0.000 | 0.983 | 0.000 | 0.967 | 0.000 | 0.967 | 0.000 | 0.950 | 0.000 | |
Tau of Kendall for checks (controls) | 1.000 | 0.007 | 1.000 | 0.007 | 1.000 | 0.007 | 1.000 | 0.007 | 0.800 | 0.025 |
Information on the Reduction in Pesticides in Vineyards * | Test | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
A (n = 119) | B (n = 106) | C (n= 118) | D (n = 299) | E (n = 268) | ||||||
Mean | Std.E. | Mean | Std.E. | Mean | Std.E. | Mean | Std.E. | Mean | Std.E. | |
Level 1 (Absent) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Level 2 | 6.45 | 1.49 | 4.59 | 1.37 | 14.64 | 1.34 | 6.45 | 0.82 | 2.92 | 0.83 |
Level 3 | 19.93 | 1.78 | 15.91 | 2.05 | 27.31 | 1.61 | 16.23 | 1.04 | 10.67 | 0.92 |
Level 4 | 33.84 | 2.24 | 31.27 | 2.53 | 36.10 | 1.95 | 29.24 | 1.46 | 22.42 | 1.11 |
Level 5 | 44.85 | 2.59 | 41.63 | 2.94 | 47.11 | 2.67 | 41.56 | 1.77 | 34.27 | 1.33 |
Test A: Level 1 = Absent; Level 2 = 20%; Level by...3 = 40%; Level 4 = 60%; Level 5 = 80% | ||||||||||
Test B: Level 1 = Absent; Level 2 = 8%; Level 3 = 20%; Level 4 = 32%; Level 5 = 40% | ||||||||||
Test C: Level 1 = Absent; Level 2 = 8%; Level 3 = 12%; Level 4 = 16%; Level 5 = 20% | ||||||||||
Test D: Level 1 = Absent; Level 2 = 3%; Level 3 = 8%; Level 4 = 14%; Level 5 = 20% | ||||||||||
Test E: Level 1 = Absent; Level 2 = 12%; Level 3 = 36%; Level 4 = 60%; Level 5 = 80% |
Male | Female | |
---|---|---|
Test A | 37.42 | 53.20 * |
Test B | 33.10 | 54.14 * |
Test C | 40.79 | 51.45 * |
Test D | 37.87 | 45.99 * |
Test E | 30.94 | 40.44 * |
Wine Purchases | Wine Consumption | |
---|---|---|
Test A | −0.167 | −0.104 |
Test B | −0.156 | −0.171 |
Test C | 0.015 | 0.047 |
Test D | −0.063 | −0.180 * |
Test E | −0.141 * | −0.174 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mian, G.; Nassivera, F.; Sillani, S.; Iseppi, L. Grapevine Resistant Cultivars: A Story Review and the Importance on the Related Wine Consumption Inclination. Sustainability 2023, 15, 390. https://doi.org/10.3390/su15010390
Mian G, Nassivera F, Sillani S, Iseppi L. Grapevine Resistant Cultivars: A Story Review and the Importance on the Related Wine Consumption Inclination. Sustainability. 2023; 15(1):390. https://doi.org/10.3390/su15010390
Chicago/Turabian StyleMian, Giovanni, Federico Nassivera, Sandro Sillani, and Luca Iseppi. 2023. "Grapevine Resistant Cultivars: A Story Review and the Importance on the Related Wine Consumption Inclination" Sustainability 15, no. 1: 390. https://doi.org/10.3390/su15010390