An Introductory Review of Input-Output Analysis in Sustainability Sciences Including Potential Implications of Aggregation
Abstract
:1. Introduction
2. Method
2.1. Input-Output Tables
- Transactions (T)
- Final demand (Y)
- Value-added (V)
- Total output ( and total input ()
- Satellite accounts (Q)
2.2. Structural Path Analysis
2.3. Production-Based and Consumption-Based Inventories
2.4. Disaggregating the Input-Output Table
2.4.1. Disaggregating Satellite Accounts
2.4.2. Disaggregating the Transaction- and Final Demand Matrix
2.5. Implementation
3. Results
3.1. Baseline Input-Output Table
3.2. Disaggregated Satellite Accounts
3.3. Disaggregated Transactions and Final Demand—Production-Based Inventory
3.4. Implications of Aggregation
3.4.1. Sectoral Contributions in the Consumption-Based Inventory
3.4.2. Composition of the Externalities in the Consumption-Based Inventory
- An increase in the allocation of Water consumption—Cotton from the agricultural sectors (Agriculture—Wheat and Agriculture—Cotton) to the Agriculture sector by +141.5%
- An increase in the allocation of Water consumption—Wheat from the manufacturing sectors (Manufacturing—Textiles and Manufacturing—Agricultural machinery) to the Manufacturing sector by +185%
- An increase in the allocation of Water consumption—Textiles from the agricultural sectors (Agriculture—Wheat and Agriculture—Cotton) to the Agriculture sector by +1040%
- An increase in the allocation of Water consumption—Agricultural machinery from the manufacturing sectors (Manufacturing—Textiles and Manufacturing—Agricultural machinery) to the Manufacturing sector by 42.5%
- … as well as corresponding decreases in the allocation of water consumption to the other sectors.
4. Discussion
4.1. Aggregation
4.2. Input-Output Databases
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Supplementary Information on Input-Output Analysis
Inventory | Peters [82] | Wood et al. [73] | Arnold et al. [80] |
---|---|---|---|
Production-based | “Domestic production including exports” | “The production-based indicators account for the value added as well as the substances emitted within the geographical bounds of a region or country.” | “emissions generated during production. Responsibility is fully allocated to producers of goods and services where they occur in the value chain.” |
Consumption-based | “Domestic consumption ([excluding] exports but includ[ing] imports)” | “On the other hand, consumption-based indicators (footprints) represent the direct and indirect value added/emitted substances caused by the final demand in a specific country or region.” | “emissions generated for satisfying consumption. Responsibility of life cycle emissions is fully allocated to final consumers of goods and services.” |
Appendix B. Supplementary Information on the Results
Heat Maps
Appendix C. Supplementary Information on the Implications of Aggregation
Appendix D. Non-Monetary Input-Output Table
References
- McNeill, J.R. The Great Acceleration: An Environmental History of the Anthropocene since 1945; Harvard University Press: Cambridge, MA, USA, 2014. [Google Scholar] [CrossRef]
- Steffen, W.; Sanderson, R.A.; Tyson, P.D.; Jäger, J.; Matson, P.A.; Moore, B., III; Oldfield, F.; Richardson, K.; Schellnhuber, H.J.; Turner, B.L.; et al. Global Change and the Earth System: A Planet Under Pressure; Global Change—The IGBP Series; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockstrom, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meadows, D.H.; Meadows, D.L.; Randers, J.; Behrens, W.W. The Limits to Growth: A Report for the Club of Rome’s Project on the Predicament of Mankind, 2nd ed.; Universe Books: New York, NY, USA, 1972. [Google Scholar]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, A.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, A.; Chapin, F.S.I.; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. Planetary Boundaries: Exploring the Safe Operating Space for Humanity. Ecol. Soc. 2009, 14, art32. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. (Eds.) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- WCED. Our Common Future; Oxford Paperbacks; Oxford University Press: Oxford, UK; New York, NY, USA, 1987. [Google Scholar]
- Leontief, W. Quantitative input and output relations in the economic systems of the United States. Rev. Econ. Stat. 1936, 18, 105–125. [Google Scholar] [CrossRef] [Green Version]
- Leontief, W. Environmental Repercussions and the Economic Structure: An Input-Output Approach. Rev. Econ. Stat. 1970, 52, 262–271. [Google Scholar] [CrossRef]
- Miller, R.E.; Blair, P.D. Input–Output Analysis: Foundations and Extensions, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009; p. 784. [Google Scholar]
- Kitzes, J. An Introduction to Environmentally-Extended Input-Output Analysis. Resources 2013, 2, 489–503. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Han, M.; Peng, K.; Zhou, S.; Shao, L.; Wu, X.; Wei, W.; Liu, S.; Li, Z.; Li, J.; et al. Global land-water nexus: Agricultural land and freshwater use embodied in worldwide supply chains. Sci. Total Environ. 2018, 613–614, 931–943. [Google Scholar] [CrossRef]
- Hung, C.C.W.; Hsu, S.C.; Cheng, K.L. Quantifying city-scale carbon emissions of the construction sector based on multi-regional input-output analysis. Resour. Conserv. Recycl. 2019, 149, 75–85. [Google Scholar] [CrossRef]
- Lenk, C.; Arendt, R.; Bach, V.; Finkbeiner, M. Territorial-Based vs. Consumption-Based Carbon Footprint of an Urban District—A Case Study of Berlin-Wedding. Sustainability 2021, 13, 7262. [Google Scholar] [CrossRef]
- Long, Y.; Yoshida, Y. Quantifying city-scale emission responsibility based on input-output analysis—Insight from Tokyo, Japan. Appl. Energy 2018, 218, 349–360. [Google Scholar] [CrossRef]
- Moran, D.; Kanemoto, K.; Jiborn, M.; Wood, R.; Többen, J.; Seto, K.C. Carbon footprints of 13.000 cities. Environ. Res. Lett. 2018, 13, 064041. [Google Scholar] [CrossRef]
- Wiedmann, T.; Chen, G.; Owen, A.; Lenzen, M.; Doust, M.; Barrett, J.; Steele, K. Three-scope carbon emission inventories of global cities. J. Ind. Ecol. 2021, 25, 735–750. [Google Scholar] [CrossRef]
- Martinez, S.; Marchamalo, M.; Alvarez, S. Organization environmental footprint applying a multi-regional input-output analysis: A case study of a wood parquet company in Spain. Sci. Total Environ. 2018, 618, 7–14. [Google Scholar] [CrossRef]
- Martinez, S.; Delgado, M.d.M.; Martinez Marin, R.; Alvarez, S. Organization Environmental Footprint through Input-Output Analysis: A Case Study in the Construction Sector. J. Ind. Ecol. 2019, 23, 879–892. [Google Scholar] [CrossRef]
- Acquaye, A.A.; Duffy, A.P. Input–output analysis of Irish construction sector greenhouse gas emissions. Build. Environ. 2010, 45, 784–791. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Blanco, J.; Forin, S.; Finkbeiner, M. Challenges of organizational LCA: Lessons learned from road testing the guidance on organizational life cycle assessment. Int. J. Life Cycle Assess. 2020, 25, 311–331. [Google Scholar] [CrossRef]
- Lenzen, M. An input–output analysis of Australian water usage. Water Policy 2001, 3, 321–340. [Google Scholar] [CrossRef]
- Zhang, C.; Anadon, L.D. A multi-regional input–output analysis of domestic virtual water trade and provincial water footprint in China. Ecol. Econ. 2014, 100, 159–172. [Google Scholar] [CrossRef]
- Dawkins, E.; Moran, D.; Palm, V.; Wood, R.; Björk, I. The Swedish footprint: A multi-model comparison. J. Clean. Prod. 2019, 209, 1578–1592. [Google Scholar] [CrossRef]
- Bunsen, J.; Berger, M.; Finkbeiner, M. Planetary boundaries for water—A review. Ecol. Indic. 2021, 121. [Google Scholar] [CrossRef]
- Wiedmann, T.O.; Schandl, H.; Lenzen, M.; Moran, D.; Suh, S.; West, J.; Kanemoto, K. The material footprint of nations. Proc. Natl. Acad. Sci. USA 2015, 112, 6271–6276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiedmann, T.; Wood, R.; Minx, J.C.; Lenzen, M.; Guan, D.; Harris, R. A Carbon Footprint Time Series of the Uk—Results from a Multi-Region Input–Output Model. Econ. Syst. Res. 2010, 22, 19–42. [Google Scholar] [CrossRef]
- Tukker, A.; Bulavskaya, T.; Giljum, S.; Koning, A.d.; Lutter, S.; Simas, M.; Stadler, K.; Wood, R. The Global Resource Footprint of Nations. Carbon, Water, Land and Materials Embodied in Trade and Final Consumption, Calculated with EXIOBASE 2.1; TNO: The Hague, The Netherlands, 2014. [Google Scholar]
- Ivanova, D.; Stadler, K.; Steen-Olsen, K.; Wood, R.; Vita, G.; Tukker, A.; Hertwich, E.G. Environmental Impact Assessment of Household Consumption. J. Ind. Ecol. 2016, 20, 526–536. [Google Scholar] [CrossRef] [Green Version]
- Lenzen, M.; Moran, D.; Bhaduri, A.; Kanemoto, K.; Bekchanov, M.; Geschke, A.; Foran, B. International trade of scarce water. Ecol. Econ. 2013, 94, 78–85. [Google Scholar] [CrossRef]
- Moran, D.; Kanemoto, K. Tracing global supply chains to air pollution hotspots. Environ. Res. Lett. 2016, 11, 094017. [Google Scholar] [CrossRef] [Green Version]
- Davis, S.J.; Peters, G.P.; Caldeira, K. The supply chain of CO2 emissions. Proc. Natl. Acad. Sci. USA 2011, 108, 18554–18559. [Google Scholar] [CrossRef] [Green Version]
- Lenzen, M.; Moran, D.; Kanemoto, K.; Foran, B.; Lobefaro, L.; Geschke, A. International trade drives biodiversity threats in developing nations. Nature 2012, 486, 109–112. [Google Scholar] [CrossRef]
- Bjelle, E.L.; Többen, J.; Stadler, K.; Kastner, T.; Theurl, M.C.; Erb, K.H.; Olsen, K.S.; Wiebe, K.S.; Wood, R. Adding country resolution to EXIOBASE: Impacts on land use embodied in trade. J. Econ. Struct. 2020, 9, 14. [Google Scholar] [CrossRef]
- Bjelle, E.L.; Kuipers, K.; Verones, F.; Wood, R. Trends in national biodiversity footprints of land use. Ecol. Econ. 2021, 185, 107059. [Google Scholar] [CrossRef]
- Bunsen, J.; Berger, M.; Ward, H.; Finkbeiner, M. Germany’s global water consumption under consideration of the local safe operating spaces of watersheds worldwide. Clean. Responsible Consum. 2021, 3, 100034. [Google Scholar] [CrossRef]
- Shilling, H.J.; Wiedmann, T.; Malik, A. Modern slavery footprints in global supply chains. J. Ind. Ecol. 2021, 25, 1518–1528. [Google Scholar] [CrossRef]
- Theil, H. Linear Aggregation in Input-Output Analysis. Econometrica 1957, 25, 111–122. [Google Scholar] [CrossRef]
- Fisher, W.D. Criteria for Aggregation in Input-Output Analysis. Rev. Econ. Stat. 1958, 40, 250–260. [Google Scholar] [CrossRef]
- Miller, R.E.; Blair, P. Spatial aggregation in interregional input-output models. Pap. Reg. Sci. Assoc. 1981, 48, 149–164. [Google Scholar] [CrossRef]
- Kymn, K.O. Aggregation in Input–Output Models: A Comprehensive Review, 1946–71. Econ. Syst. Res. 1990, 2, 65–93. [Google Scholar] [CrossRef]
- Ara, K. The Aggregation Problem in Input-Output Analysis. Econometrica 1959, 27, 257–262. [Google Scholar] [CrossRef]
- Neudecker, H. Aggregation in Input-Output Analysis: An Extension of Fisher’s Method. Econometrica 1970, 38, 921–926. [Google Scholar] [CrossRef]
- Lenzen, M. Aggregation Versus Disaggregation in Input–Output Analysis of the Environment. Econ. Syst. Res. 2011, 23, 73–89. [Google Scholar] [CrossRef]
- Wood, R.; Hawkins, T.R.; Hertwich, E.G.; Tukker, A. Harmonising National Input—Output Tables for Consumption-Based Accounting—Experiences from Exiopol. Econ. Syst. Res. 2014, 26, 387–409. [Google Scholar] [CrossRef]
- Papong, S.; Itsubo, N.; Malakul, P.; Shukuya, M. Development of the Social Inventory Database in Thailand Using Input–Output Analysis. Sustainability 2015, 7, 7684–7713. [Google Scholar] [CrossRef] [Green Version]
- Costa, D.; Quinteiro, P.; Pereira, V.; Dias, A.C. Social life cycle assessment based on input-output analysis of the Portuguese pulp and paper sector. J. Clean. Prod. 2022, 330, 129851. [Google Scholar] [CrossRef]
- Benoît Norris, C.; Norris, G. Chapter 8: The Social Hotspots Database Context of the SHDB. In The Sustainability Practitioner’s Guide to Social Analysis and Assessment; McBain, D., Murray, J., Wiedmann, T., Eds.; Common Ground Research Networks: Champaign, IL, USA, 2015. [Google Scholar]
- Ciroth, A.; Eisfeldt, F. A new, comprehensive database for social LCA: PSILCA. In Proceedings of the ILCM 2015, New Delhi, India, 14–15 September 2015. [Google Scholar]
- Lenzen, M. Structural path analysis of ecosystem networks. Ecol. Model. 2007, 200, 334–342. [Google Scholar] [CrossRef]
- Defourny, J.; Thorbecke, E. Structural Path Analysis and Multiplier Decomposition within a Social Accounting Matrix Framework. Econ. J. 1984, 94, 111–136. [Google Scholar] [CrossRef]
- Crama, Y.; Defourny, J.; Gazon, J. Structural decomposition of multipliers in input-output or social accounting matrix analysis. Économie Appliquée 1984, 37, 215–222. [Google Scholar]
- Van Rossum, G.; Drake, F.L., Jr. Python Tutorial; Centrum voor Wiskunde en Informatica: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Reback, J.; Jbrockmendel; McKinney, W.; Van Den Bossche, J.; Augspurger, T.; Cloud, P.; Hawkins, S.; Gfyoung; Roeschke, M.; Sinhrks; et al. Pandas-dev/pandas: Pandas 1.3.4. Zenodo 2021. [Google Scholar] [CrossRef]
- McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; pp. 51–56. [Google Scholar]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Stephan, A.; Bontinck, P.A. pyspa—An Object-Oriented Python Package for Structural Path Analysis; GitHub: San Francisco, CA, USA, 2019. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Bunsen, J. A most simple implementation of Kitzes (2013) in Python. Zenodo 2022. [Google Scholar] [CrossRef]
- Bouwmeester, M.C.; Oosterhaven, J. Specification and Aggregation Errors in Environmentally Extended Input–Output Models. Environ. Resour. Econ. 2013, 56, 307–335. [Google Scholar] [CrossRef]
- Steen-Olsen, K.; Owen, A.; Hertwich, E.G.; Lenzen, M. Effects of Sector Aggregation on Co2 Multipliers in Multiregional Input–Output Analyses. Econ. Syst. Res. 2014, 26, 284–302. [Google Scholar] [CrossRef]
- de Koning, A.; Bruckner, M.; Lutter, S.; Wood, R.; Stadler, K.; Tukker, A. Effect of aggregation and disaggregation on embodied material use of products in input–output analysis. Ecol. Econ. 2015, 116, 289–299. [Google Scholar] [CrossRef]
- Schulte, S.; Jakobs, A.; Pauliuk, S. Relaxing the import proportionality assumption in multi-regional input–output modelling. J. Econ. Struct. 2021, 10, 20. [Google Scholar] [CrossRef] [PubMed]
- Tukker, A.; Dietzenbacher, E. Global Multiregional Input-Output Frameworks: An Introduction and Outlook. Econ. Syst. Res. 2013, 25, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Wiedmann, T.O.; Suh, S.; Feng, K.; Lenzen, M.; Acquaye, A.; Scott, K.; Barrett, J.R. Application of Hybrid Life Cycle Approaches to Emerging Energy Technologies—The Case of Wind Power in the UK. Environ. Sci. Technol. 2011, 45, 5900–5907. [Google Scholar] [CrossRef] [PubMed]
- Kitzes, J.; Galli, A.; Bagliani, M.; Barrett, J.; Dige, G.; Ede, S.; Erb, K.; Giljum, S.; Haberl, H.; Hails, C.; et al. A research agenda for improving national Ecological Footprint accounts. Ecol. Econ. 2009, 68, 1991–2007. [Google Scholar] [CrossRef]
- Lenzen, M.; Geschke, A.; Abd Rahman, M.D.; Xiao, Y.; Fry, J.; Reyes, R.; Dietzenbacher, E.; Inomata, S.; Kanemoto, K.; Los, B.; et al. The Global MRIO Lab—Charting the world economy. Econ. Syst. Res. 2017, 29, 158–186. [Google Scholar] [CrossRef]
- Stadler, K.; Wood, R.; Bulavskaya, T.; Södersten, C.J.; Simas, M.; Schmidt, S.; Usubiaga, A.; Acosta-Fernández, J.; Kuenen, J.; Bruckner, M.; et al. EXIOBASE 3: Developing a Time Series of Detailed Environmentally Extended Multi-Regional Input-Output Tables: EXIOBASE 3. J. Ind. Ecol. 2018, 22, 502–515. [Google Scholar] [CrossRef] [Green Version]
- Pfister, S.; Kulionis, V. Feasibility Study on Strengthening the Environmental Footprints and Planetary Boundaries Concepts within the Green Economy Progress Measurement Framework; UN Environment Document Repository Home; UNEP: Nairobi, Kenya, 2020. [Google Scholar]
- Lenzen, M.; Kanemoto, K.; Moran, D.; Geschke, A. Mapping the Structure of the World Economy. Environ. Sci. Technol. 2012, 46, 8374–8381. [Google Scholar] [CrossRef]
- Lenzen, M.; Moran, D.; Kanemoto, K.; Geschke, A. Building Eora: A global multi-region input-output database at high country and sector resolution. Econ. Syst. Res. 2013, 25, 20–49. [Google Scholar] [CrossRef]
- Wood, R.; Stadler, K.; Bulavskaya, T.; Lutter, S.; Giljum, S.; de Koning, A.; Kuenen, J.; Schütz, H.; Acosta-Fernández, J.; Usubiaga, A.; et al. Global Sustainability Accounting - Developing EXIOBASE for Multi-Regional Footprint Analysis. Sustainability 2015, 7, 138–163. [Google Scholar] [CrossRef] [Green Version]
- Timmer, M.P.; Dietzenbacher, E.; Los, B.; Stehrer, R.; de Vries, G.J. An Illustrated User Guide to the World Input-Output Database: The Case of Global Automotive Production: User Guide to World Input-Output Database. Rev. Int. Econ. 2015, 23, 575–605. [Google Scholar] [CrossRef]
- Aguiar, A.; Chepeliev, M.; Corong, E.L.; McDougall, R.; Mensbrugghe, D.v.d. The GTAP Data Base: Version 10. J. Glob. Econ. Anal. 2019, 4, 1–27. [Google Scholar] [CrossRef] [Green Version]
- OECD. OECD Inter-Country Input-Output Database; OECD: Paris, France, 2021. [Google Scholar]
- Cabernard, L.; Pfister, S. A highly resolved MRIO database for analyzing environmental footprints and Green Economy Progress. Sci. Total Environ. 2021, 755, 142587. [Google Scholar] [CrossRef]
- Cabernard, L.; Pfister, S. A highly resolved MRIO database for analyzing environmental footprints and Green Economy Progress—A. Code and data from 2006–2015. Zenodo 2020. [Google Scholar] [CrossRef]
- Bruckner, M.; Wood, R.; Moran, D.; Kuschnig, N.; Wieland, H.; Maus, V.; Börner, J. FABIO—The Construction of the Food and Agriculture Biomass Input–Output Model. Environ. Sci. Technol. 2019, 53, 11302–11312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tukker, A.; Pollitt, H.; Henkemans, M. Consumption-based carbon accounting: Sense and sensibility. Clim. Policy 2020, 20, S1–S13. [Google Scholar] [CrossRef] [Green Version]
- Lenzen, M.; Murray, J.; Sack, F.; Wiedmann, T. Shared producer and consumer responsibility—Theory and practice. Ecol. Econ. 2007, 61, 27–42. [Google Scholar] [CrossRef]
- Peters, G. From production-based to consumption-based national emission inventories. Ecol. Econ. 2008, 65, 13–23. [Google Scholar] [CrossRef]
- Suh, S. A note on the calculus for physical input–output analysis and its application to land appropriation of international trade activities. Ecol. Econ. 2004, 48, 9–17. [Google Scholar] [CrossRef]
- Hubacek, K.; Giljum, S. Applying physical input–output analysis to estimate land appropriation (ecological footprints) of international trade activities. Ecol. Econ. 2003, 44, 137–151. [Google Scholar] [CrossRef]
Inventory | Sector(s) | 2 × 2 IO-Table | 4 × 4 IO-Table | (abs.) | (rel.) |
---|---|---|---|---|---|
Production-based | Agriculture | 8 m3 | 8 m3 | 0 | 0 |
Production-based | Manufacturing | 4 m3 | 4 m3 | 0 | 0 |
Consumption-based | Agriculture | 4.80 m3 | 6.06 m3 | +1.26 m3 | +26% |
Consumption-based | Manufacturing | 7.20 m3 | 5.94 m3 | −1.26 m3 | −18% |
Externality | Sector(s) | 2 × 2 IO-Table | 4 × 4 IO-Table | (abs.) | (rel.) |
---|---|---|---|---|---|
Water consumption—Wheat | Agriculture | 3.00 m3 | 4.95 m3 | −1.95 m3 | −39.4% |
Water consumption—Wheat | Manufacturing | 3.00 m3 | 1.05 m3 | +1.95 m3 | +185% |
Water consumption—Cotton | Agriculture | 1.00 m3 | 0.41 m3 | +0.59 m3 | +141.5% |
Water consumption—Cotton | Manufacturing | 1.00 m3 | 1.59 m3 | −0.59 m3 | −36.9% |
Water consumption—Textiles | Agriculture | 0.50 m3 | 0.04 m3 | +0.46 m3 | +1040% |
Water consumption—Textiles | Manufacturing | 2.00 m3 | 2.46 m3 | −0.46 m3 | −18.6% |
Water consumption—Agricultural machinery | Agriculture | 0.30 m3 | 0.66 m3 | −0.36 m3 | −54.4% |
Water consumption—Agricultural machinery | Manufacturing | 1.20 m3 | 0.84 m3 | +0.36 m3 | +42.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bunsen, J.; Finkbeiner, M. An Introductory Review of Input-Output Analysis in Sustainability Sciences Including Potential Implications of Aggregation. Sustainability 2023, 15, 46. https://doi.org/10.3390/su15010046
Bunsen J, Finkbeiner M. An Introductory Review of Input-Output Analysis in Sustainability Sciences Including Potential Implications of Aggregation. Sustainability. 2023; 15(1):46. https://doi.org/10.3390/su15010046
Chicago/Turabian StyleBunsen, Jonas, and Matthias Finkbeiner. 2023. "An Introductory Review of Input-Output Analysis in Sustainability Sciences Including Potential Implications of Aggregation" Sustainability 15, no. 1: 46. https://doi.org/10.3390/su15010046
APA StyleBunsen, J., & Finkbeiner, M. (2023). An Introductory Review of Input-Output Analysis in Sustainability Sciences Including Potential Implications of Aggregation. Sustainability, 15(1), 46. https://doi.org/10.3390/su15010046