Driving Factors for Black-Odor-Related Microorganisms and Potential Self-Remediation Strategies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Sampling
2.2. Physicochemical Analysis
2.3. DNA Extraction and High-Throughput Sequencing
2.4. Statistical Analysis
3. Results and Discussion
3.1. Characteristics of Black-Odor Factors at Different Sampling Sites
3.2. Distribution and Diversity of Black-Odor-Related Microorganisms
3.3. Paramount of Physiochemical Factors Contributing to Black-Odor of Jishan River
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, J.; Sun, Q.; Zhao, D.; Xu, M.; Shen, Q.; Wang, D.; Wang, Y.; Ding, S. A critical review of the appearance of black-odorous waterbodies in China and treatment methods. J. Hazard. Mater. 2020, 385, 121511. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhu, J.; Lou, Y.; Fang, A.; Zhou, H.; Liu, B.; Xie, G.; Xing, D. MnO2/tourmaline composites as efficient cathodic catalysts enhance bioelectroremediation of contaminated river sediment and shape biofilm microbiomes in sediment microbial fuel cells. Appl. Catal. B Environ. 2020, 278, 119331. [Google Scholar] [CrossRef]
- Miao, S.; Lyu, H.; Xu, J.; Bi, S.; Guo, H.; Mu, M.; Lei, S.; Zeng, S.; Liu, H. Characteristics of the chromophoric dissolved organic matter of urban black-odor rivers using fluorescence and UV–visible spectroscopy. Environ. Pollut. 2021, 268, 115763. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Li, Y.; Shen, Y.; Wang, C.; Wang, P.; Wang, L.; Niu, L.; Zhang, W. Vertical distribution and assemblages of microbial communities and their potential effects on sulfur metabolism in a black-odor urban river. J. Environ. Manag. 2019, 235, 368–376. [Google Scholar] [CrossRef]
- Liang, Z.; Fang, W.; Luo, Y.; Lu, Q.; Juneau, P.; He, Z.; Wang, S. Mechanistic insights into organic carbon-driven water blackening and odorization of urban rivers. J. Hazard. Mater. 2021, 405, 124663. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, Y.-H.; Lü, H.; Li, H.; Li, Y.-W.; Mo, C.-H.; Cai, Q.-Y. Persistent contamination of polycyclic aromatic hydrocarbons (PAHs) and phthalates linked to the shift of microbial function in urban river sediments. J. Hazard. Mater. 2021, 414, 125416. [Google Scholar] [CrossRef]
- Song, C.; Liu, X.; Song, Y.; Liu, R.; Gao, H.; Han, L.; Peng, J. Key blackening and stinking pollutants in Dongsha River of Beijing: Spatial distribution and source identification. J. Environ. Manag. 2017, 200, 335–346. [Google Scholar] [CrossRef]
- Chen, Q.; Yang, Z.; Qi, K.; Zhao, C. Different pollutant removal efficiencies of artificial aquatic plants in black-odor rivers. Environ. Sci. Pollut. Res. 2019, 26, 33946–33952. [Google Scholar] [CrossRef]
- Huang, H.; Xu, X.; Liu, X.; Han, R.; Liu, J.; Wang, G. Distributions of four taste and odor compounds in the sediment and overlying water at different ecology environment in Taihu Lake. Sci. Rep. 2018, 8, 6179. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Xie, P.; Zeng, C.; Xie, L.; Chen, J. In situ enclosure experiments on the occurrence, development and decline of black bloom and the dynamics of its associated taste and odor compounds. Ecol. Eng. 2016, 87, 246–253. [Google Scholar] [CrossRef]
- Li, K.; Yang, M.; Peng, J.; Liu, R.; Joshi, T.P.; Bai, Y.; Liu, H. Rapid control of black and odorous substances from heavily-polluted sediment by oxidation: Efficiency and effects. Front. Environ. Sci. Eng. 2019, 13, 87. [Google Scholar] [CrossRef]
- Wang, W.-H.; Wang, Y.; Fan, P.; Chen, L.-F.; Chai, B.-H.; Zhao, J.-C.; Sun, L.-Q. Effect of calcium peroxide on the water quality and bacterium community of sediment in black-odor water. Environ. Pollut. 2019, 248, 18–27. [Google Scholar] [CrossRef]
- He, Y.; Song, N.; Jiang, H.-L. Effects of dissolved organic matter leaching from macrophyte litter on black water events in shallow lakes. Environ. Sci. Pollut. Res. 2018, 25, 9928–9939. [Google Scholar] [CrossRef] [PubMed]
- Holland, A.; Stauber, J.; Wood, C.M.; Trenfield, M.; Jolley, D.F. Dissolved organic matter signatures vary between naturally acidic, circumneutral and groundwater-fed freshwaters in Australia. Water Res. 2018, 137, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Feng, K.; Gong, J.; Qu, J.; Niu, R. Dual-Mode-Driven Micromotor Based on Foam-like Carbon Nitride and Fe3O4 with Improved Manipulation and Photocatalytic Performance. ACS Appl. Mater. Interfaces 2022, 14, 44271–44281. [Google Scholar] [CrossRef] [PubMed]
- Niu, R.; Ding, Y.; Hao, L.; Ren, J.; Gong, J.; Qu, J. Plant-Mimetic Vertical-Channel Hydrogels for Synergistic Water Purification and Interfacial Water Evaporation. ACS Appl. Mater. Interfaces 2022, 14, 45533–45544. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Xing, H.H.; Qing, M.; Shi, Y.; Ling, Y.; Li, N.B.; Luo, H.Q. From the perspective of high-throughput recognition: Sulfur quantum dots-based multi-channel sensing platform for metal ions detection. Chem. Eng. J. 2023, 452, 139594. [Google Scholar] [CrossRef]
- Liao, G.; Gong, Y.; Zhang, L.; Gao, H.; Yang, G.-J.; Fang, B. Semiconductor polymeric graphitic carbon nitride photocatalysts: The “holy grail” for the photocatalytic hydrogen evolution reaction under visible light. Energy Environ. Sci. 2019, 12, 2080–2147. [Google Scholar] [CrossRef]
- Tian, N.; Huang, H.; Du, X.; Dong, F.; Zhang, Y. Rational nanostructure design of graphitic carbon nitride for photocatalytic applications. J. Mater. Chem. A 2019, 7, 11584–11612. [Google Scholar] [CrossRef]
- Zhang, S.; Gu, P.; Ma, R.; Luo, C.; Wen, T.; Zhao, G.; Cheng, W.; Wang, X. Recent developments in fabrication and structure regulation of visible-light-driven g-C3N4-based photocatalysts towards water purification: A critical review. Catal. Today 2019, 335, 65–77. [Google Scholar] [CrossRef]
- Shi, F.; Liu, Z.; Li, J.; Gao, H.; Qin, S.; Guo, J. Alterations in microbial community during the remediation of a black-odorous stream by acclimated composite microorganisms. J. Environ. Sci. 2022, 118, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Mai, Y.; Liang, Y.; Cheng, M.; He, Z.; Yu, G. Coupling oxidation of acid volatile sulfide, ferrous iron, and ammonia nitrogen from black-odorous sediment via autotrophic denitrification-anammox by nitrate addition. Sci. Total Environ. 2021, 790, 147972. [Google Scholar] [CrossRef] [PubMed]
- Shao, M.-F.; Zhang, T.; Fang, H.H.-P. Sulfur-driven autotrophic denitrification: Diversity, biochemistry, and engineering applications. Appl. Microbiol. Biotechnol. 2010, 88, 1027–1042. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, X.; Fang, W.; Cheng, Y.; Cai, H.; Zhang, S. Impact of different types of anthropogenic pollution on bacterial community and metabolic genes in urban river sediments. Sci. Total Environ. 2021, 793, 148475. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhao, F.; Li, X.; Lu, W. Contribution of influent rivers affected by different types of pollution to the changes of benthic microbial community structure in a large lake. Ecotoxicol. Environ. Saf. 2020, 198, 110657. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wu, Z.; Sun, Q.; Ding, Y.; Ding, Z.; Sun, L. Response of chemical properties, microbial community structure and functional genes abundance to seasonal variations and human disturbance in Nanfei River sediments. Ecotoxicol. Environ. Saf. 2019, 183, 109601. [Google Scholar] [CrossRef]
- Wang, L.; Yu, L.; Xiong, Y.; Li, Z.; Geng, J. Study on the governance of black-odor water in Chinese cities. J. Clean. Prod. 2021, 308, 127290. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, L.; Zhang, X.; He, M.; Wang, D.; Ren, Y.; Yao, H.; net Victoria Ngegla, J.; Pan, H. Effects of different types of anthropogenic disturbances and natural wetlands on water quality and microbial communities in a typical black-odor river. Ecol. Indic. 2022, 136, 108613. [Google Scholar] [CrossRef]
- Guo, Q.; Planer-Friedrich, B.; Liu, M.; Li, J.; Zhou, C.; Wang, Y. Arsenic and thioarsenic species in the hot springs of the Rehai magmatic geothermal system, Tengchong volcanic region, China. Chem. Geol. 2017, 453, 12–20. [Google Scholar] [CrossRef]
- Basili, M.; Campanelli, A.; Frapiccini, E.; Luna, G.M.; Quero, G.M. Occurrence and distribution of microbial pollutants in coastal areas of the Adriatic Sea influenced by river discharge. Environ. Pollut. 2021, 285, 117672. [Google Scholar] [CrossRef]
- Li, D.; Pan, B.; Han, X.; Li, J.; Zhu, Q.; Li, M. Assessing the potential to use CDOM as an indicator of water quality for the sediment-laden Yellow river, China. Environ. Pollut. 2021, 289, 117970. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Xie, X.; Peng, K.; Wang, N.; Zhang, Y.; Deng, Y.; Gan, Y.; Li, Q.; Zhang, Y. Sources and compositional characterization of chromophoric dissolved organic matter in a Hainan tropical mangrove-estuary. J. Hydrol. 2021, 600, 126572. [Google Scholar] [CrossRef]
- Li, S.; Fan, R.; Luo, D.; Xue, Q.; Li, L.; Yu, X.; Huang, T.; Yang, H.; Huang, C. Variation in quantity and quality of rainwater dissolved organic matter (DOM) in a peri-urban region: Implications for the effect of seasonal patterns on DOM fates. Atmos. Environ. 2020, 239, 117769. [Google Scholar] [CrossRef]
- Amonette, J.E.; Charles Templeton, J. Improvements to the Quantitative Assay of Nonrefractory Minerals for Fe(II) and Total Fe Using 1,10-Phenanthroline. Clays Clay Miner. 1998, 46, 51–62. [Google Scholar] [CrossRef]
- GB 3838-2002; Environmental Quality Standard for Surface Water. China Environmental Science Press: Beijing, China, 2002.
- Ministry of Housing and Urban-Rural Development, China. Working Guidelines for the Treatment of Urban Black-Odorous Water. Available online: https://www.mohurd.gov.cn/gongkai/fdzdgknr/bzgf/index.html (accessed on 2 February 2022).
- World Health Organization. A Global Overview of National Regulations and Standards for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2021; ISSN 978-92-4-002364-2. [Google Scholar]
- Shen, Q.; Zhou, Q.; Shang, J.; Shao, S.; Zhang, L.; Fan, C. Beyond hypoxia: Occurrence and characteristics of black blooms due to the decomposition of the submerged plant Potamogeton crispus in a shallow lake. J. Environ. Sci. 2014, 26, 281–288. [Google Scholar] [CrossRef]
- Sheng, Y.; Qu, Y.; Ding, C.; Sun, Q.; Mortimer, R.J.G. A combined application of different engineering and biological techniques to remediate a heavily polluted river. Ecol. Eng. 2013, 57, 1–7. [Google Scholar] [CrossRef]
- Wang, M.; Lu, H.; Li, H.; Qian, X. Pollution level and ecological risk assessment of heavy metals in typical rivers of Taihu basin. Environ. Chem. 2016, 35, 2025–2035. [Google Scholar] [CrossRef]
- Li, C.; Quan, Q.; Gan, Y.; Dong, J.; Fang, J.; Wang, L.; Liu, J. Effects of heavy metals on microbial communities in sediments and establishment of bioindicators based on microbial taxa and function for environmental monitoring and management. Sci. Total Environ. 2020, 749, 141555. [Google Scholar] [CrossRef]
- Chai, N.; Yi, X.; Xiao, J.; Liu, T.; Liu, Y.; Deng, L.; Jin, Z. Spatiotemporal variations, sources, water quality and health risk assessment of trace elements in the Fen River. Sci. Total Environ. 2021, 757, 143882. [Google Scholar] [CrossRef]
- Yuan, J.; Shentu, J.; Feng, J.; Lu, Z.; Xu, J.; He, Y. Methane-associated micro-ecological processes crucially improve the self-purification of lindane-polluted paddy soil. J. Hazard. Mater. 2021, 407, 124839. [Google Scholar] [CrossRef]
- Li, E.; Deng, T.; Yan, L.; Zhou, J.; He, Z.; Deng, Y.; Xu, M. Elevated nitrate simplifies microbial community compositions and interactions in sulfide-rich river sediments. Sci. Total Environ. 2021, 750, 141513. [Google Scholar] [CrossRef] [PubMed]
- Dahl, C. A biochemical view on the biological sulfur cycle. Environ. Technol. Treat Sulfur Pollut. Princ. Eng. 2020, 2, 55–96. [Google Scholar] [CrossRef]
- Lovley, D. Dissimilatory Fe (III) and Mn (IV) reduction. Microbiol. Rev. 1991, 55, 259–287. [Google Scholar] [CrossRef] [PubMed]
- Lewis, A.E. Review of metal sulphide precipitation. Hydrometallurgy 2010, 104, 222–234. [Google Scholar] [CrossRef]
- Zhang, C.; Ge, Y.; Yao, H.; Chen, X.; Hu, M. Iron oxidation-reduction and its impacts on cadmium bioavailability in paddy soils: A review. Front. Environ. Sci. Eng. 2012, 6, 509–517. [Google Scholar] [CrossRef]
- Tebo, B.M.; Bargar, J.R.; Clement, B.G.; Dick, G.J.; Murray, K.J.; Parker, D.; Verity, R.; Webb, S.M. Biogenic manganese oxides: Properties and mechanisms of formation. Annu. Rev. Earth Planet. Sci. 2004, 32, 287–328. [Google Scholar] [CrossRef] [Green Version]
- Seager, S.; Schrenk, M.; Bains, W. An astrophysical view of Earth-based metabolic biosignature gases. Astrobiology 2012, 12, 61–82. [Google Scholar] [CrossRef]
- Xing, P.; Guo, L.; Tian, W.; Wu, Q.L. Novel Clostridium populations involved in the anaerobic degradation of Microcystis blooms. ISME J. 2011, 5, 792–800. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Yang, H.; Lan, S.; Wang, C.; Li, X.; Xing, Y.; Yue, H.; Li, Q.; Wang, L.; Xie, Y. Evolution of urban black and odorous water: The characteristics of microbial community and driving-f actors. J. Environ. Sci. 2022, 112, 94–105. [Google Scholar] [CrossRef]
- Zhang, X.; Kong, D.; Liu, X.; Xie, H.; Lou, X.; Zeng, C. Combined microbial degradation of crude oil under alkaline conditions by Acinetobacter baumannii and Talaromyces sp. Chemosphere 2021, 273, 129666. [Google Scholar] [CrossRef]
- Kong, M.; Han, T.; Chen, M.; Zhao, D.; Chao, J.; Zhang, Y. High mobilization of phosphorus in black-odor river sediments with the increase of temperature. Sci. Total Environ. 2021, 775, 145595. [Google Scholar] [CrossRef]
- Ding, X.-L.; Li, Y.-M.; Lü, H.; Zhu, L.; Wen, S.; Lei, S.-H. Analysis of Absorption Characteristics of Urban Black-odor Water. Huan Jing Ke Xue 2018, 39, 4519–4529. [Google Scholar] [CrossRef] [PubMed]
- Ghaffarinasab, S.; Motamedian, E. Improving ethanol production by studying the effect of pH using a modified metabolic model and a systemic approach. Biotechnol. Bioeng. 2021, 118, 2934–2946. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wu, L.; Yang, L.; Liu, C.; Li, J.; Li, N. Combined impact of organic matter, phosphorus, nitrate, and ammonia nitrogen on the process of blackwater. Environ. Sci. Pollut. Res. 2021, 28, 32831–32843. [Google Scholar] [CrossRef] [PubMed]
- Tsui, T.-H.; Zhang, L.; Zhang, J.; Dai, Y.; Tong, Y.W. Engineering interface between bioenergy recovery and biogas desulfurization: Sustainability interplays of biochar application. Renew. Sustain. Energy Rev. 2022, 157, 112053. [Google Scholar] [CrossRef]
- Tsui, T.-H.; Zhang, L.; Zhang, J.; Dai, Y.; Tong, Y.W. Methodological framework for wastewater treatment plants delivering expanded service: Economic tradeoffs and technological decisions. Sci. Total Environ. 2022, 823, 153616. [Google Scholar] [CrossRef]
- Hao, T.-W.; Xiang, P.-Y.; Mackey, H.R.; Chi, K.; Lu, H.; Chui, H.-K.; van Loosdrecht, M.C.M.; Chen, G.-H. A review of biological sulfate conversions in wastewater treatment. Water Res. 2014, 65, 1–21. [Google Scholar] [CrossRef]
Mechanisms | Reaction Names | Dominant Type | Reaction Equation | |
---|---|---|---|---|
Blackening of waterbodies | Sulfate respiration | Biology | 8 H+ + SO42− + 8 e− → S2− + 4 H2O | (Hausmann et al., 2018) [9] |
Sulfite respiration | Biology | 6 H+ + SO32− + 6 e− → S2− + 3 H2O | (Hausmann et al., 2018) [9] | |
Thiosulfate respiration | Biology | 6 H+ + S2O32− + 8 e− → S2− + 3 H2O | (Dahl, 2020) [45] | |
Sulfur respiration | Biology | S + 2 e− → S2− | (Dahl, 2020) [45] | |
Fe(III) reduction | Biology/Chemistry | 3 H+ + FeOOH+e− → Fe2+ + 2 H2O | (Lovley, 1991) [46] | |
Mn(IV)-reduction | Biology/Chemistry | 2e− + MnO2 + 4 H+ → Mn2+ + 2 H2O | (Lovley, 1991) [46] | |
Metal sulfide precipitation | Chemistry | Fe2 + +S2− → FeS | (Lewis, 2010) [47] | |
Mn2 + +S2− → MnS | (Lewis, 2010) [47] | |||
Fermentation | Biology | Organic matter → CDOM (Polysaccharides, Amino acids, Aromatic proteins, Humic acid, Antibiotics) | (Cao et al., 2020) [1] | |
Sulfate reducation | Biology | 10 H+ + SO42− + 8 e− → H2S + 4 H2O | (Hausmann et al., 2018) [9] | |
Sulfite respiration | Biology | 8 H+ + SO32− + 6 e− → H2S + 3 H2O | (Hausmann et al., 2018) [9] | |
Thiosulfate respiration | Biology | 8 H+ + S2O32− + 8 e− → H2S + 3 H2O | (Hausmann et al., 2018) [9] | |
Sulfur respiration | Biology | 2H+ + S + 2 e− → H2S | (Hausmann et al., 2018) [9] | |
Remediation for black-odor waterbodies | Sulfite oxidation | Biology/Chemistry | 4 OH− + H2S − 8 e− → SO42− + 6H+ | (Dahl, 2020; Hausmann et al., 2018) [9,45] |
Fe(II) oxidation | Biology/Chemistry | FeS + 6 H2O − 9 e− → 11 H+ + FeOOH + SO42− | (Zhang et al., 2012) [48] | |
Mn(II) oxidation | Biology/Chemistry | MnS + 6 H2O − 10 e− → 12 H+ + MnO2 + SO42− | (Tebo et al., 2004) [49] | |
Aerobic chemo-heterotrophy | Biology/Chemistry | Organic matter → CO2 + H2O | (Seager et al., 2012) [50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Ren, Y.; Zhu, X.; Pan, H.; Yao, H.; Wang, J.; Liu, M.; He, M. Driving Factors for Black-Odor-Related Microorganisms and Potential Self-Remediation Strategies. Sustainability 2023, 15, 521. https://doi.org/10.3390/su15010521
Zhang X, Ren Y, Zhu X, Pan H, Yao H, Wang J, Liu M, He M. Driving Factors for Black-Odor-Related Microorganisms and Potential Self-Remediation Strategies. Sustainability. 2023; 15(1):521. https://doi.org/10.3390/su15010521
Chicago/Turabian StyleZhang, Xun, Yufeng Ren, Xianbin Zhu, Hongzhong Pan, Huaming Yao, Jiaming Wang, Mingliang Liu, and Minghuang He. 2023. "Driving Factors for Black-Odor-Related Microorganisms and Potential Self-Remediation Strategies" Sustainability 15, no. 1: 521. https://doi.org/10.3390/su15010521
APA StyleZhang, X., Ren, Y., Zhu, X., Pan, H., Yao, H., Wang, J., Liu, M., & He, M. (2023). Driving Factors for Black-Odor-Related Microorganisms and Potential Self-Remediation Strategies. Sustainability, 15(1), 521. https://doi.org/10.3390/su15010521