Native Rhizospheric Microbes Mediated Management of Biotic Stress and Growth Promotion of Tomato
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbial Cultures
2.2. Plant Growth Promoting Activities
2.3. Exopolysaccharides and Biofilm Study
2.4. Seed Germination Assay
2.5. Pot Experiment: In Vivo Study
2.6. Scanning Electron Microscope (SEM) Analysis
2.7. Percentage Disease Index (PDI)
2.8. Photosynthetic Pigments
2.9. Statistical Analysis
3. Results
3.1. Plant Growth Promoting, EPS Production and Biofilm Activity
3.2. Seed Germination
3.3. In Vivo Study-Pot Experiment
3.4. Effect on Photosynthetic Pigment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, S.A.; Ferreira, J.P.; LeJeune, J.T. Antimicrobial Use and Resistance in Plant Agriculture: A One Health Perspective. Agriculture 2022, 12, 289. [Google Scholar] [CrossRef]
- Sachdev, S.; Ansari, S.A.; Ansari, M.I.; Fujita, M.; Hasanuzzaman, M. Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants 2021, 10, 277. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, C.; Birah, A.; Jalali, B.L. Climate change: Impact on biotic stresses afflicting crop plants. In Natural Resource Management: Ecological Perspectives; Peshin, R., Dhawan, A.K., Eds.; Springer: Cham, Switzerland, 2019; pp. 133–146. [Google Scholar]
- Attia, M.S.; El-Sayyad, G.S.; Abd Elkodous, M.; El-Batal, A.I. The effective antagonistic potential of plant growth-promoting rhizobacteria against Alternaria solani-causing early blight disease in tomato plant. Sci. Hortic. 2020, 266, 109289. [Google Scholar] [CrossRef]
- Gulzar, N.; Ali, S.; Shah, M.A.; Kamili, A.N. Silicon supplementation improves early blight resistance in Lycopersicon esculentum Mill. by modulating the expression of defense-related genes and antioxidant enzymes. 3 Biotech 2021, 11, 232. [Google Scholar] [CrossRef] [PubMed]
- Maurya, S.; Regar, R.; Kumar, S.; Dubey, S. Management Tactics for Early Blight of Tomato Caused by Alternaria Solani: A Review. J. Plant Biol. Crop. Res. 2022, 5, 1062. [Google Scholar]
- Mohamed, A.A.; Salah, M.M.; El-Dein, M.M.Z.; EL-Hefny, M.; Ali, H.M.; Farraj, D.A.A.; Hatamleh, A.A.; Salem, M.Z.; Ashmawy, N.A. Ecofriendly bioagents, Parthenocissus quinquefolia, and Plectranthus neochilus extracts to control the early blight pathogen (Alternaria solani) in tomato. Agronomy 2021, 11, 911. [Google Scholar] [CrossRef]
- Sowmya, V.; Chandra, R. In vitro and in vivo efficacy of chemical fungicides against early blight of tomato (Solanum lycopersicum L.) incited by Alternaria solani (Ell. & Mart.). J. Pharmacogn. Phytochem. 2021, 10, 833–837. [Google Scholar]
- Herrera-Téllez, V.I.; Cruz-Olmedo, A.K.; Plasencia, J.; Gavilanes-Ruíz, M.; Arce-Cervantes, O.; Hernández-León, S.; Saucedo-García, M. The protective effect of Trichoderma asperellum on tomato plants against Fusarium oxysporum and Botrytis cinerea diseases involves inhibition of reactive oxygen species production. Int. J. Mol. Sci. 2019, 20, 2007. [Google Scholar] [CrossRef] [Green Version]
- Chohan, S.; Perveen, R.; Anees, M.; Azeem, M.; Abid, M. Estimation of secondary metabolites of indigenous medicinal plant extracts and their in vitro and in vivo efficacy against tomato early blight disease in Pakistan. J. Plant Dis. Prot. 2019, 126, 553–563. [Google Scholar] [CrossRef]
- Sachdev, S.; Singh, R.P. Sustainable management of soil borne pathogens of tomato. Int. J. Sci. Technol. Soc. 2017, 3, 36–40. [Google Scholar]
- Kulimushi, S.M.; Muiru, W.M.; Mutitu, E.W. Potential of Trichoderma spp., Bacillus subtilis and Pseudomonas fluorescens in the management of early blight in tomato. Biocontrol. Sci. Technol. 2021, 31, 912–923. [Google Scholar] [CrossRef]
- Natsiopoulos, D.; Tziolias, A.; Lagogiannis, I.; Mantzoukas, S.; Eliopoulos, P.A. Growth-Promoting and Protective Effect of Trichoderma atrobrunneum and T. simmonsii on Tomato against Soil-Borne Fungal Pathogens. Crops 2022, 2, 202–217. [Google Scholar] [CrossRef]
- Shanmugam, V.; Kanoujia, N. Biological management of vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycospersici by plant growth-promoting rhizobacterial mixture. Biol. Control 2011, 57, 85–93. [Google Scholar]
- Babu, A.N.; Jogaiah, S.; Ito, S.I.; Nagaraj, A.K.; Tran, L.S.P. Improvement of growth, fruit weight and early blight disease protection of tomato plants by rhizosphere bacteria is correlated with their beneficial traits and induced biosynthesis of antioxidant peroxidase and polyphenol oxidase. Plant Sci. 2015, 231, 62–73. [Google Scholar] [CrossRef]
- Sachdev, S.; Singh, R.P. Trichoderma: A multifaceted fungus for sustainable agriculture. In Ecological and Practical Applications for Sustainable Agriculture; Buddha, K., Kumar, S., Singh, R.P., Korstad, J., Eds.; Springer: Singapore, 2020; pp. 261–304. [Google Scholar]
- Sachdev, S.; Singh, R.P. Root colonization: Imperative mechanism for efficient plant protection and growth. MOJ Eco. Environ. Sci. 2018, 3, 240–242. [Google Scholar]
- Sachdev, S.; Ansari, M.I. Role of Plant Microbiome Under Stress Environment to Enhance Crop Productivity. In Augmenting Crop Productivity in Stress Environment; Ansari, S.A., Ansari, M.I., Husen, A., Eds.; Springer: Singapore, 2022; pp. 205–221. [Google Scholar]
- Dilnashin, H.; Birla, H.; Hoat, T.X.; Singh, H.B.; Singh, S.P.; Keswani, C. Applications of agriculturally important microorganisms for sustainable crop production. In Molecular Aspects of Plant Beneficial Microbes in Agriculture; Sharma, V., Salwan, R., Al-Ani, L.K.T., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 403–415. [Google Scholar]
- Sood, M.; Kapoor, D.; Kumar, V.; Sheteiwy, M.S.; Ramakrishnan, M.; Landi, M.; Araniti, F.; Sharma, A. Trichoderma: The “secrets” of a multitalented biocontrol agent. Plants 2020, 9, 762. [Google Scholar] [CrossRef]
- Samaras, A.; Nikolaidis, M.; Antequera-Gómez, M.L.; Cámara-Almirón, J.; Romero, D.; Moschakis, T.; Amoutzias, G.D.; Karaoglanidis, G.S. Whole genome sequencing and root colonization studies reveal novel insights in the biocontrol potential and growth promotion by Bacillus subtilis MBI 600 on cucumber. Front. Microbiol. 2021, 11, 600393. [Google Scholar] [CrossRef]
- Nguvo, K.J.; Gao, X. Weapons hidden underneath: Bio-control agents and their potentials to activate plant induced systemic resistance in controlling crop Fusarium diseases. J. Plant Dis. Prot. 2019, 126, 177–190. [Google Scholar] [CrossRef]
- Gupta, R.; Bar, M. Plant immunity, priming, and systemic resistance as mechanisms for Trichoderma spp. biocontrol. In Trichoderma: Host Pathogen Interactions and Applications; Sharma, A.K., Sharma, P., Eds.; Springer: Singapore, 2020; pp. 81–110. [Google Scholar]
- Pieterse, C.M.; Zamioudis, C.; Berendsen, R.L.; Weller, D.M.; Van Wees, S.C.; Bakker, P.A. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 2014, 52, 347–375. [Google Scholar] [CrossRef] [Green Version]
- Keswani, C. Ecofriendly management of plant diseases by biosynthesized secondary metabolites of Trichoderma spp. J. Brief. Idea 2015. [Google Scholar] [CrossRef]
- Abo-Elyousr, K.A.; Abdel-Rahim, I.R.; Almasoudi, N.M.; Alghamdi, S.A. Native endophytic Pseudomonas putida as a biocontrol agent against common bean rust caused by Uromyces appendiculatus. J. Fungi 2021, 7, 745. [Google Scholar] [CrossRef] [PubMed]
- Nifakos, K.; Tsalgatidou, P.C.; Thomloudi, E.E.; Skagia, A.; Kotopoulis, D.; Baira, E.; Delis, C.; Papadimitriou, K.; Markellou, E.; Venieraki, A.; et al. Genomic analysis and secondary metabolites production of the endophytic Bacillus velezensis Bvel1: A biocontrol agent against Botrytis cinerea causing bunch rot in post-harvest table grapes. Plants 2021, 10, 1716. [Google Scholar] [CrossRef] [PubMed]
- Poveda, J. Trichoderma as biocontrol agent against pests: New uses for a mycoparasite. Biol. Control 2021, 159, 104634. [Google Scholar] [CrossRef]
- Weng, W.; Yan, J.; Zhou, M.; Yao, X.; Gao, A.; Ma, C.; Cheng, J.; Ruan, J. Roles of Arbuscular mycorrhizal Fungi as a Biocontrol Agent in the Control of Plant Diseases. Microorganisms 2022, 10, 1266. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.E.; Adbelghany, R.E. Effectiveness of some biotic and abiotic agents to control tomato early blight disease caused by Alternaria solani. Egypt. J. Phytopathol. 2021, 49, 114–128. [Google Scholar] [CrossRef]
- Cucu, M.A.; Gilardi, G.; Pugliese, M.; Gullino, M.L.; Garibaldi, A. An assessment of the modulation of the population dynamics of pathogenic Fusarium oxysporum f. sp. lycopersici in the tomato rhizosphere by means of the application of Bacillus subtilis QST 713, Trichoderma sp. TW2 and two composts. Biol. Control 2020, 142, 104158. [Google Scholar]
- Pellegrini, M.; Spera, D.M.; Ercole, C.; Del Gallo, M. Allium cepa L. inoculation with a consortium of plant growth-promoting bacteria: Effects on plants, soil, and the autochthonous microbial community. Microorganisms 2021, 9, 639. [Google Scholar] [CrossRef]
- Samaddar, S.; Chatterjee, P.; Choudhury, A.R.; Ahmed, S.; Sa, T. Interactions between Pseudomonas spp. and their role in improving the red pepper plant growth under salinity stress. Microbiol. Res. 2019, 219, 66–73. [Google Scholar] [CrossRef]
- Ju, W.; Liu, L.; Fang, L.; Cui, Y.; Duan, C.; Wu, H. Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil. Ecotoxicol. Environ. Saf. 2019, 167, 218–226. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Wang, Y.; Suo, M.; Wu, H.; Zhao, M.; Yang, H. Inoculation with Penicillium citrinum aids ginseng in resisting Fusarium oxysporum by regulating the root and rhizosphere microbial communities. Rhizosphere 2022, 22, 100535. [Google Scholar] [CrossRef]
- Sachdev, S.; Singh, R.P. Current challenges, constraints and future strategies for development of successful market for biopesticides. Clim. Change Environ. Sustain. 2016, 4, 129–136. [Google Scholar] [CrossRef]
- Coninck, E.; Scauflaire, J.; Gollier, M.; Liénard, C.; Foucart, G.; Manssens, G.; Munaut, F.; Legrève, A. Trichoderma atroviride as a promising biocontrol agent in seed coating for reducing Fusarium damping-off on maize. J. Appl. Microbiol. 2020, 129, 637–651. [Google Scholar] [CrossRef]
- Lahlali, R.; Ezrari, S.; Radouane, N.; Kenfaoui, J.; Esmaeel, Q.; El Hamss, H.; Belabess, Z.; Barka, E.A. Biological control of plant pathogens: A global perspective. Microorganisms 2022, 10, 596. [Google Scholar] [CrossRef]
- Basco, M.J.; Bisen, K.; Keswani, C.; Singh, H.B. Biological management of Fusarium wilt of tomato using biofortified vermicompost. Mycosphere 2017, 8, 467–483. [Google Scholar] [CrossRef]
- Pandey, V.N.; Dubey, N.K. Antifungal potential ofleaves and essential oils from higher plants against soil phytopathogens. Soil Biol. Biochem. 1994, 26, 1417–1421. [Google Scholar] [CrossRef]
- Singh, P.C.; Shukla, D.; Fatima, T.; Nautiyal, C.S.; Johri, J.K. Biological Control of Fusarium sp. NBRI-PMSF12 Pathogenic to Cultivated Betelvine by Bacillus sp. NBRI-W9, a Potential Biological Control Agent. J. Plant Growth Regul. 2016, 36, 106–117. [Google Scholar] [CrossRef]
- Sachdev, S.; Singh, R.P. Isolation, characterisation and screening of native microbial isolates for biocontrol of fungal pathogens of tomato. Clim. Change Environ. Sustain. 2018, 6, 46–58. [Google Scholar] [CrossRef]
- Brick, J.M.; Bostock, R.M.; Silverstone, S.E. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl. Environ. Microbiol. 1991, 57, 535–538. [Google Scholar] [CrossRef] [Green Version]
- Gaur, A.C. Physiological functions of phosphate solubilizing micro-organisms. In Phosphate Solubilizing Microorganisms as Biofertilizers; Omega Scientific Publishers: New Delhi, India, 1990; pp. 16–72. [Google Scholar]
- Saravanan, V.S.; Madhaiyan, M.; Thangaraju, M. Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 2007, 66, 1794–1798. [Google Scholar] [CrossRef]
- Edi-Premono, M.; Moawad, A.M.; Vlek, P.L.G. Effect of phosphate-solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere. Indones. J. Crop Sci. 1996, 11, 13–23. [Google Scholar]
- Yadav, P.; Sundari, K.S. Plant growth promoting Rhizobacteria: An effective tool to remediate residual organophosphate pesticide methyl parathion, widely used in Indian agriculture. J. Environ. Res. Dev. 2015, 9, 1138–1149. [Google Scholar]
- Thakkar, A.; Saraf, M. Development of microbial consortia as a biocontrol agent for effective management of fungal diseases in Glycine max L. Arch. Phytopathol. Plant Prot. 2015, 48, 459–474. [Google Scholar] [CrossRef]
- Sundaramoorthy, S.; Balabaskar, P. Biocontrol efficacy of Trichoderma spp. against wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici. J. Appl. Biol. Biotechnol. 2013, 1, 1–4. [Google Scholar]
- Mehmood, T.; Li, G.; Anjum, T.; Akram, W. Azospirillum lipoferum strain AL-3 reduces early blight disease of potato and enhance yield. Crop Prot. 2021, 139, 105349. [Google Scholar] [CrossRef]
- Mycock, D.J.; Berjak, P. In defence of aldehyde—Osmium fixation and critical-point drying for characterization of seed-storage fungi by scanning electron microscopy. J. Microsc. 1991, 163, 321–331. [Google Scholar] [CrossRef]
- Akkopru, A.; Demir, S. Biological control of Fusarium wilt in tomato caused by Fusarium oxysporum f. sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. J. Phytopathol. 2005, 153, 544–550. [Google Scholar]
- Wheeler, B.E.J. An Introduction to Plant Diseases; The English Language Book Society and John Wiley and Sons Limited: London, UK, 1969. [Google Scholar]
- Bora, T.; Ozaktan, H.; Gore, E.; Aslan, E. Biological control of Fusarium oxysporum f. sp. melonis by wettable powder formulations of the two strains of Pseudomonas putida. J. Phytopathol. 2004, 152, 471–475. [Google Scholar]
- Horsfall, J.G.; Barratt, R.W. An improved grading system for measuring plant diseases (Abstr.). Phytopathology 1945, 35, 655. [Google Scholar]
- Sahu, D.K.; Khare, C.P.; Patel, R. Seasonal occurrence of tomato diseases and survey of early blight in major tomato-growing regions of Raipur District. Ecoscan 2013, 4, 153–157. [Google Scholar]
- Maclachlan, C.; Zalik, S. Plastid structure, chlorophyll concentration and free amino acid composition of a chlorophyll mutant of barley. Can. J. Bot. 1963, 41, 1053–1062. [Google Scholar] [CrossRef]
- Duxbury, A.C.; Yentsch, C.S. Plankton pigment monograph. J. Mar. Res. 1956, 15, 92–101. [Google Scholar]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 2nd ed.; Iowa State University Press: Ames, IA, USA, 1982; p. 507. [Google Scholar]
- Hartmann, A.; Schmid, M.; Van Tuinen, D.; Berg, G. Plant-driven selection of microbes. Plant Soil. 2009, 321, 235–257. [Google Scholar] [CrossRef]
- Mathivanan, S.; Chidambaram, A.A.; Robert, G.A.; Kalaikandhan, R. Impact of PGPR inoculation on photosynthetic pigment and protein contents in Arachis hypogaea L. J. Sci. Agric. 2017, 1, 29–36. [Google Scholar]
- Pirttilä, A.M.; Mohammad Parast Tabas, H.; Baruah, N.; Koskimäki, J.J. Biofertilizers and biocontrol agents for agriculture: How to identify and develop new potent microbial strains and traits. Microorganisms 2021, 9, 817. [Google Scholar] [CrossRef]
- Bardin, M.; Nicot, P.C. Microorganisms as Biocontrol Products. In Extended Biocontrol; Springer: Dordrecht, The Netherlands, 2022; pp. 127–136. [Google Scholar]
- Ferreira, F.V.; Musumeci, M.A. Trichoderma as biological control agent: Scope and prospects to improve efficacy. World J. Microbiol. Biotechnol. 2021, 37, 90. [Google Scholar] [CrossRef]
- Anees, M.; Tronsmo, A.; Edel-Hermann, V.; Hjeljord, L.G.; Héraud, C.; Steinberg, C. Characterization of field isolates of Trichoderma antagonistic against Rhizoctonia solani. Fungal Biol. 2010, 114, 691–701. [Google Scholar] [CrossRef]
- Etesami, H.; Alikhani, H.A.; Hosseini, H.M. Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. MethodsX 2015, 2, 72–78. [Google Scholar] [CrossRef]
- Kumawat, N.; Kumar, R.; Kumar, S.; Meena, V.S. Nutrient Solubilizing Microbes (NSMs): Its Role in Sustainable Crop Production. In Agriculturally Important Microbes for Sustainable Agriculture; Meena, V., Mishra, P., Bisht, J., Pattanayak, A., Eds.; Springer: Singapore, 2017; pp. 25–61. [Google Scholar]
- Ali, J.; Sharma, D.C.; Bano, A.; Gupta, A.; Sharma, S.; Bajpai, P.; Pathak, N. Exploiting Microbial Enzymes for Augmenting Crop Production. In Enzymes in Food Biotechnology: Production, Application and Future Prospects; Kuddus, M., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 503–519. [Google Scholar]
- Patten, C.L.; Glick, B.R. Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Appl. Environ. Microbiol. 2002, 68, 3795–3801. [Google Scholar] [CrossRef] [Green Version]
- Gravel, V.; Antoun, H.; Tweddell, R.J. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: Possible role of indole acetic acid (IAA). Soil Biol. Biochem. 2007, 39, 1968–1977. [Google Scholar] [CrossRef]
- Mwashasha, R.; Hunja, M.; Kahangi, E. The effect of inoculating plant growth promoting microorganisms on rice production. Int. J. Agric. Res. 2016, 9, 34–44. [Google Scholar]
- Riddech, N.; Sritongon, K.; Phibunwatthanawong, T. Production of plant growth promoting antagonistic Rhizobacteria to promote cucumber growth and control leaf spot disease (Corynespora cassiicola). Chiang Mai J. Sci. 2017, 44, 72–82. [Google Scholar]
- Yaish, M.W.; Antony, I.; Glick, B.R. Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance. Antonie Van Leeuwenhoek 2015, 107, 1519–1532. [Google Scholar] [CrossRef] [PubMed]
- Galletti, S.; Paris, R.; Cianchetta, S. Selected isolates of Trichoderma gamsii induce different pathways of systemic resistance in maize upon Fusarium verticillioides challenge. Microbiol. Res. 2020, 233, 126406. [Google Scholar] [CrossRef] [PubMed]
- Hajieghrari, B.; Mohammadi, M. Growth-promoting activity of indigenous Trichoderma isolates on wheat seed germination, seedling growth and yield. Aust. J. Crop Sci. 2016, 10, 1339. [Google Scholar] [CrossRef]
- Hermosa, R.; Rubio, M.B.; Cardoza, R.E.; Nicolás, C.; Monte, E.; Gutierrez, S. The contribution of Trichoderma to balancing the costs of plant growth and defense. Int. Microbiol. 2013, 16, 69–80. [Google Scholar]
- Hajieghrari, B. Effects of some Iranian Trichoderma isolates on maize seed germination and seedling vigor. Afr. J. Biotechnol. 2010, 9, 4342–4347. [Google Scholar]
- Tijerino, A.; Hermosa, R.; Cardoza, R.E.; Moraga, J.; Malmierca, M.G.; Aleu, J.; Collado, I.G.; Monte, E.; Gutierrez, S. Overexpression of the Trichoderma brevicompactum tri5 gene: Effect on the expression of the trichodermin biosynthetic genes and on tomato seedlings. Toxins 2011, 3, 1220–1232. [Google Scholar] [CrossRef] [Green Version]
- Palmieri, D.; Ianiri, G.; Del Grosso, C.; Barone, G.; De Curtis, F.; Castoria, R.; Lima, G. Advances and perspectives in the use of biocontrol agents against fungal plant diseases. Horticulturae 2022, 8, 577. [Google Scholar] [CrossRef]
- Ferrigo, D.; Mondin, M.; Edith, L.; Fabio, F.; Causin, R.; Raiola, A. Effect of seed biopriming with Trichoderma harzianum strain INAT11 on Fusarium ear rot and Gibberella ear rot diseases. Biol. Control 2020, 147, 104286. [Google Scholar] [CrossRef]
- Karthika, S.; Midhun, S.J.; Jisha, M.S. A potential antifungal and growth-promoting bacterium Bacillus sp. KTMA4 from tomato rhizosphere. Microb. Pathog. 2020, 142, 104049. [Google Scholar] [CrossRef]
- Sathiyanarayanan, G.; Dineshkumar, K.; Yang, Y.H. Microbial exopolysaccharide-mediated synthesis and stabilization of metal nanoparticles. Crit. Rev. Microbiol. 2017, 43, 731–752. [Google Scholar] [CrossRef]
- Bradáčová, K.; Florea, A.S.; Bar-Tal, A.; Minz, D.; Yermiyahu, U.; Shawahna, R.; Kraut-Cohen, J.; Zolti, A.; Erel, R.; Dietel, K.; et al. Microbial consortia versus single-strain inoculants: An advantage in PGPM-assisted tomato production? Agronomy 2019, 9, 105. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Tripathi, A.; Maji, D.; Awasthi, A.; Vajpayee, P.; Kalra, A. Evaluating the potential of combined inoculation of Trichoderma harzianum and Brevibacterium halotolerans for increased growth and oil yield in Mentha arvensis under greenhouse and field conditions. Ind. Crops Prod. 2019, 131, 173–181. [Google Scholar] [CrossRef]
- Eslahi, N.; Kowsari, M.; Motallebi, M.; Zamani, M.R.; Moghadasi, Z. Influence of recombinant Trichoderma strains on growth of bean (Phaseolus vulgaris L) by increased root colonization and induction of root growth related genes. Sci. Hortic. 2020, 261, 108932. [Google Scholar] [CrossRef]
- Song, G.C.; Im, H.; Jung, J.; Lee, S.; Jung, M.Y.; Rhee, S.K.; Ryu, C.M. Plant growth-promoting archaea trigger induced systemic resistance in Arabidopsis thaliana against Pectobacterium carotovorum and Pseudomonas syringae. Environ. Microbiol. 2018, 21, 940–948. [Google Scholar] [CrossRef]
- Chowdappa, P.; Kumar, S.M.; Lakshmi, M.J.; Upreti, K.K. Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biol. Control 2013, 65, 109–117. [Google Scholar] [CrossRef]
- Tanwar, A.; Aggarwal, A.; Kaushish, S.; Chauhan, S. Interactive Effect of AM Fungi with Trichoderma viride and Pseudomonas fluorescens on Growth and Yield of Broccoli. Plant Prot. Sci. 2013, 49, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Sachdev, S.; Singh, A.; Singh, R.P. Optimization of culture conditions for mass production and bio-formulation of Trichoderma using response surface methodology. 3 Biotech 2018, 8, 360. [Google Scholar] [CrossRef]
- Premachandra, D.; Hudek, L.; Brau, L. Bacterial modes of action for enhancing of plant growth. J. Biotechnol. Biomater. 2016, 6, 1–8. [Google Scholar]
- Hermosa, R.; Woo, S.L.; Lorito, M.; Monte, E. Proteomic approaches to understand Trichoderma biocontrol mechanisms and plant interactions. Curr. Proteom. 2010, 7, 298–305. [Google Scholar] [CrossRef]
- Harman, G.E.; Herrera-Estrella, A.H.; Horwitz, B.A.; Lorito, M. Special issue: Trichoderma-from basic biology to biotechnology. Microbiol.-Read. 2012, 158, 1–2. [Google Scholar] [CrossRef] [PubMed]
Treatments | Phosphate Solubilization Index (PSI Value) | IAA (μg/mL) | Zinc Solubilization Index (ZSI Value) | EPS Production | Biofilm Formation |
---|---|---|---|---|---|
Control # | - | - | - | - | - |
BS6 | - | - | - | - | - |
CS13 | - | - | - | - | - |
TvR1 | - | 1.82 ± 0.01 b | 1.62 ± 0.02 b | + | + |
TbS2 | - | 1.28 ± 0.03 a | 1.44 ± 0.01 a | + | + |
Treatments | Mean Seedling Length (cm) | Germination Percentage (%) | Seedling Vigor Index |
---|---|---|---|
Control # | 6.66 ± 0.30 a | 66.67 | 444.02 ± 16.08 a |
BS6 | 7.60 ± 0.27 b | 70 | 532.33 ± 18.85 b |
CS13 | 9.42 ± 0.31 c | 76.67 | 722.36 ± 23.80 c |
TvR1 | 11.10 ± 0.26 d | 90 | 999 ± 22.96 d |
TbS2 | 6.49 ± 0.25 a | 66.67 | 432.69 ± 16.37 a |
Treatments | Plant Height (cm) | Shoot fw (g) | Root fw (g) | Shoot dw (g) | Root dw (g) | Percentage Disease Index | Disease Reduction (%) |
---|---|---|---|---|---|---|---|
Control | 52.6 ± 2.6 de | 29.8 ± 0.8 b | 2.2 ± 0.1 ab | 6.8 ± 0.3 ab | 0.6 ± 0.04 bcd | 0 | 0 |
BS6 | 57.2 ± 2.3 efg | 32.4 ± 1.1 bc | 2.7 ± 0.3 bcd | 7.9 ± 0.2 d | 0.8 ± 0.01 de | - | - |
CS13 | 63.7 ± 2.2 hi | 37.7 ± 1.6 d | 3.3 ± 0.3 efg | 8.0 ± 0.2 d | 0.9 ± 0.03 ef | - | - |
TvR1 | 77.5 ± 1.8 k | 43.9 ± 1.6 e | 4.0 ± 0.2 g | 8.9 ± 0.2 e | 1.1 ± 0.12 g | - | - |
TbS2 | 51.3 ± 1.2 cde | 29.2 ± 1.1 b | 2.0 ± 0.2 a | 6.6 ± 0.1 ab | 0.7 ± 0.03 cde | - | - |
Fol | 40.4 ± 0.9 a | 22.2 ± 1.0 a | 1.8 ± 0.1 a | 6.2 ± 0.2 a | 0.4 ± 0.02 a | 52.78 | - |
Fol + BS6 | 54.4 ± 1.4 ef | 31.6 ± 0.7 b | 2.9 ± 0.2 cde | 7.1 ± 0.2 bc | 0.7 ± 0.05 cde | 47.22 | 10.53 |
Fol + CS13 | 60.4 ± 1.3 fgh | 35.8 ± 1.9 cd | 3.1 ± 0.2 def | 7.6 ± 0.2 cd | 0.7 ± 0.03 cde | 44.44 | 15.80 |
Fol + TvR1 | 70.3 ± 1.7 j | 45.7 ± 1.1 e | 3.7 ± 0.1 fg | 8.8 ± 0.1 e | 1.0 ± 0.06 fg | 36.11 | 31.58 |
Fol + TbS2 | 45.6 ± 1.2 abc | 21.4 ± 1.2 a | 2.0 ± 0.2 a | 6.5 ± 0.1 ab | 0.6 ± 0.04 bc | 42.00 | 20.42 |
A. solani | 45 ± 1.5 ab | 22.8 ± 1.2 a | 2.2 ± 0.1 ab | 6.4 ± 0.2 ab | 0.5 ± 0.08 ab | 43.70 | - |
A. solani + BS6 | 55.7 ± 2.6 efg | 30.3 ± 1.0 b | 2.8 ± 0.1 cde | 7.1 ± 0.3 bc | 0.6 ± 0.04 bc | 37.78 | 13.55 |
A. solani + CS13 | 61.6 ± 1.7 gh | 35.8 ± 1.2 cd | 3.1 ± 0.2 def | 7.8 ± 0.2 cd | 0.7 ± 0.03 cde | 36.88 | 15.61 |
A. solani + TvR1 | 67.9 ± 2.3 ij | 44.3 ± 1.6 e | 3.8 ± 0.2 g | 8.7 ± 0.3 e | 1.0 ± 0.08 g | 30.37 | 30.50 |
A. solani + TbS2 | 47.3 ± 2.7 bcd | 20.6 ± 0.6 a | 2.4 ± 0.1 abc | 6.4 ± 0.3 ab | 0.6 ± 0.04 bc | 31.80 | 13.90 |
Treatments | Shoot Length (cm) | Root Length (cm) | Shoot Fresh Weight (g) | Shoot Dry Weight (g) | Root Fresh Weight (g) | Root Dry Weight (g) | No. of Leaves | No. of Fruits | Percentage Disease Index | Disease Reduction (%) |
---|---|---|---|---|---|---|---|---|---|---|
Control | 69.8 ± 2.4 c | 27.2 ± 0.7 c | 50.8 ± 0.5 c | 11.0 ± 0.6 bc | 5.8 ± 0.2 b | 1.2 ± 0.06 b | 17 ± 1.5 bc | 5.33 ± 0.7 bcd | 0 | 0 |
TvR1 | 82.4 ± 1.7 g | 36.3 ± 0.9 ef | 57.3 ± 0.6 fg | 12.7 ± 0.6 cd | 7.7 ± 0.2 def | 2.0 ± 0.12 de | 23.3 ± 0.9 ef | 6 ± 0 bcd | - | - |
Fol | 50.7 ± 1.0 a | 15.7 ± 0.8 a | 39.9± 1.0 a | 8.3 ± 0.5 a | 4.6 ± 0.2 a | 0.9 ± 0.06 a | 14.3 ± 0.9 ab | 2.7 ± 0.3 a | 50 | - |
Fol + TvR1 | 77.6 ± 1.2 ef | 31.4 ± 0.7 d | 52.8± 1.4 cde | 11.7 ± 1.0 bcd | 7.2 ± 0.2 c | 1.7 ± 0.06 c | 21.3 ± 1.2 de | 5.7 ± 0.3 bcd | 35 | 30 |
A. solani | 62.5 ± 1.2 b | 20.7 ± 0.9 b | 45.4 ± 1.2 b | 9.6 ± 0.8 ab | 5.6 ± 0.2 ab | 1.1 ± 0.07 ab | 13 ± 1.0 a | 2.3 ± 0.7 a | 35 | - |
A. solani + TvR1 | 72.0 ± 0.8 cd | 31.2 ± 0.9 d | 54.4± 0.9 def | 11.4 ± 0.7 bcd | 7.6 ± 0.2 c | 1.7 ± 0.04 c | 19.7 ± 0.7 cd | 5 ± 0.6 bc | 26.20 | 25.14 |
Treatments | Chlorophyll a (mg/g fwt) | Chlorophyll b (mg/g fwt) | Total Chlorophyll (mg/g fwt) | Carotenoid (mg/g fwt) |
---|---|---|---|---|
Control | 0.13 ± 0.002 b | 0.09 ± 0.006 a | 0.22 ± 0.008 b | 0.24 ± 0.014 cd |
TvR1 | 0.33 ± 0.012 f | 0.33 ± 0.010 e | 0.65 ± 0.006 g | 0.26 ± 0.004 de |
Fol | 0.07 ± 0.001 a | 0.09 ± 0.003 a | 0.17 ± 0.003 a | 0.18 ± 0.005 a |
Fol + TvR1 | 0.28 ± 0.008 e | 0.29 ± 0.005 d | 0.57 ± 0.013 e | 0.32 ± 0.004 g |
A. solani | 0.1 ± 0.001 a | 0.11 ± 0.004 a | 0.2 ± 0.005 b | 0.21 ± 0.005 b |
A. solani + TvR1 | 0.25 ± 0.011 d | 0.21 ± 0.004 c | 0.46 ± 0.011 d | 0.21 ± 0.003 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sachdev, S.; Bauddh, K.; Singh, R.P. Native Rhizospheric Microbes Mediated Management of Biotic Stress and Growth Promotion of Tomato. Sustainability 2023, 15, 593. https://doi.org/10.3390/su15010593
Sachdev S, Bauddh K, Singh RP. Native Rhizospheric Microbes Mediated Management of Biotic Stress and Growth Promotion of Tomato. Sustainability. 2023; 15(1):593. https://doi.org/10.3390/su15010593
Chicago/Turabian StyleSachdev, Swati, Kuldeep Bauddh, and Rana Pratap Singh. 2023. "Native Rhizospheric Microbes Mediated Management of Biotic Stress and Growth Promotion of Tomato" Sustainability 15, no. 1: 593. https://doi.org/10.3390/su15010593
APA StyleSachdev, S., Bauddh, K., & Singh, R. P. (2023). Native Rhizospheric Microbes Mediated Management of Biotic Stress and Growth Promotion of Tomato. Sustainability, 15(1), 593. https://doi.org/10.3390/su15010593