Study on the Spatio-Temporal Evolution and Influential Factors of Green Innovation Efficiency in Urban Agglomerations of China
Abstract
:1. Introduction
2. Literature Review
2.1. Green Innovation Efficiency
2.2. Evaluation Methods of Green Innovation Efficiency
2.3. Influencing Factors of Green Innovation Efficiency
3. Research Design
3.1. Theoretical Framework
3.2. Research Methods
3.2.1. Super-SBM
3.2.2. Theil Index
3.2.3. Moran’s I Test
3.2.4. Spatial Econometric Model
3.3. Variable Design
3.3.1. Input–Output Indicator System
3.3.2. Influential Factors
3.4. Research Area and Data Source
3.4.1. Research Area
3.4.2. Data Source
4. Empirical Results
4.1. Spatio-Temporal Evolution Analysis of Green Innovation Efficiency
4.1.1. Temporal Evolution Characteristics
4.1.2. Spatial Evolution Characteristics
4.1.3. Analysis of Regional Differences
4.2. Driving Factor Analysis
4.2.1. Spatial Correlation Test
4.2.2. Empirical Results
4.2.3. Robustness Test
5. Discussion
5.1. Revisiting Green Innovation Efficiency in the UAs of China
5.2. Limitations and Potential Solutions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fang, C.L. Important Progress and Prospcts of China’s Urbanization and Urban Agglomeration in the Past 40 Years of Reform and Opening-Up. Econ. Geogr. 2018, 38, 1–9. [Google Scholar]
- Ren, Y.F.; Fang, C.L.; Lin, X.Q. Evaluation of eco-efficiency of four major urban agglomerations in eastern coastal area of China. Acta Geogr. Sin. 2017, 72, 2047–2063. [Google Scholar]
- Shuai, S.; Fan, Z. Modeling the role of environmental regulations in regional green economy efficiency of China: Empirical evidence from super efficiency DEA-Tobit model. J. Environ. Manag. 2020, 261, 110227. [Google Scholar] [CrossRef]
- Yan, Z.M.; Shi, R.; Du, K.; Yi, L. The role of green production process innovation in green manufacturing: Empirical evidence from OECD countries. Appl. Econ. 2022, 54, 6755–6767. [Google Scholar] [CrossRef]
- Lv, W.Y.; Xie, Y.X.; Lou, X.J. Study on the Space-time Transition and Convergence Trend of China’s Regional Green Innovation Efficiency. J. Quant. Tech. Econ. 2020, 37, 78–97. [Google Scholar]
- Zhang, C.J.; Hou, M.X.; Chen, Y.Q. Spatiotemporal Evolution Trend of Green Innovation Efficiency in the Yangtze River Economic Belt. Sci. Technol. Manag. Res. 2022, 42, 51–58. [Google Scholar]
- Xu, Y.J.; Liu, S.G. Spatial pattern evolution and influencing factors of green innovation efficiency in the Yellow River Basin. J. Nat. Resour. 2022, 37, 627–644. [Google Scholar] [CrossRef]
- Liu, J.; Song, Q.Y.; Liu, N.; Chi, C.G. Threshold effects of tourism agglomeration on the green innovation efficiency of China’s tourism industry. Chin. J. Popul. Resour. Environ. 2018, 16, 277–286. [Google Scholar] [CrossRef]
- Wang, X.; Chu, X. A study of green technology innovation and financing contracts arrangement in manufacturing industry. Stud. Sci. Sci. 2019, 37, 351–361. [Google Scholar]
- Fang, Z.; Bai, H.; Bilan, Y. Evaluation research of green innovation efficiency in China’s heavy polluting industries. Sustainability 2019, 12, 146. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.W.; Liang, S.R. Green technology innovation efficiency and factor decomposition of China’s industrial enterprises. China Popul. Resour. Environ. 2016, 26, 149–157. [Google Scholar]
- Xiao, L.M.; Zhang, X.P. Spatio-temporal characteristics of coupling coordination between green innovation efficiency and ecological welfare performance under the concept of strong sustainability. J. Nat. Resour. 2019, 34, 312–324. [Google Scholar] [CrossRef]
- Deng, H.B.; Lu, L. The Urban Tourism Efficiencies of Cities in Anhui Province Based on DEA Model. J. Nat. Resour. 2014, 29, 313–323. [Google Scholar]
- Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Lin, S.S. Evaluation of Green Innovation Efficiency at Provincial Level in China: Based on Super-SBM Model and ML Index. Technol. Innov. Manag. 2021, 42, 510–518. [Google Scholar]
- Yang, S.W.; Wu, T.; Li, Z.B. A Study on Spatial-temporal Differentiation and the Influencing Factors of Green Innovation Efficiency in Yangtze River Economic Belt. Macroeconomics 2018, 132, 107–117. [Google Scholar]
- Zhao, T.; Zhou, H.; Jiang, J.; Yan, W. Impact of Green Finance and Environmental Regulations on the Green Innovation Efficiency in China. Sustainability 2022, 14, 3206. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Q.H. The impact of smart city construction on urban green innovation efficiency. Stat. Decis. 2020, 36, 83–87. [Google Scholar]
- Xu, J.; Cui, J.B. Low-Carbon Cities and Firms’Green Technological Innovation. China Ind. Econ. 2020, 12, 178–196. [Google Scholar]
- Chen, F.C.; Wang, Z.; Guan, C.H. Green Innovation Effects of the National Innovative City Pilot Policy:Quasi-experimental Evidence from 281 Prefecture-level Cities. J. Beijing Norm. Univ. (Soc. Sci.) 2022, 1, 139–152. [Google Scholar]
- Hui, X. Regional R&D investment and new product development performance of enterprises under the background of knowledge activities. Open J. Soc. Sci. 2018, 6, 183–199. [Google Scholar]
- Bi, K.X.; Wang, Y.H.; Yang, C.J. Effect of Innovation Resources Input on Green Innovation Capability of Green Innovation System: Empirical Research from the Perspective of Manufacturing FDI Inflows. China Soft Sci. 2014, 3, 153–166. [Google Scholar]
- Qian, L.; Wang, W.P.; Xiao, R.Q. Green innovation efficiency and technology gap of Chinese enterprises in the perspective of high quality development. J. Ind. Eng. Eng. Manag. 2021, 35, 97–114. [Google Scholar]
- Peng, H.; Shen, N.; Ying, H.; Wang, Q. Can environmental regulation directly promote green innovation behavior?-based on situation of industrial agglomeration. J. Clean. Prod. 2021, 314, 128044. [Google Scholar] [CrossRef]
- Bao, H.; Teng, T.W.; Hu, S.L.; Ding, J. Spatial Differentiation and Influencing Factors of Urban Green Innovation Efficiency in Yangtze River Delta. Resour. Environ. Yangtze Basin 2022, 31, 273–284. [Google Scholar]
- Hansen, M.T.; Birkinshaw, J. The Innovation Value chain. Harv. Bus. Rev. 2007, 85, 121. [Google Scholar]
- Yan, T.; Zhang, X.P.; Chen, H.; Li, R.K. Evolution of Regional Differences in Urban Economic Development in China from 2001 to 2016. Econ. Geogr. 2019, 39, 11–20. [Google Scholar]
- Liang, S.R.; Luo, L.W. The dynamic effect of international R&D capital technology spillovers on the efficiency of green technology innovation. Sci. Res. Manag. 2019, 40, 21–29. [Google Scholar]
- Fang, C.L. China’s Urban Agglomeration and Metropolitan Area Construction Under the New Development Pattern. Econ. Geogr. 2021, 41, 1–7. [Google Scholar]
- Zhang, J.; Wu, G.Y.; Zhang, J.P. The Estimation of China’s Provincial Capital Stock: 1952–2000. Econ. Res. J. 2004, 10, 35–44. [Google Scholar]
- Bai, J.H.; Jiang, F.X. Synergy Innovation, Spatial Correlation and Regional Innovation Performance. Econ. Res. J. 2015, 50, 174–187. [Google Scholar]
- Sun, Y.M.; Chen, S.M. The spatio-temporal evolutionary pattern and driving forces mechanism of green technology innovation efficiency in the Yangtze River Delta region. Geogr. Res. 2021, 40, 2743–2759. [Google Scholar]
- Lan, H.X.; Zhao, X.Y. Spatial-Temporal Evolution and Innovation Environment Factors of Regional Innovation Efficiency in China. Econ. Geogr. 2020, 40, 97–107. [Google Scholar]
- Xiao, W.; Lin, G.B. Government support, R&D management and technological innovation Efficiency: An Empirical analysis of China’s industrial sectors. Manag. World 2014, 4, 71–80. [Google Scholar]
- Yan, H.F.; Xiao, J.; Feng, B. Evaluation on efficiency of industrial green technology innovation in Yangtze River Economic Belt and analysis of its influencing factors. Stat. Decis. 2022, 38, 96–101. [Google Scholar]
- Ding, X.Y.; Chen, H.S.; Tian, Z.; Wang, Y.X. Research on Green Innovation Efficiency Evaluation of China’s High-End Manufacturing Industry:From the Comparative Perspective of YREB and Non-YREB. Ecol. Econ. 2022, 38, 68–74. [Google Scholar]
- Cao, L.; Yang, H.C.; Li, L.S. Spatio-temporal differentiation and dynamic evolution of industrial green innovation efficiency. Stud. Sci. Sci. 2022, 40, 1895–1906. [Google Scholar]
- Hu, Y.L.; Liu, Y.L.; Wu, H.B. The Spatial-temporal Evolution of Green Innovation Efficiency in Hebei Province. J. Hebei Agric. Univ. (Soc. Sci.) 2022, 24, 40–47. [Google Scholar]
Index | Variables | Indicator Explanation |
---|---|---|
Input | Capital | Capital stock of fixed assets |
Science and technology expenditure/fiscal expenditure | ||
Labor | Number of employees in science and technology service industry | |
Energy | Comprehensive industrial energy consumption | |
Output | Society | Green areas in municipal districts |
Environment | Industrial SO2 emissions per GDP | |
Industrial soot and sulfur emissions per GDP | ||
Industrial waste water discharge per GDP | ||
Innovation | Number of papers published | |
Number of patent applications accepted |
Regions | Urban Agglomerations (Abbr.) | Cities |
---|---|---|
Eastern | Beijing–Tianjin–Hebei (BTH) | Beijing, Tianjin, Shijiazhuang, Tangshan, Baoding, Handan, Zhangjiakou, Chengde, Langfang, Qinhuangdao, Cangzhou, Xingtai, Hengshui |
Shandong Peninsula (SP) | Jinan, Qingdao, Zibo, Zaozhuang, Dongying, Yantai, Weifang, Jining, Tai’an, Weihai, Rizhao, Linyi, Dezhou, Liaocheng, Binzhou, Heze, Laiwu | |
Yangtze River Delta (YRD) | Shanghai, Nanjing, Suzhou, Wuxi, Changzhou, Nantong, Yangzhou, Taizhou, Zhenjiang, Yancheng, Hangzhou, Jiaxing, Shaoxing, Huzhou, Jinhua, Zhoushan, Ningbo, Wenzhou, Taizhou, Hefei, Ma’anshan, Tongling, Anqing, Xuancheng, Chuzhou, Chizhou, Wuhu | |
Western Strait (WS) | Fuzhou, Xiamen, Quanzhou, Putian, Zhangzhou, Sanming, Nanping, Ningde, Longyan, Lishui, Quzhou, Shangrao, Yingtan, Fuzhou, Ganzhou, Shantou, Chaozhou, Jieyang, Meizhou | |
Pearl River Delta (PRD) | Guangzhou, Shenzhen, Foshan, Dongguan, Zhongshan, Huizhou, Zhuhai, Jiangmen, Zhaoqing | |
South-central Liaoning (SCL) | Shenyang, Dalian, Anshan, Fushun, Benxi, Yingkou, Liaoyang, Tieling, Panjin | |
Central | Harbin–Changchun (HC) | Harbin, Daqing, Qiqihar, Suihua, Mudanjiang, Changchun, Jilin, Siping, Liaoyuan, Songyuan |
Central Henan (CH) | Zhengzhou, Kaifeng, Luoyang, Nanyang, Shangqiu, Anyang, Xinxiang, Pingdingshan, Xuchang, Jiaozuo, Zhoukou, Xinyang, Zhumadian, Hebi, Puyang, Luohe, Sanmenxia, Changzhi, Jincheng, Yuncheng, Huaibei, Bengbu, Suzhou, Fuyang, Bozhou | |
Central Shaanxi (CSX) | Xi’an, Baoji, Xianyang, Tongchuan, Weinan, Tianshui, Pingliang, Qingyang | |
Middle Reaches of Yangtze River (MYR) | Wuhan, Huangshi, Ezhou, Huanggang, Xiaogan, Xianning, Xiangyang, Yichang, Jingzhou, Jingmen, Changsha, Zhuzhou, Xiangtan, Yueyang, Yiyang, Changde, Hengyang, Loudi, Nanchang, Jiujiang, Jingdezhen, Xinyu, Yichun, Pingxiang, Ji’an | |
Ningxia Yanhuang (NY) | Yinchuan, Shizuishan, Wuzhong, Zhongwei | |
Huhhot–Baotou–Erdos–Yulin (HBEY) | Hohhot, Baotou, Ordos, Yulin | |
Central Shanxi (CS) | Taiyuan, Jinzhong, Xinzhou, Yangquan, Luliang | |
Western | Chengdu–Chongqing (CC) | Chongqing, Chengdu, Zigong, Luzhou, Deyang, Mianyang, Suining, Neijiang, Leshan, Nanchong, Meishan, Yibin, Guang’an, Dazhou, Ya’an, Ziyang |
Central Yunnan (CY) | Kunming, Qujing, Yuxi | |
Central Guizhou (CG) | Guiyang, Zunyi and Anshun | |
Lanzhou–Xining (LX) | Lanzhou, Xining, Baiyin, Dingxi | |
Beibu Gulf (BG) | Nanning, Beihai, Qinzhou, Fangchenggang, Yulin, Chongzuo, Zhanjiang, Maoming, Yangjiang and Haikou | |
Northern Slope of Tianshan Mountain (NTM) | Urumqi, Karamay |
Regions | UAs | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Eastern | BTH | 0.41 | 0.45 | 0.46 | 0.51 | 0.49 | 0.59 | 0.54 | 0.50 | 0.52 | 0.62 | 0.50 | 0.52 | 0.54 | 0.55 |
SP | 0.61 | 0.57 | 0.56 | 0.55 | 0.54 | 0.62 | 0.57 | 0.59 | 0.61 | 0.66 | 0.55 | 0.57 | 0.64 | 0.62 | |
YRD | 0.61 | 0.59 | 0.62 | 0.64 | 0.66 | 0.68 | 0.67 | 0.66 | 0.72 | 0.72 | 0.66 | 0.67 | 0.72 | 0.61 | |
WS | 0.50 | 0.48 | 0.46 | 0.50 | 0.52 | 0.64 | 0.57 | 0.70 | 0.65 | 0.64 | 0.58 | 0.48 | 0.53 | 0.71 | |
PRD | 0.85 | 0.78 | 0.77 | 0.79 | 0.83 | 0.86 | 0.86 | 0.90 | 0.99 | 0.93 | 0.86 | 0.94 | 0.99 | 0.62 | |
SCL | 0.43 | 0.44 | 0.43 | 0.42 | 0.43 | 0.34 | 0.30 | 0.31 | 0.30 | 0.30 | 0.31 | 0.44 | 0.48 | 0.46 | |
Central | HC | 0.47 | 0.48 | 0.52 | 0.50 | 0.51 | 0.55 | 0.54 | 0.57 | 0.56 | 0.62 | 0.60 | 0.56 | 0.58 | 0.44 |
CH | 0.29 | 0.29 | 0.29 | 0.30 | 0.30 | 0.37 | 0.34 | 0.42 | 0.40 | 0.45 | 0.39 | 0.32 | 0.38 | 0.38 | |
CSX | 0.34 | 0.31 | 0.36 | 0.33 | 0.37 | 0.44 | 0.40 | 0.57 | 0.56 | 0.48 | 0.51 | 0.33 | 0.34 | 0.40 | |
MYR | 0.37 | 0.40 | 0.40 | 0.40 | 0.38 | 0.44 | 0.34 | 0.41 | 0.41 | 0.38 | 0.38 | 0.30 | 0.33 | 0.29 | |
NY | 0.20 | 0.19 | 0.17 | 0.24 | 0.25 | 0.34 | 0.11 | 0.24 | 0.16 | 0.16 | 0.16 | 0.17 | 0.22 | 0.28 | |
HBEY | 0.21 | 0.23 | 0.20 | 0.20 | 0.14 | 0.39 | 0.58 | 0.49 | 0.61 | 0.52 | 0.47 | 0.25 | 0.27 | 0.32 | |
CS | 0.39 | 0.25 | 0.25 | 0.25 | 0.27 | 0.27 | 0.24 | 0.32 | 0.30 | 0.31 | 0.30 | 0.19 | 0.24 | 0.33 | |
Western | CC | 0.27 | 0.30 | 0.32 | 0.34 | 0.36 | 0.34 | 0.33 | 0.42 | 0.49 | 0.50 | 0.39 | 0.42 | 0.43 | 0.36 |
CY | 0.30 | 0.34 | 0.33 | 0.26 | 0.28 | 0.33 | 0.26 | 0.38 | 0.51 | 0.40 | 0.36 | 0.31 | 0.37 | 0.34 | |
CG | 0.31 | 0.31 | 0.37 | 0.27 | 0.28 | 0.28 | 0.29 | 0.38 | 0.44 | 0.59 | 0.33 | 0.29 | 0.38 | 0.33 | |
LX | 0.31 | 0.32 | 0.33 | 0.34 | 0.38 | 0.39 | 0.37 | 0.27 | 0.24 | 0.25 | 0.27 | 0.23 | 0.27 | 0.30 | |
BG | 0.26 | 0.25 | 0.25 | 0.30 | 0.31 | 0.31 | 0.25 | 0.31 | 0.34 | 0.35 | 0.38 | 0.28 | 0.30 | 0.27 | |
NTM | 0.25 | 0.24 | 0.24 | 0.25 | 0.28 | 0.25 | 0.20 | 0.24 | 0.24 | 0.27 | 0.22 | 0.19 | 0.23 | 0.41 |
Year | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Theil index | 0.4 | 0.358 | 0.354 | 0.349 | 0.363 | 0.34 | 0.4 | 0.307 | 0.35 | 0.304 | 0.311 | 0.405 | 0.361 |
Year | Moran’s I | Z Value | Year | Moran’s I | Z Value |
---|---|---|---|---|---|
2006 | 0.202 *** | 5.366 | 2013 | 0.124 *** | 3.348 |
2007 | 0.220 *** | 5.841 | 2014 | 0.109 ** | 2.944 |
2008 | 0.199 *** | 5.291 | 2015 | 0.152 *** | 4.077 |
2009 | 0.222 *** | 5.894 | 2016 | 0.178 *** | 4.765 |
2010 | 0.230 *** | 6.109 | 2017 | 0.265 *** | 7.012 |
2011 | 0.115 *** | 3.096 | 2018 | 0.226 *** | 6.025 |
2012 | 0.182 *** | 4.861 |
Variable | Nested Matrix of Economic Geography | Matrix of Geographic Distance | |||
---|---|---|---|---|---|
Whole | East | Central | West | ||
0.029 *** | 0.034 *** | 0.004 | −0.009 | 0.027 *** | |
0.001 *** | 0.001 *** | 0.001 *** | 0.001 *** | 0.001 *** | |
0.062 *** | 0.027 | 0.089 *** | 0.041 | 0.066 *** | |
0.008 *** | −0.001 | 0.026 *** | 0.013 ** | 0.007 *** | |
0.050 *** | 0.029 | 0.055 *** | 0.025 | 0.053 *** | |
−0.000 | 0.000 | 0.000 | −0.000 | −0.000 | |
0.065 *** | 0.057 *** | 0.038 ** | 0.117 *** | 0.044 *** | |
0.003 *** | 0.008 *** | 0.000 | 0.004 *** | 0.001 *** | |
W * | −0.012 | −0.016 | 0.051 ** | −0.056 * | −0.049 |
W * | 0.002 *** | 0.000 | 0.006 *** | 0.000 | 0.002 |
W * | −0.073 ** | −0.154 *** | −0.052 | −0.093 | −0.180 * |
W * | 0.001 | 0.011 | 0.018 ** | −0.006 | −0.080 *** |
W * | −0.048 * | 0.083 | 0.047 | 0.105 *** | −0.257 |
W * | 0.000 | −0.002 *** | 0.000 | −0.000 | −0.001 |
W * | −0.002 | 0.068 ** | −0.164 *** | −0.060 | 0.271 *** |
W * | 0.001 | −0.005 *** | −0.004 ** | −0.003 | 0.014 *** |
0.135 *** | 0.204 *** | 0.263 *** | −0.113 * | 0.383 *** | |
0.045 *** | 0.043 *** | 0.036 *** | 0.025 *** | 0.046 *** | |
R_squared | 0.455 | 0.519 | 0.153 | 0.506 | 0.324 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, S.; Kong, Y.; Liu, S.; Zhou, H. Study on the Spatio-Temporal Evolution and Influential Factors of Green Innovation Efficiency in Urban Agglomerations of China. Sustainability 2023, 15, 676. https://doi.org/10.3390/su15010676
Feng S, Kong Y, Liu S, Zhou H. Study on the Spatio-Temporal Evolution and Influential Factors of Green Innovation Efficiency in Urban Agglomerations of China. Sustainability. 2023; 15(1):676. https://doi.org/10.3390/su15010676
Chicago/Turabian StyleFeng, Shan, Yawen Kong, Shuguang Liu, and Hongwei Zhou. 2023. "Study on the Spatio-Temporal Evolution and Influential Factors of Green Innovation Efficiency in Urban Agglomerations of China" Sustainability 15, no. 1: 676. https://doi.org/10.3390/su15010676
APA StyleFeng, S., Kong, Y., Liu, S., & Zhou, H. (2023). Study on the Spatio-Temporal Evolution and Influential Factors of Green Innovation Efficiency in Urban Agglomerations of China. Sustainability, 15(1), 676. https://doi.org/10.3390/su15010676