Asian Elephant Evolutionary Relationships: New Perspectives from Mitochondrial D-Loop Haplotype Diversity
Abstract
:1. Introduction
2. Distribution of α and β Mitochondrial D-Loop Haplogroups in Asian Elephant Populations
3. Influence of Social Behavior and Camp Management on Mitochondrial D-Loop Clustering Deviation
4. Intraspecific Variation of Mitochondrial D-Loop in the Asian Elephant
5. Asian Elephants and Sustainable Development Goals for Global Communities
6. Final Considerations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Linnaeus, C. Systema Naturae per Regna Tria Naturae: Secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis, Synonymis, Locis; Apud JB Delamolliere: Sweden, Stockholm, 1758. [Google Scholar]
- Williams, C.; Tiwari, S.K.; Goswami, V.R.; De Silva, S.; Kumar, A.; Baskaran, N.; Yoganand, K.; Menon, V. Elephas Maximus. The IUCN Red List of Threatened Species 2020: E. T7140A45818198; IUCN: Gland, Switzerland, 2020. [Google Scholar]
- Santiapillai, C.; Jackson, P. The Asian Elephant: An Action Plan for Its Conservation; IUCN: Gland, Switzerland, 1990. [Google Scholar]
- Sukumar, R.; Santiapillai, C. Elephas maximus: Status and distribution. In The Proboscidea: Evolution and Palaeoecology of Elephants and Their Relatives; Shoshani, J., Tassy, P., Eds.; Oxford University Press: New York, NY, USA, 1996; pp. 327–331. [Google Scholar]
- Sukumar, R. The Story of Asia’s Elephants; Marg Foundation: Mumbai, India, 2011. [Google Scholar]
- Turvey, S.T.; Tong, H.; Stuart, A.J.; Lister, A.M. Holocene survival of late Pleistocene megafauna in China: A critical review of the evidence. Quat. Sci. Rev. 2013, 76, 156–166. [Google Scholar] [CrossRef]
- Menon, V.; Tiwari, S.K. Population status of Asian elephants Elephas maximus and key threats. Int. Zoo Yearb. 2019, 53, 17–30. [Google Scholar] [CrossRef]
- Cuvier. Indian Elephant (Elephas maximus indicus), 1798. Available online: https://www.gbif.org/species/5219462 (accessed on 15 October 2022).
- Temminck. Sumatran Elephant (Elephas maximus sumatranus), 1847. Available online: https://www.gbi.f.org/species/5219463 (accessed on 15 October 2022).
- Shoshani, J.; Eisenberg, J.F. Elephas maximus. In Mammalian Species; American Society of Mammalogists: Anchorage, AK, USA, 1982. [Google Scholar]
- Vandebona, H.; Goonesekere, N.C.W.; Tiedemann, R.; Ratnasooriya, W.D.; Gunasekera, M.B. Sequence variation at two mitochondrial genes in the Asian elephant (Elephas maximus) population of Sri Lanka. Mamm. Biol. 2002, 67, 193–205. [Google Scholar] [CrossRef]
- Fernando, P.; Vidya, T.C.; Payne, J.; Stuewe, M.; Davison, G.; Alfred, R.J.; Andau, P.; Bosi, E.; Kilbourn, A.; Melnick, D.J. DNA analysis indicates that Asian elephants are native to Borneo and are therefore a high priority for conservation. PLoS Biol. 2003, 1, e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cranbrook, E.; Payne, J.; Leh, C.M.U. Origin of the elephants Elephas maximus L. of Borneo. Sarawak Mus. J. 2008, 63, 95–125. [Google Scholar]
- Deraniyagala, P.E.P. The elephant of Asia. Proc. Ceylon Assoc. Adv. Sci. 1950, 3, 1–8. [Google Scholar]
- Deraniyagala, P.E.P. Some Extinct Elephants, Their Relatives and the Two Living Species; Government Press: Colombo, Sri Lanka, 1955. [Google Scholar]
- Taanman, J.W. The mitochondrial genome: Structure, transcription, translation and replication. Biochim. Biophys. Acta Bioenerg. 1999, 1410, 103–123. [Google Scholar] [CrossRef] [Green Version]
- Fernando, P.; Pfrender, M.E.; Encalada, S.; Lande, R. Mitochondrial DNA variation, phylogeography, and population structure of the Asian elephant. Heredity 2000, 84, 362–372. [Google Scholar] [CrossRef]
- Fernando, P.; Lande, R. Molecular genetic and behavioral analysis of social organization in the Asian elephant (Elephas maximus). Behav. Ecol. 2000, 48, 84–91. [Google Scholar] [CrossRef]
- Fleischer, R.C.; Perry, E.A.; Muralidharan, K.; Stevens, E.E.; Wemmer, C.M. Phylogeography of the Asian elephant (Elephas maximus) based on mitochondrial DNA. Evolution 2001, 55, 1882–1892. [Google Scholar] [CrossRef]
- Fickel, J.; Lieckfeldt, D.; Ratanakorn, P.; Pitra, C. Distribution of haplotypes and microsatellite alleles among Asian elephants (Elephas maximus) in Thailand. Eur. J. Wildl. Res. 2007, 53, 298–303. [Google Scholar] [CrossRef]
- Thitaram, C.; Somgird, C.; Mahasawangkul, S.; Angkavanich, T.; Roongsri, R.; Thongtip, N.; Colenbrander, B.; van Steenbeek, F.G.; Lenstra, J.A. Genetic assessment of captive elephant (Elephas maximus) populations in Thailand. Conserv. Genet. 2010, 11, 325–330. [Google Scholar] [CrossRef]
- Thongchai, S.; Dejchaisri, S.; Sukmasuang, S.; Thongtipsiridech, S.; Wajjwalku, W.; Kaolim, N. Genetic diversity of wild elephant (Elephas maximus Linnaeus, 1758) in the northeastern part of Thailand. J. Wildl. Thail. 2011, 18, 16–33. [Google Scholar]
- Ariyaraphong, N.; Nguyen, D.H.M.; Singchat, W.; Suksavate, W.; Pan-thum, T.; Langkaphin, W.; Chansit-thiwet, S.; Angkawanish, T.; Prom-king, A.; Kaewtip, K.; et al. Standard identification certificate for legal legislation of a unique gene pool of thai domestic elephants originating from a male elephant contribution to breeding. Sustainability 2022, 14, 15355. [Google Scholar] [CrossRef]
- Hartl, G.B.; Kurt, F.; Tiedemann, R.; Gmeiner, C.; Nadlinger, K.; Mar, K.U.; Rübel, A. Population genetics and systematics of Asian elephant (Elephas maximus): A study based on sequence variation at the Cyt b gene of PCR-amplified mitochondrial DNA from hair bulbs. Z. Säugetierkd. 1996, 61, 285–294. [Google Scholar]
- Vidya, T.N.C.; Sukumar, R.; Melnick, D.J. Range-wide mtDNA phylogeography yields insights into the origins of Asian elephants. Proc. R. Soc. B 2009, 276, 893–902. [Google Scholar] [CrossRef] [Green Version]
- Vidya, T.N.C. Evolutionary history and population genetic structure of Asian elephants in India. Indian Hist. Sci. 2016, 51, 391–405. [Google Scholar] [CrossRef]
- Taberlet, P.; Bouvet, J. Mitochondrial DNA polymorphism, phylogeography, and conservation genetics of the brown bear Ursus arctos in Europe. Proc. R. Soc. Lond. B Biol. Sci. 1994, 255, 195–200. [Google Scholar]
- Jensen-Seaman, M.I.; Kidd, K.K. Mitochondrial DNA variation and biogeography of eastern gorillas. Mol. Ecol. 2001, 10, 2241–2247. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.L.; Wan, Q.H.; Fang, S.G. Population structure and gene flow among wild populations of the black muntjac (Muntiacus crinifrons) based on mitochondrial DNA control region sequences. Zool. Sci. 2006, 23, 333–340. [Google Scholar] [CrossRef]
- Searle, J.B.; Kotlík, P.; Rambau, R.V.; Marková, S.; Herman, J.S.; McDevitt, A.D. The Celtic fringe of Britain: Insights from small mammal phylogeography. Proc. R. Soc. B Biol. Sci. 2009, 276, 4287–4294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotlík, P.; Marková, S.; Horníková, M.; Escalante, M.A.; Searle, J.B. The bank vole (Clethrionomys glareolus) as a Model System for Adaptive Phylogeography in the European Theater. Front. Ecol. Evol. 2022, 10, 866605. [Google Scholar] [CrossRef]
- Ahlering, M.A.; Hedges, S.; Johnson, A.; Tyson, M.; Schuttler, S.G.; Eggert, L.S. Genetic diversity, social structure, and conservation value of the elephants of the Nakai Plateau, Lao PDR, based on non-invasive sampling. Conserv. Genet. 2011, 12, 413–422. [Google Scholar] [CrossRef]
- Amorntiyangkul, P.; Pattanavibool, A.; Ochakul, W.; Chinnawong, W.; Klanprasert, S.; Aungkeaw, C.; Duengkae, P.; Suksavate, W. Dynamic occupancy of wild Asian elephant: A case study based on the SMART Database from the Western forest complex in Thailand. Environ. Nat. Resour. J. 2022, 20, 310–322. [Google Scholar] [CrossRef]
- Baker, L.; Winkler, R. Asian elephant rescue, rehabilitation and rewilding. Anim. Sentience 2020, 5, 1. [Google Scholar] [CrossRef]
- Brandt, A.L.; Ishida, Y.; Georgiadis, N.J.; Roca, A.L. Forest elephant mitochondrial genomes reveal that elephantid diversification in Africa tracked climate transitions. Mol. Ecol. 2012, 21, 1175–1189. [Google Scholar] [CrossRef] [Green Version]
- Girdland Flink, E.L.; Albayrak, E.; Lister, A. Genetic insight into an extinct population of Asian elephants (Elephas maximus) in the Near East. Open Quat. 2018, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Maglio, V.J. Origin and evolution of the Elephantidae. Trans. Am. Phil. Soc. 1973, 63, 1–149. [Google Scholar] [CrossRef]
- Lister, A.M.; Dirks, W.; Assaf, A.; Chazan, M.; Goldberg, P.; Applbaum, Y.H.; Greenbaum, N.; Horwitz, L.K. New fossil remains of Elephas from the southern Levant: Implications for the evolutionary history of the Asian elephant. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 386, 119–130. [Google Scholar] [CrossRef]
- Falconer and Cautley. Elephas hysudricus. 1845. Available online: https://www.gbif.org/species/165660524 (accessed on 15 October 2022).
- Falconer and Cautley. Asian Straight-Tusked Elephant (Palaeoloxodon namadicus) 1846. Available online: https://eol.org/pt-BR/pages/47049066/names (accessed on 15 October 2022).
- Falconer and Cautley. Straight-Tusked Elephant (Palaeoloxodon antiquus) 1847. Available online: https://www.gbif.org/species/7888781 (accessed on 15 October 2022).
- Meyer, M.; Palkopoulou, E.; Baleka, S.; Stiller, M.; Penkman, K.E.H.; Alt, K.W.; Ishida, Y.; Mania, D.; Mallick, S.; Meijer, T.; et al. Palaeogenomes of Eurasian straight-tusked elephants challenge the current view of elephant evolution. Elife 2017, 6, e25413. [Google Scholar] [CrossRef]
- Clement, M.; Posada, D.; Crandall, K.A. TCS: A computer program to estimate gene genealogies. Mol. Ecol. 2000, 9, 1657–1660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacob, K. Land connections between Ceylon and peninsular India. Proc. Natl. Inst. Sci. India 1949, 15, 341–343. [Google Scholar]
- Eggert, L.S.; Rasner, C.A.; Woodruff, D.S. The evolution and phylogeography of the African elephant inferred from mitochondrial DNA sequence and nuclear microsatellite markers. Proc. R. Soc. Lond. B Biol. Sci. 2002, 269, 1993–2006. [Google Scholar] [CrossRef] [PubMed]
- Melnick, D.J.; Hoelzer, G.A.; Absher, R.; Ashley, M.V. mtDNA diversity in rhesus monkeys reveals overestimates of divergence time and paraphyly with neighboring species. Mol. Biol. Evol. 1993, 10, 282–295. [Google Scholar] [PubMed] [Green Version]
- Sukumar, R. The Living Elephants: Evolutionary Ecology, Behavior, and Conservation; Oxford University Press: New York, NY, USA, 2003. [Google Scholar]
- Bandara, R.; Tisdell, C. The net benefit of saving the Asian elephant: A policy and contingent valuation study. Ecol. Econ. 2004, 48, 93–107. [Google Scholar] [CrossRef] [Green Version]
- Douglas-Hamilton, I. On the Ecology and Behaviour of the African Elephant: The Elephants of Lake Manyara (DPhil Thesis); University of Oxford: England, UK, 1972. [Google Scholar]
- Moss, C.J.; Poole, J.H. Relationships and social structure in African elephants. In Primate Social Relationships: An Integrated Approach; Hinde, R.A., Ed.; Blackwell: Oxford, UK, 1983; pp. 315–325. [Google Scholar]
- Vidya, T.N.C.; Fernando, P.; Melnick, D.J.; Sukumar, R. (Population differentiation within and among Asian elephant (Elephas maximus) populations in southern India. Heredity 2005, 94, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.M.; Haigh, J. The hitch-hiking effect of a favourable gene. Genet. Res. 1974, 23, 23–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De, R.; Sharma, R.; Davidar, P.; Arumugam, N.; Sedhupathy, A.; Puyravaud, J.P.; Goyal, S.P. Pan-India population genetics signifies the importance of habitat connectivity for wild Asian elephant conservation. Glob. Ecol. Conserv. 2021, 32, e01888. [Google Scholar] [CrossRef]
- Shaffer, L.J.; Khadka, K.K.; Van Den Hoek, J.; Naithani, K.J. Human-elephant conflict: A review of current management strategies and future directions. Front. Ecol. Evol. 2019, 6, 235. [Google Scholar] [CrossRef] [Green Version]
- Gray, T.N.E.; Vidya, T.N.C.; Potdar, S.; Bharti, D.K.; Sovanna, P. Population size estimation of an Asian elephant population in eastern Cambodia through noninvasive mark-recapture sampling. Conserv. Genet. 2014, 15, 803–810. [Google Scholar] [CrossRef]
- Goossens, B.; Sharma, R.; Othman, N.; Kun-Rodrigues, C.; Sakong, R.; Ancrenaz, M.; Ambu, L.N.; Jue, N.K.; O’Neill, R.J.; Bruford, M.W.; et al. Habitat fragmentation and genetic diversity in natural populations of the Bornean elephant: Implications for conservation. Biol. Conserv. 2016, 196, 80–92. [Google Scholar] [CrossRef] [Green Version]
- Collon, D. Ivory. Iraq 1977, 39, 219–222. [Google Scholar] [CrossRef]
- Albenda, P. Assyrian Royal Hunts: Antlered and Horned Animals from Distant Lands. Bull. Am. Sch. Orient. Res. 2008, 349, 61–78. [Google Scholar] [CrossRef]
- Thongtip, N.; Saikhun, J.; Damyang, M.; Mahasawangkul, S.; Suthunmapinata, P.; Yindee, M.; Kongsila, A.; Angkawanish, T.; Jansittiwate, S.; Wongkalasin, W.; et al. Evaluation of post-thaw Asian elephant (Elephas maximus) spermatozoa using flow cytometry: The effects of extender and cryoprotectant. Theriogenology 2004, 62, 748–760. [Google Scholar] [CrossRef]
- Thitaram, C. Breeding management of captive Asian elephant (Elephas maximus) in range countries and zoos. Jpn. J. Zoo Wild. Med. 2012, 17, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Jayawardene, J. The Elephant in Sri Lanka; The Wildlife Heritage Trust of Sri Lanka: Colombo, Sri Lanka, 1994. [Google Scholar]
- Nijman, V. An Assessment of the Live Elephant Trade in Thailand; TRAFFIC International: Cambridge, UK, 2014. [Google Scholar]
- Ferrier, A.J. The Care and Management of Elephants in Burma; Government Printing and Stationery: Rangoon, Myanmar, 1947; p. 188. [Google Scholar]
- Stracey, P.D. Elephant Gold; Weidenfeld and Nicolson: London, UK, 1963. [Google Scholar]
- Kriangwanich, W.; Nganvongpanit, K.; Buddhachat, K.; Brown, J.L.; Siengdee, P.; Chomdej, S.; Bansiddhi, P.; Thitaram, C. Genetic diversity and variation in captive Asian elephants (Elephas maximus) in Thailand. Trop. Conserv. Sci. 2018, 11, 1940082918816871. [Google Scholar] [CrossRef]
- Chaitae, A.; Gordon, I.J.; Addison, J.; Marsh, H. Protection of elephants and sustainable use of ivory in Thailand. Oryx 2022, 56, 601–608. [Google Scholar] [CrossRef]
- Kemf, E.; Santiapillai, C. Asian Elephants in the Wild; WWF International: Gland, Switzerland, 2000. [Google Scholar]
- Shepherd, C.R.; Nijman, V. Elephant and Ivory Trade in Myanmar; Traffic Southeast Asia: Petaling Jaya, Malaysia, 2008. [Google Scholar]
- Stiles, D. The Elephant and Ivory Trade in Thailand; Traffic Southeast Asia: Petaling Jaya, Malaysia, 2009. [Google Scholar]
- Nijman, V.; Shepherd, C.R. China’s role in trade in ivory and elephant parts from Lao PDR. Oryx 2012, 46, 172–173. [Google Scholar] [CrossRef] [Green Version]
- Douzery, E.; Randi, E. The mitochondrial control region of Cervidae: Evolutionary patterns and phylogenetic content. Mol. Biol. Evol. 1997, 14, 1154–1166. [Google Scholar] [CrossRef]
- Saccone, C.; Pesole, G.; Sbisá, E. The main regulatory region of mammalian mitochondrial DNA: Structure-function model and evolutionary pattern. J. Mol. Evol. 1991, 33, 83–91. [Google Scholar] [CrossRef]
- Areesirisuk, P.; Muangmai, N.; Kunya, K.; Singchat, W.; Sillapaprayoon, S.; Lapbenjakul, S.; Thapana, W.; Kantachumpoo, A.; Baicharoen, S.; Rerkamnuaychoke, B.; et al. Characterization of five complete Cyrtodactylus mitogenome structures reveals low structural diversity and conservation of repeated sequences in the lineage. PeerJ 2018, 6, e6121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernacki, L.E.; Kilpatrick, C.W. Structural variation of the turtle mitochondrial control region. J. Mol. Evol. 2020, 88, 618–640; [Google Scholar] [CrossRef] [PubMed]
- Skorupski, J. Characterisation of the Complete Mitochondrial Genome of Critically Endangered Mustela lutreola (Carnivora: Mustelidae) and Its Phylogenetic and Conservation Implications. Genes 2022, 13, 125. [Google Scholar] [CrossRef] [PubMed]
- Capelli, C.; MacPhee, R.D.; Roca, A.L.; Brisighelli, F.; Georgiadis, N.; O’Brien, S.J.; Greenwood, A.D. A nuclear DNA phylogeny of the woolly mammoth (Mammuthus primigenius). Mol. Phylogenet. Evol. 2006, 40, 620–627. [Google Scholar] [CrossRef]
- Roca, A.L.; Georgiadis, N.; Pecon-Slattery, J.; O’Brien, S.J. Genetic evidence for two species of elephant in Africa. Science 2001, 293, 1473–1477. [Google Scholar] [CrossRef] [Green Version]
- Roca, A.L.; Georgiadis, N.; O’Brien, S.J. Cytonuclear genomic dissociation in African elephant species. Nat. Genet. 2005, 37, 96–100. [Google Scholar] [CrossRef]
- Rogaev, E.I.; Moliaka, Y.K.; Malyarchuk, B.A.; Kondrashov, F.A.; Derenko, M.V.; Chumakov, I.; Grigorenko, A.P. Complete mitochondrial genome and phylogeny of Pleistocene mammoth Mammuthus primigenius. PLoS Biol. 2006, 4, e73. [Google Scholar] [CrossRef] [Green Version]
- Dejchaisri, S.; van Lith, H.; Rutten, G.P.A.; Kumsuk, M.; Savini, C.; Pattanakaew, P.; Chareundong, T.; Manopawitr, P.; Kiewwan, N.; Simon, H.; et al. Cytochrome b Haplotypes of wild Asian elephant (Elephas maximus) populations in Kaeng Krachan National Park and Phukhieo wildlife sanctuary. In Proceedings of the 29th Thailand Wildlife Seminar, Bangkok, Thailand, 18–19 December 2008. [Google Scholar]
- Lei, R.; Brenneman, R.A.; Schmitt, D.L.; Louis, E.E., Jr. Detection of cytonuclear genomic dissociation in the North American captive African elephant collection. J. Hered. 2009, 100, 675–680. [Google Scholar] [CrossRef]
- Lei, R.; Brenneman, R.A.; Schmitt, D.L.; Louis, E.E., Jr. Genetic diversity in North American captive Asian elephants. J. Zool. 2012, 286, 38–47. [Google Scholar] [CrossRef]
- Sachs, J.; Kroll, C.; Lafortune, G.; Fuller, G.; Woelm, F. Sustainable Development Report 2022; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Canney, S.M. Making space for nature: Elephant conservation in Mali as a case study in sustainability. Environ. Sci. Policy Sustain. Dev. 2021, 63, 4–15. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, L.; Lin, L.; Feng, L.; Yan, F.; Wang, L.; Guo, X.; Luo, A. Asian elephants in China: Estimating population size and evaluating habitat suitability. PLoS ONE 2015, 10, e0124834. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, H.; Kappelhof, J. Review of the management of the Asian elephant Elephas maximus EEP: Current challenges and future solutions. Int. Zoo Yearb. 2019, 53, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.K.; Jabin, G.; Basumatary, T.; Bhattarai, G.P.; Chandra, K.; Thakur, M. Resolving the trans-boundary dispute of elephant poaching between India and Nepal. Forensic Sci. Int. Synerg. 2019, 1, 146–150. [Google Scholar] [CrossRef]
- Sukumar, R. The Asian Elephant: Ecology and Management; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Kusza, S.; Suchentrunk, F.; Pucher, H.; Mar, K.U.; Zachos, F.E. High levels of mitochondrial genetic diversity in Asian elephants (Elephas maximus) from Myanmar. Hystrix 2018, 29, 152–154. [Google Scholar] [CrossRef]
- Arnason, U.; Adegoke, J.A.; Gullberg, A.; Harley, E.H.; Janke, A.; Kullberg, M. Mitogenomic relationships of placental mammals and molecular estimates of their divergences. Gene 2008, 421, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Das, P.P.; Das, B.; Das, D.; Bhattacharya, T.K.; Das, P.J. Mitochondrial DNA variation, phylogeography and social organization of Asian elephant (Elephas maximus) of North East India. Indian J. Anim. Res. 2019, 53, 1121–1128. [Google Scholar] [CrossRef]
- Hauf, J.; Waddell, P.J.; Chalwatzis, N.; Joger, U.; Zimmermann, F.K. The complete mitochondrial genome sequence of the African elephant (Loxodonta africana), phylogenetic relationships of Proboscidae to other mammals, and D-loop heteroplasmy. Zoology (Jena) 2000, 102, 184–195. [Google Scholar]
- Enk, J.; Devault, A.; Widga, C.; Saunders, J.; Szpak, P.; Southon, J.; Rouillard, J.M.; Shapiro, B.; Golding, G.B.; Zazula, G.; et al. Mammuthus population dynamics in late Pleistocene North America: Divergence, phylogeography, and introgression. Front. Ecol. Evol. 2016, 4, 42. [Google Scholar] [CrossRef] [Green Version]
- Enk, J.; Devault, A.; Debruyne, R.; King, C.E.; Treangen, T.; O’Rourke, D.; Salzberg, L.; Fisher, D.; MacPhee, R.; Poinar, H. Complete Columbian mammoth mitogenome suggests interbreeding with woolly mammoths. Genome Biol. 2011, 12, R51. [Google Scholar] [CrossRef] [Green Version]
- Debruyne, R.; Chu, G.; King, C.E.; Bos, K.; Kuch, M.; Schwarz, C.; Szpak, P.; Gröcke, D.R.; Matheus, P.; Zazula, G.; et al. Out of America: Ancient DNA evidence for a new world origin of late quaternary woolly mammoths. Curr. Biol. 2008. 18, 1320–1326. [CrossRef] [Green Version]
- Kornienko, I.V.; Faleeva, T.G.; Oreshkova, N.V.; Grigoriev, S.E.; Grigoreva, L.V.; Simonov, E.P.; Kolesnikova, A.I.; Putintseva, Y.A.; Krutovsky, K.V. Complete mitochondrial genome of a woolly mammoth (Mammuthus primigenius) from Maly Lyakhovsky Island (New Siberian Islands, Russia) and its phylogenetic assessment. Mitochondrial DNA Part B Resour. 2018, 3, 596–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyström, V.; Humphrey, J.; Skoglund, P.; McKeown, N.J.; Vartanyan, S.; Shaw, P.W.; Lidén, K.; Jakobsson, M.; Barnes, I.; Angerbjörn, A.; et al. Microsatellite genotyping reveals end-Pleistocene decline in mammoth autosomal genetic variation. Mol. Ecol. 2012, 21, 3391–3402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyström, V.; Dalén, L.; Vartanyan, S.; Lidén, K.; Ryman, N.; Angerbjörn, A. Temporal genetic change in the last remaining population of woolly mammoth. Proc. R. Soc. B Biol. Sci. 2010, 277, 2331–2337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnes, I.; Shapiro, B.; Lister, A.; Kuznetsova, T.; Sher, A.; Guthrie, D.; Thomas, M.G. Genetic structure and extinction of the woolly mammoth, Mammuthus primigenius. Curr. Biol. 2007, 17, 1072–1075. [Google Scholar] [CrossRef] [Green Version]
- Palkopoulou, E.; Dalén, L.; Lister, A.M.; Vartanyan, S.; Sablin, M.; Sher, A.; Edmark, V.N.; Brandström, M.D.; Germonpré, M.; Barnes, I.; et al. Holarctic genetic structure and range dynamics in the woolly mammoth. Proc. R. Soc. B Biol. Sci. 2013, 280, 20131910. [Google Scholar] [CrossRef] [Green Version]
- Debruyne, R. A case study of apparent conflict between molecular phylogenies: The interrelationships of African elephants. Cladistics 2005, 21, 31–50. [Google Scholar] [CrossRef]
Country | N 1 | Number of Haplotypes (H) 2 | Overall Haplotype 2 | Nucleotide Diversity (π) 2 |
---|---|---|---|---|
Thailand | 229 | 56 | 0.919 ± 0.008 | 0.066 ± 0.032 |
Laos | 6 | 6 | 1.000 ± 0.096 | 0.060 ± 0.035 |
Myanmar | 35 | 17 | 0.931 ± 0.022 | 0.072 ± 0.036 |
India | 35 | 15 | 0.876 ± 0.042 | 0.046 ± 0.023 |
Indonesia | 5 | 4 | 0.900 ± 0.161 | 0.012 ± 0.008 |
Malaysia | 8 | 2 | 0.536 ± 0.123 | 0.045 ± 0.025 |
Sri Lanka | 14 | 9 | 0.923 ± 0.050 | 0.033 ± 0.018 |
Bhutan | 4 | 3 | 0.833 ± 0.222 | 0.022 ± 0.016 |
Vietnam | 6 | 5 | 0.933 ± 0.122 | 0.041 ± 0.025 |
Asia 3 | 76 | 11 | 0.842 ± 0.020 | 0.036 ± 0.018 |
Unclassified | 71 | 17 | 0.896 ± 0.017 | 0.034 ± 0.017 |
All populations | 489 | 79 | 0.915 ± 0.005 | 0.056 ± 0.027 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srikulnath, K.; Ariyaraphong, N.; Singchat, W.; Panthum, T.; Lisachov, A.; Ahmad, S.F.; Han, K.; Muangmai, N.; Duengkae, P. Asian Elephant Evolutionary Relationships: New Perspectives from Mitochondrial D-Loop Haplotype Diversity. Sustainability 2023, 15, 720. https://doi.org/10.3390/su15010720
Srikulnath K, Ariyaraphong N, Singchat W, Panthum T, Lisachov A, Ahmad SF, Han K, Muangmai N, Duengkae P. Asian Elephant Evolutionary Relationships: New Perspectives from Mitochondrial D-Loop Haplotype Diversity. Sustainability. 2023; 15(1):720. https://doi.org/10.3390/su15010720
Chicago/Turabian StyleSrikulnath, Kornsorn, Nattakan Ariyaraphong, Worapong Singchat, Thitipong Panthum, Artem Lisachov, Syed Farhan Ahmad, Kyudong Han, Narongrit Muangmai, and Prateep Duengkae. 2023. "Asian Elephant Evolutionary Relationships: New Perspectives from Mitochondrial D-Loop Haplotype Diversity" Sustainability 15, no. 1: 720. https://doi.org/10.3390/su15010720
APA StyleSrikulnath, K., Ariyaraphong, N., Singchat, W., Panthum, T., Lisachov, A., Ahmad, S. F., Han, K., Muangmai, N., & Duengkae, P. (2023). Asian Elephant Evolutionary Relationships: New Perspectives from Mitochondrial D-Loop Haplotype Diversity. Sustainability, 15(1), 720. https://doi.org/10.3390/su15010720