Predicting Climate Change Impacts on Candelilla (Euphorbia antisyphilitica Zucc.) for Mexico: An Approach for Mexico’s Primary Harvest Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Geographical Records
2.3. Current and Future Climate Variables
2.4. Edaphological and Topographical Variables
2.5. Model Calibration and Variable Selection
2.6. Current and Future Suitability Modeling
2.7. Validation of Habitat Suitability and Variable Contribution
2.8. Conservation Areas in the Primary Harvest Area
3. Results
3.1. Candelilla Current Habitat Suitability Model
3.2. Candelilla Habitat Suitability Modeling under Climate Change
3.3. Important Variables in Current and Future Candelilla Distribution
3.4. Estimated Candelilla Area in Mexico and Coahuila for Future Scenarios
3.5. Proposed Areas for Candelilla Conservation in Coahuila
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Comisión Nacional Forestal. El Sector Forestal Mexicano en Cifras 2019. Bosques Para el Bienestar Social y Climático. 2020. Available online: http://www.conafor.gob.mx:8080/documentos/docs/1/7749El%20Sector%20Forestal%20Mexicano%20en%20Cifras%202019.pdf (accessed on 12 July 2022).
- Rzedowski, J. Diversidad y orígenes de la flora fanerogámica de México. Rev. Cienc. 1978, 6, 47–56. [Google Scholar] [CrossRef]
- Cervantes-Ramírez, M.C. Plantas de importancia económica en las zonas áridas y semiáridas de México. In Temas Selectos de Geografía de México; Universidad Nacional Autónoma de México: Ciudad de México, México, 2002. [Google Scholar]
- Anuario Estadístico de la Producción Forestal. Secretaría de Medio Ambiente y Recursos Naturales; Anuario Estadístico de la Producción Forestal: Mexico City, Mexico, 2019. [Google Scholar]
- Webster, G.L. Synopsis of the genera and suprageneric taxa of Euphorbiaceae. Ann. Mo. Bot. Gard. 1994, 81, 33–144. [Google Scholar] [CrossRef]
- Zamora-Martínez, M.; Méndez, C.; Pérez, R.; Cortés, E. Euphorbia antisyphilitica Zucc.: Recurso Forestal no Maderable de Alto Valor. Folleto Técnico N° 12; CENID-COMEF: Mexico City, Mexico, 2013. [Google Scholar]
- Tapia-Tapia, E.D.; Reyes-Chilpa, R. Productos forestales no maderables en México: Aspectos económicos para el desarrollo sustentable. Madera Y Bosques 2008, 14, 95–112. [Google Scholar] [CrossRef]
- Villarreal-Quintanilla, J.A.; Bartolomé-Hernández, J.A.; Estrada-Castillón, E.; Ramírez-Rodríguez, H.; Martínez-Amador, S.J. El elemento endémico de la flora vascular del Desierto Chihuahuense. Acta BotÁNica Mex. 2017, 118, 65–96. [Google Scholar] [CrossRef]
- Villa-Castorena, M.; Catalán-Valencia, E.A.; Inzunza-Ibarra, M.A.; González-López, M.d.L.; Arreola-Ávila, J.G. Producción de plántulas de Candelilla (Euphorbia antisyphilitica Zucc.) mediante estacas. Rev. Chapingo Ser. Cienc. For. Y Ambiente 2010, 16, 37–47. [Google Scholar] [CrossRef]
- Peña-Contreras, A.R. Utilidad de algunas metodologías de análisis la interacción genotipo-ambiente en la medición de la tasa de recuperación, en el crecimiento de la candelilla (Euphorbia antisyphillitica Zucc.), bajo diferentes condiciones ecológicas. In Tesis de Maestría en Fitomejoramiento; Universidad Autónoma Agraria Antonio Narro: Buenavista, Saltillo, 1998. [Google Scholar]
- Flores-Del Ángel, M. Situación actual de las poblaciones de candelilla (Euphorbia antisyphilitica Zucc.) inventario, su propagación sexual y asexual en el estado de Coahuila, México. In Tesis de Doctorado; Universidad Autónoma de Nuevo León: San Nicolás de los Garza, Mexico, 2013; pp. 1–134. [Google Scholar]
- Schneider, E.; Naturschutz, B. Trade survey study on succulent Euphorbia species protected by CITES and used as cosmetic, food and medicine, with special focus on Candelilla wax. In Proceedings of the 18th Meeting of the Plants Committee, Buenos Aires, Argentina, 17–21 March 2009. [Google Scholar]
- Grotch, S.L.; MacCracken, M.C. The use of general circulation models to predict regional climatic change. J. Clim. 1991, 4, 286–303. [Google Scholar] [CrossRef]
- Warren, D.L.; Seifert, S.N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 2011, 21, 335–342. [Google Scholar] [CrossRef]
- Ahmed, S.E.; Mcinerny, G.; O’Hara, K.; Harper, R.; Salido, L.; Emmott, S.; Joppa, L. Scientists and Software—Surveying the Species Distribution Modelling Community. Divers. Distrib. 2015, 21, 258–267. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Baek, H.; Lee, J.; Lee, H.; Hyun, Y.; Cho, C.; Kwon, W.; Marzin, C.; Gan, S.; Kim, M.; Choi, D.; et al. Climate change in the 21st century simulated by HadGEM2-AO under representative concentration pathways. Asia-Pac. J. Atmos. Sci. 2013, 49, 603–618. [Google Scholar] [CrossRef]
- Sáenz-Romero, C.; Rehfeldt, G.E.; Ortega-Rodríguez, J.M.; Marín-Togo, M.C.; Madrigal-Sánchez, X. Pinus leiophylla Suitable Habitat For 1961–1990 and Future Climate. Bot. Sci. 2015, 93, 709–718. [Google Scholar] [CrossRef]
- Soberón, J.; Peterson, A.T. Interpretation of models of fundamental ecological niches and species distributions areas. Biodivers. Inf. 2005, 2, 1–10. [Google Scholar] [CrossRef]
- García, E. Isotermas Medias Anuales. Escala 1:1,000,000, México. 1998. Available online: http://www.conabio.gob.mx/informacion/gis/?vns=gis_root/clima/climas/clima1mgw (accessed on 12 December 2022).
- GBIF.org. GBIF Occurrence Download. 2018. Available online: https://www.gbif.org/occurrence/download/0012849-180824113759888 (accessed on 18 September 2018).
- Comisión Nacional Forestal. Inventario Nacional Forestal y de Suelos 2013–2014. Registros de Candelilla (Euphorbia antisyphillitica Zucc.). 2014. Available online: https://snmf.cnf.gob.mx/infys/ (accessed on 15 January 2022).
- Osorio-Olvera, L.; Vijay, B.; Narayani, B.; Soberón, J.; Falconi, M. Ntbox: From Getting Biodiversity Data to Evaluating Species Distributions Models in a Friendly GUI Environment; R package Version 0.2.5.4; GitHub: San Francisco, CA, USA, 2019. [Google Scholar]
- Peterson, A.T.; Nakazawa, Y. Environmental data sets matter in ecological niche modelling: An example with Solenopsis invicta and Solenopsis richteri. Glob. Ecol. Biogeogr. 2008, 17, 135–144. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Martin, G.M.; Bellouin, N.; Collins, W.J.; Culverwell, I.D.; Halloran, P.R.; Hardiman, S.C.; Hinton, T.J.; Jones, C.D.; McDonald, R.E.; McLaren, A.J.; et al. The HadGEM2 family of Met Office Unified Model climate configurations. Geosci. Model Dev. 2011, 4, 723–757. [Google Scholar] [CrossRef]
- Giorgetta, M.A.; Jungclaus, J.; Reick, C.H.; Legutke, S.; Bader, J.; Böttinger, M.; Brovkin, V.; Crueger, T.; Esch, M.; Fieg, K.; et al. Climate and carbon cycle changes demo1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst. 2013, 5, 572–597. [Google Scholar] [CrossRef]
- Instituto Nacional de Ecología y Cambio Climático. Guía de Escenarios de Cambio Climático Para Tomadores de Decisiones; Instituto Nacional de Ecología y Cambio Climático: Mexico City, Mexico, 2022; p. 65. [Google Scholar]
- Batjes, N.H.; Ribeiro, E.; Oostrum, A.V.; Leenaars, J.; Hengl, T.; Mendes, J. WoSIS: Providing standardised soil p rofile data for the world. Earth Syst. Sci. Data 2017, 9, 1–14. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística y Geografía. Continuo de Elevaciones Mexicano 3.0. Aguascalientes, Aguascalientes, México. 2013. Available online: https://www.inegi.org.mx/app/geo2/elevacionesmex/ (accessed on 10 November 2022).
- ESRI. Software ArcGIS Version 10.3. 2014. Available online: https://www.arcgis.com/index.html (accessed on 12 September 2021).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015; Available online: https://cran.r-project.org (accessed on 8 June 2022).
- Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 2014, 5, 1198–1205. [Google Scholar] [CrossRef]
- Fitz-Maurice, B.; Sotomayor, M.; Fitz-Maurice, W.A.; Hernández, H.; Smith, M. Astrophytum coahuilense (Bonete de Obispo); Distribución Conocida; Catálogo de Metadatos Geográficos/Comisión Nacional Para el Conocimiento y Uso de la Biodiversidad. 2013. Available online: http://www.conabio.gob.mx/informacion/gis/?vns=gis_root/biodiv/distcon/dcplant/dcpmagcact/astaste_gcagw (accessed on 14 December 2022).
- Merow, C.; Smith, M.J.; Silander, J.A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecological Modelling 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudik, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Morrone, J.J.; Escalante, T. Introducción a la Biogeografía, 1st ed.; México, D.F., Ed.; Universidad Nacional Autónoma de México: Mexico City, Mexico, 2016; ISBN 968-36-9463-2. [Google Scholar]
- Martínez-Sifuentes, A.R.; Villanueva-Díaz, J.; Manzanilla-Quiñones, U.; Becerra-López, J.L.; Hernández-Herrera, J.A.; Estrada-Ávalos, J.; Velázquez-Pérez, A. Spatial modeling of the ecological niche of Pinus greggii Engelm. (Pinaceae): A species conservation proposal in Mexico under climate change scenarios. Iforest Biogeosciences For. 2020, 13, 426–434. [Google Scholar] [CrossRef]
- Peterson, A.T. Ecological niche conservatism: A time-structured review of evidence. J. Biogeogr. 2011, 38, 817–827. [Google Scholar] [CrossRef]
- Lobo, J.M.; Jiménez-Valverde, A.; Real, R. AUC: A misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 2007, 17, 145–151. [Google Scholar] [CrossRef]
- Shcheglovitova, M.; Anderson, R. Estimating optimal complexity for ecological niche models: A Jacknife approach for species with small simple sices. Ecol. Model. 2013, 269, 9–17. [Google Scholar] [CrossRef]
- Martínez-Sifuentes, A.R.; Villanueva-Díaz, J.; Crisantos, E.; Stahle, D. Current and future spatial modeling of habitat suitability of the Mexican baldcypress (Taxodium mucronatum Ten.): A proposal for conervation in Mexico. Bot. Sci. 2021, 99, 752–770. [Google Scholar] [CrossRef]
- Secretaría de Medio Ambiente y Recursos Naturales-Comisión Nacional de Areas Naturales Protegidas. Archivo Vectorial de Áreas Naturales. Aguascalientes, Aguascalientes, México. 2017. Available online: http://www.conabio.gob.mx/informacion/gis/?vns=gis_root/region/biotic/anp2021gw (accessed on 4 November 2022).
- Stockwell, B.D.; Peterson, A.T. Effects of sample size on accuracy of species distribution models. Ecol. Model. 2002, 148, 1–13. [Google Scholar] [CrossRef]
- Hernández-Herrera, J.A.; Moreno-Reséndez, A.; Valenzuela-Núñez, L.M.; Martínez-Salvador, M. Modelation of the presence of Euphorbia antisyphilitica Zucc with physical and chemical properties of soil. Ecosistemas Y Recur. Agropecu. 2019, 6, 499–511. [Google Scholar] [CrossRef]
- Bañuelos-Revilla, J.E.; Palacio-Núñez, J.; Martínez-Montoya, J.F.; Olmos-Oropeza, G.; Flores-Cano, J.A. Potential distribution and abundance of candelilla (Euphorbia antisyphilitica) in northern Zacatecas, Mexico. Madera Y Bosques 2019, 25, 1–14. [Google Scholar] [CrossRef]
- Varela, S.; Mateo, R.G.; García-Valdés, R.; Fernández-González, F. Macroecología y ecoinformática: Sesgos, errores y predicciones en el modelado de distribuciones. Rev. Ecosistemas 2014, 23, 46–53. [Google Scholar] [CrossRef]
- Cruz-Cárdenas, G.; López-Mata, L.; Silva, J.T.; Bernal-Santana, N.; Estrada-Godoy, F.; López-Sandoval, J.A. Potential distribution model of Pinaceae species under climae change scenarios in Michoacán. Rev. Chapingo Ser. Cienc. For. Y Del Ambiente 2016, 22, 135–145. [Google Scholar] [CrossRef]
- Manzanilla-Quiñones, U.; Aguirre-Calderón, Ó.A.; Jiménez-Pérez, J.; Treviño-Garza, E.J.; Yerena-Yamallel, J.I. Current and future distribution of the subalpine forest of Pinus hartwegii Lindl. In the Neovolcanic Transversal Axis. Madera Y Bosques 2019, 25, e2521804. [Google Scholar] [CrossRef]
- Vargas-Pineda, G.; Valdez-Cepeda, R.D.; López-Santos, A.; Flores-Hernández, A.; Hernández-Quiroz, N.S.; Martínez-Salvador, M. Current and Future Potential Distribution of the Xerophytic Shrub Candelilla (Euphorbia antisyphilitica) under Two Climate Change Scenarios. Forests 2020, 11, 530. [Google Scholar] [CrossRef]
- Rojas-Molina, R.; Saucedo-Pompa, S.; De León-Zapata, M.A.; Jasso-Cantú, D.; Aguilar, C.N. Pasado, presente y futuro de la candelilla. Rev. Mex. Cienc. For. 2011, 2, 7–18. [Google Scholar] [CrossRef]
- Martínez-Salvador, M.; Hermosillo-Rojas, D.D.; Mojica-Guerrero, A.; Prieto-Amparan, J.A. Potencial Productivo y Zonificación Para el Uso y Manejo de Especies Forestales de Zonas Áridas; INIFAP: Chihuahua, México, 2015; Volume 1, p. 119. Available online: https://www.researchgate.net/publication/274636131_Potencial_productivo_y_zonificaion_para_el_uso_y_manejo_de_especies_forestales_de_zonas_aridas (accessed on 12 December 2021).
- Saucedo-Pompa, S.; Rojas-Molina, R.; Aguilera-Carbó, A.F.; Saenz-Galindo, A.; De La Garza, H.; Jasso-Cantú, D.; Aguilar, C.N. Edible film based on candelilla wax to improve the shelf life and quality of avocado. Food Res. Int. 2009, 42, 511–515. [Google Scholar] [CrossRef]
- Hernández-Herrera, J.A.; Moreno-Reséndez, A.; Valenzuela-Núñez, L.M.; Flores-Hernández, A.; Zamora-Martínez, M.C. Distribución potencial de Euphorbia antisyphilitica Zucc. En México. Rev. Chapingo Ser. Zonas Áridas 2021, 19, 1–14. [Google Scholar] [CrossRef]
- Martínez-Ballesté, A.; Mandujano, M.C. The consequences of harvesting on regeneration of a non-timber wax producing species (Euphorbia antisyphilitica Zucc.) of the Chihuahuan Desert. Econ. Bot. 2013, 67, 121–136. [Google Scholar] [CrossRef]
- Flores-López, C. Viabilidad de las semillas, emergencia de plántulas y plantaciones de Candelilla (Euphorbia antisyphilitica Zucc.) en Ramos Arizpe. In Tesis de Licenciatura; Universidad Autónoma Agraria Antonio Narro División de Agronomía: Buenavista, Mexico, 1995. [Google Scholar]
- Martínez-Salvador, S.M.; Hermosillo-Rojas, D.E.; Mojica-Guerrero, A.S. Guía para la Zonificación Forestal de Zonas Áridas de México; Publicación Especial: INIFAP—Campo Experimental La Campana: Chihuahua, México, 2014; p. 29. [Google Scholar]
- Comisión Nacional Forestal. La Candelilla. 2005. Available online: https://www.conafor.gob.mx/biblioteca/documentos/PROGRAMA_DE_DESARROLLO_DE_PFC_A_15_ANOS_DE_SU_CREACION.PDF (accessed on 21 January 2022).
- Pittarello, M.; Lonati, M.; Gorlier, A.; Probo, M.; Lombardi, G. Species-rich Nardus stricta grasslands host a higher vascular plant diversity on calcareous than on siliceous bedrock. Plant Ecol. Divers. 2017, 10, 343–351. [Google Scholar] [CrossRef]
- Flores, J.; Jurado, E. Germination and Early Growth Traits of 14 Plant Species Native to Northern Mexico. Southwest. Nat. 1998, 43, 40–46. Available online: https://www.researchgate.net/publication/236323003_Germination_and_early_growth_traits_of_14_plant_species_native_to_northern_Mexico (accessed on 14 January 2022).
- Lan, Y.; Melton, L.; Shahidi, F.; Varelis, P. (Eds.) Waxes; Academic Press: Oxford, UK, 2019; pp. 312–316. [Google Scholar] [CrossRef]
- Manzanilla-Quiñones, U.; Delgado-Valerio, P.; Hernández-Ramos, J.; Molina-Sánchez, A.; García-Magaña, J.J.; Rocha-Granados, M.C. Similaridad del nicho ecológico de Pinus montezumae y P. pseudostrobus (Pinaceae) en México: Implicaciones para la selección de áreas productoras de semilla y de conservación. Acta Bot. 2019, 126, e1398. [Google Scholar] [CrossRef]
- Soberón, J.; Miller, C.P. Evolution of ecological niches. Miscelánea Matemática 2009, 49, 83–99. Available online: http://www.miscelaneamatematica.org/Misc49/4906.pdf (accessed on 8 October 2022).
- Uribe-Botero, E. El Cambio Climático y Sus Efectos en la Biodiversidad en América Latina, 1st ed.; United Nations CEPAL: Santiago, Chile, 2015; Volume 1, p. 84. [Google Scholar]
- Gelviz-Gelvez, S.M.; Pavón, N.P.; Illoldi-Rangel, P.; Ballesteros-Barrera, C. Ecological niche modeling under climate change to select shrubs for ecological restoration in Central Mexico. Ecol. Eng. 2015, 74, 302–309. [Google Scholar] [CrossRef]
- Booth, T.; Nix, H.; Hutchinson, M.; Jovanovic, T. Niche analysis and tree species introduction. For. Ecol. Manag. 1988, 3, 47–59. [Google Scholar] [CrossRef]
- Hutchinson, G.E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 1957, 22, 415–427. [Google Scholar] [CrossRef]
- Martínez-Sifuentes, A.R.; Hernández-Herrera, J.A.; Valenzuela-Núñez, L.M.; Briceño-Contreras, E.A.; Manzanilla-Quiñones, U.; Gastélum-Arellánez, A.; Trucíos-Caciano, R.; López Calderón, M.J. Climate Change Impact on the Habitat Suitability of Pseudotsuga menziesii Mirb. Franco in Mexico: An Approach for Its Conservation. Sustainability 2022, 14, 8888. [Google Scholar] [CrossRef]
Number | Natural Protected Area | Area (km2) | Percent of Total Surface Area in Coahuila (%) |
---|---|---|---|
1 | 004 Don Martín | 2534.90 | 9.89 |
2 | Ocampo | 1885.44 | 7.35 |
3 | Maderas del Carmen | 251.83 | 0.98 |
4 | Cuatrociénegas | 183.61 | 0.71 |
5 | Sierra y Cañón de Jimulco | 165.37 | 0.64 |
6 | Tomás Garrido | 142.15 | 0.55 |
7 | 026 Bajo Río San Juan | 71.26 | 0.27 |
8 | Villa de Bilbao | 28.05 | 0.11 |
9 | Mapimí | 23.65 | 0.09 |
10 | Zapalinamé | 3.92 | 0.01 |
11 | Zona de Restauración Zapalinamé | 1.44 | <0.00 |
12 | Cumbres de Monterrey | 0.42 | <0.00 |
13 | Río Bravo del Norte | 0.34 | <0.00 |
Global Circulation Model | Training AUC | Validation AUC |
---|---|---|
MPIESM-LR (RCP 4.5) 2050 | 0.921–0.949 | 0.820–0.953 |
MPIESM-LR (RCP 8.5) 2050 | 0.924–0.963 | 0.859–0.906 |
MPIESM-LR (RCP 4.5) 2070 | 0.923–0.951 | 0.803–0.936 |
MPIESM-LR (RCP 8.5) 2070 | 0.927–0.950 | 0.825–0.902 |
HadGEM2-ES (RCP 4.5) 2050 | 0.921–0.955 | 0.891–0.914 |
HadGEM2-ES (RCP 8.5) 2050 | 0.908–0.956 | 0.867–0.891 |
HadGEM2-ES (RCP 4.5) 2070 | 0.924–0.963 | 0.803–0.921 |
HadGEM2-ES (RCP 8.5) 2070 | 0.918–0.949 | 0.818–0.945 |
Model | Important Variables | Contribution (%) |
---|---|---|
Current | FRA, BIO 12, DEP, BIO 11, BIO 9, and ELE | 96.7 |
MPIESM-LR (RCP 4.5) 2050 | FRA, BIO 12, DEP, BIO 11, BIO 9, and DEN | 97.1 |
MPIESM-LR (RCP 8.5) 2050 | FRA, BIO 12, DEP, BIO 7, ELE, and BIO 9 | 92.3 |
MPIESM-LR (RCP 4.5) 2070 | FRA, BIO 12, ELE, DEP, BIO 7, and BIO 11 | 94.8 |
MPIESM-LR (RCP 8.5) 2070 | FRA, BIO 12, DEP, BIO 11, BIO 7, and DEN | 91.8 |
HadGEM2-ES (RCP 4.5) 2050 | FRA, BIO 12, DEP, ELE, BIO 11, and DEN | 96.2 |
HadGEM2-ES (RCP 8.5) 2050 | FRA, BIO 12, DEP, BIO 11, BIO 9, and BIO 7 | 97.1 |
HadGEM2-ES (RCP 4.5) 2070 | FRA, BIO 12, DEP, BIO 11, BIO 9, and ELE | 96.1 |
HadGEM2-ES (RCP 8.5) 2070 | FRA, BIO 12, DEP, BIO 11, ELE, and BIO 7 | 97.4 |
Natural Protected Area | Area (km2) | Percentage (%) 1 |
---|---|---|
004 Don Martín | 327.14 | 12.90 |
Ocampo | 154.90 | 8.21 |
Sierra y Cañón de Jimulco | 89.11 | 53.88 |
Tomás Garrido | 82.06 | 57.72 |
026 Bajío Río San Juan | 69.10 | 96.96 |
Cuatrociénegas | 8.62 | 4.69 |
Villa de Bilbao | 5.66 | 20.17 |
Zapalinamé | 3.92 | 100 |
Maderas del Carmen | 1.38 | 0.54 |
Zona de Restauración Zapalinamé | 0.99 | 68.75 |
Cumbres de Monterrey | 0.42 | 100 |
Number | Natural Protected Area | Area (km2) | Percentage (%) 1 |
---|---|---|---|
1 | Ocampo | 481.20 | 25.52 |
2 | 004 Don Martín | 175.75 | 6.93 |
3 | Maderas del Carmen | 50.12 | 19.90 |
4 | 026 Bajo Río San Juan | 40.62 | 57.00 |
5 | Sierra y Cañón de Jimulco | 7.48 | 4.52 |
6 | Tomás Garrido | 3.48 | 2.44 |
7 | Cuatrociénegas | 3.42 | 1.86 |
8 | Zapalinamé | 1.45 | 36.98 |
9 | Zona de Restauración Zapalinamé | 0.61 | 42.36 |
10 | Mapimí | 0.27 | 1.14 |
11 | Río Bravo Norte | 0.13 | 38.23 |
12 | Cumbres de Monterrey | 0.08 | 19.04 |
13 | Villa de Bilbao | 0.02 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Sifuentes, A.R.; Estrada-Ávalos, J.; Trucíos-Caciano, R.; Villanueva-Díaz, J.; López-Hernández, N.A.; López-Favela, J.d.D. Predicting Climate Change Impacts on Candelilla (Euphorbia antisyphilitica Zucc.) for Mexico: An Approach for Mexico’s Primary Harvest Area. Sustainability 2023, 15, 7737. https://doi.org/10.3390/su15107737
Martínez-Sifuentes AR, Estrada-Ávalos J, Trucíos-Caciano R, Villanueva-Díaz J, López-Hernández NA, López-Favela JdD. Predicting Climate Change Impacts on Candelilla (Euphorbia antisyphilitica Zucc.) for Mexico: An Approach for Mexico’s Primary Harvest Area. Sustainability. 2023; 15(10):7737. https://doi.org/10.3390/su15107737
Chicago/Turabian StyleMartínez-Sifuentes, Aldo Rafael, Juan Estrada-Ávalos, Ramón Trucíos-Caciano, José Villanueva-Díaz, Nuria Aidé López-Hernández, and Juan de Dios López-Favela. 2023. "Predicting Climate Change Impacts on Candelilla (Euphorbia antisyphilitica Zucc.) for Mexico: An Approach for Mexico’s Primary Harvest Area" Sustainability 15, no. 10: 7737. https://doi.org/10.3390/su15107737
APA StyleMartínez-Sifuentes, A. R., Estrada-Ávalos, J., Trucíos-Caciano, R., Villanueva-Díaz, J., López-Hernández, N. A., & López-Favela, J. d. D. (2023). Predicting Climate Change Impacts on Candelilla (Euphorbia antisyphilitica Zucc.) for Mexico: An Approach for Mexico’s Primary Harvest Area. Sustainability, 15(10), 7737. https://doi.org/10.3390/su15107737