Hyperspectral Imaging for Sustainable Waste Recycling
1. Hyperspectral Imaging in the Waste Recycling Sector
2. Hyperspectral Imaging Techniques
3. Recent Advances in HSI-Based Waste Recycling
Conflicts of Interest
References
- Calvini, R.; Ulrici, A.; Amigo, J.M. Growing applications of hyperspectral and multispectral imaging. Data Handl. Sci. Technol. 2019, 32, 605–629. [Google Scholar]
- ElMasry, G.; Sun, D.-W. Principles of hyperspectral imaging technology. In Hyperspectral Imaging for Food Quality Analysis and Control; Elsevier: Amsterdam, The Netherlands, 2010; pp. 3–43. [Google Scholar] [CrossRef]
- Shippert, P. Introduction to hyperspectral image analysis. Online J. Space Commun. 2003, 2, 8. [Google Scholar]
- Gallagher, N.B.; Lawrence, L. Introduction to Hyperspectral and Multivariate Image Analysis and Principal Components Analysis for Multivariate Images. 2020. Available online: https://www.researchgate.net/profile/Neal-Gallagher-2/publication/346731395_Introduction_to_Hyperspectral_and_Multivariate_Image_Analysis_and_Principal_Components_Analysis_for_Multivariate_Images/links/5fcfd0b245851568d14d60ee/Introduction-to-Hyperspectral-and-Multivariate-Image-Analysis-and-Principal-Components-Analysis-for-Multivariate-Images.pdf (accessed on 9 May 2022).
- Keenan, M.R. Multivariate analysis of spectral images composed of count data. Tech. Appl. Hyperspectral Image Anal. 2007, 89–126. [Google Scholar]
- Geladi, P.; Grahn, H.; Burger, J. Multivariate images, hyperspectral imaging: Background and equipment. Tech. Appl. Hyperspectral Image Anal. 2007, 1–15. [Google Scholar]
- Bonifazi, G.; Capobianco, G.; Palmieri, R.; Serranti, S. Hyperspectral imaging applied to the waste recycling sector. Spectrosc. Eur. 2019, 31, 8–11. [Google Scholar] [CrossRef]
- Bonifazi, G.; Serranti, S. Quality control by HyperSpectral Imaging (HSI) in solid waste recycling: Logics, algorithms and procedures. In Image Processing: Machine Vision Applications VII; SPIE: Bellingham, DC, USA, 2014; pp. 189–203. [Google Scholar]
- Tao, J.; Gu, Y.; Hao, X.; Liang, R.; Wang, B.; Cheng, Z.; Yan, B.; Chen, G. Combination of hyperspectral imaging and machine learning models for fast characterization and classification of municipal solid waste. Resour. Conserv. Recycl. 2023, 188, 106731. [Google Scholar] [CrossRef]
- Tamin, O.; Moung, E.G.; Dargham, J.A.; Yahya, F.; Omatu, S. A review of hyperspectral imaging-based plastic waste detection state-of-the-arts. Int. J. Electr. Comput. Eng. (IJECE) 2023, 13, 3407–3419. [Google Scholar] [CrossRef]
- Shiddiq, M.; Arief, D.S.; Fatimah, K.; Wahyudi, D.; Mahmudah, D.A.; Putri, D.K.E.; Husein, I.R.; Ningsih, S.A. Plastic and organic waste identification using multispectral imaging. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Gundupalli, S.P.; Hait, S.; Thakur, A. A review on automated sorting of source-separated municipal solid waste for recycling. Waste Manag. 2017, 60, 56–74. [Google Scholar] [CrossRef] [PubMed]
- Gundupalli, S.P.; Hait, S.; Thakur, A. Multi-material classification of dry recyclables from municipal solid waste based on thermal imaging. Waste Manag. 2017, 70, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Grahn, H.; Geladi, P. Techniques and Applications of Hyperspectral Image Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Vrancken, C.; Longhurst, P.J.; Wagland, S.T. Critical review of real-time methods for solid waste characterisation: Informing material recovery and fuel production. Waste Manag. 2017, 61, 40–57. [Google Scholar] [CrossRef] [PubMed]
- Tatzer, P.; Wolf, M.; Panner, T. Industrial application for inline material sorting using hyperspectral imaging in the NIR range. Real-Time Imaging 2005, 11, 99–107. [Google Scholar] [CrossRef]
- Reich, G. Near-infrared spectroscopy and imaging: Basic principles and pharmaceutical applications. Adv. Drug Deliv. Rev. 2005, 57, 1109–1143. [Google Scholar] [CrossRef] [PubMed]
- Gewali, U.B.; Monteiro, S.T.; Saber, E. Machine learning based hyperspectral image analysis: A survey. arXiv 2018, arXiv:1802.08701. [Google Scholar]
- Paoletti, M.; Haut, J.; Plaza, J.; Plaza, A. Deep learning classifiers for hyperspectral imaging: A review. ISPRS J. Photogramm. Remote Sens. 2019, 158, 279–317. [Google Scholar] [CrossRef]
- Cho, M.O.; Yoon, S.; Han, H.; Kim, J.K. Automated counting of airborne asbestos fibers by a high-throughput microscopy (HTM) method. Sensors 2011, 11, 7231–7242. [Google Scholar] [CrossRef] [PubMed]
- Thakur, A. Multi-Layer Perceptron-based Classification of Recyclable Plastics from Waste using Hyperspectral Imaging for Robotic Sorting. In Proceedings of the Advances in Robotics-5th International Conference of The Robotics Society, Kanpur, India, 30 June–4 July 2021; pp. 1–5. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palmieri, R.; Gasbarrone, R.; Fiore, L. Hyperspectral Imaging for Sustainable Waste Recycling. Sustainability 2023, 15, 7752. https://doi.org/10.3390/su15107752
Palmieri R, Gasbarrone R, Fiore L. Hyperspectral Imaging for Sustainable Waste Recycling. Sustainability. 2023; 15(10):7752. https://doi.org/10.3390/su15107752
Chicago/Turabian StylePalmieri, Roberta, Riccardo Gasbarrone, and Ludovica Fiore. 2023. "Hyperspectral Imaging for Sustainable Waste Recycling" Sustainability 15, no. 10: 7752. https://doi.org/10.3390/su15107752
APA StylePalmieri, R., Gasbarrone, R., & Fiore, L. (2023). Hyperspectral Imaging for Sustainable Waste Recycling. Sustainability, 15(10), 7752. https://doi.org/10.3390/su15107752