Optimal Dimensions of Post-Tensioned Concrete Cylindrical Walls Using Harmony Search and Ensemble Learning with SHAP
Abstract
:1. Introduction
2. Machine Learning and Optimization Methods
2.1. Analysis of the Data Set
2.2. Harmony Search Algorithm
2.3. Ensemble Learning Algorithms
2.4. Genetic Programming
3. Results
3.1. Interpretation of the Ensemble Learning Models Using SHAP Approach
3.2. Genetic Programming
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Unit cost of concrete | Unit cost of steel | ||
Unit cost of post-tensioning | Unit cost of formwork | ||
F | Set of all input features | FPA | Flower pollination algorithm |
FRP | Fiber reinforced polymer | HMCR | Harmony memory consideration rate |
HMS | Harmony memory size | i | Index of a design variable |
Specific weight of the liquid | GOSS | Gradient-based One-Side Sampling | |
GP | Genetic programming | H | Height of the wall |
HS | Harmony search | ICE | Individual conditional expectation |
k | Index of a population member | M | Size of the training set |
MAE | Mean absolute error | ML | Machine learning |
N | Number of decision trees | Penalty function | |
P1…Pn | Post-tensioning forces | PAR | Pitch adjustment rate |
SHAP value of the i-th feature | PCPT | Pre-cast post-tensioned | |
r | Radius of the cylindrical wall | Coefficient of determination | |
RMSE | Root mean squared error | Pearson correlation coefficient | |
SHAP | SHapley Additive exPlanations | t | Wall thickness |
TLBO | Teaching learning based optimization | SPM | Superposition method |
Volume of concrete | Weight of post-tensioning cables | ||
Weight of steel | Model prediction | ||
Area of formwork |
References
- Post-Tensioning Manual, 6th ed.; Post-Tensioning Institute: Phoenix, AZ, USA, 2006; ISBN 0977875202.
- Bekdaş, G. Harmony Search Algorithm Approach for Optimum Design of Post-Tensioned Axially Symmetric Cylindrical Reinforced Concrete Walls. J. Optim. Theory Appl. 2014, 164, 342–358. [Google Scholar] [CrossRef]
- Bekdas, G. Optimum design of axially symmetric cylindrical reinforced concrete walls. Struct. Eng. Mech. 2014, 51, 361–375. [Google Scholar] [CrossRef]
- Bekdaş, G. New improved metaheuristic approaches for optimum design of posttensioned axially symmetric cylindrical reinforced concrete walls. Struct. Des. Tall Spéc. Build. 2018, 27, e1461. [Google Scholar] [CrossRef]
- Bekdaş, G.; Nigdeli, S.M. Optimum Reduction of Flexural Effect of Axially Symmetric Cylindrical Walls with Post-tensioning Forces. KSCE J. Civ. Eng. 2017, 22, 2425–2432. [Google Scholar] [CrossRef]
- Bekdaş, G.; Cakiroglu, C.; Islam, K.; Kim, S.; Geem, Z.W. Optimum Design of Cylindrical Walls Using Ensemble Learning Methods. Appl. Sci. 2022, 12, 2165. [Google Scholar] [CrossRef]
- Kaveh, A.; Zolghadr, A. Meta-heuristic methods for optimization of truss structures with vibration frequency constraints. Acta Mech. 2018, 229, 3971–3992. [Google Scholar] [CrossRef]
- Renkavieski, C.; Parpinelli, R.S. Meta-heuristic algorithms to truss optimization: Literature mapping and application. Expert Syst. Appl. 2021, 182, 115197. [Google Scholar] [CrossRef]
- Mortazavi, A.; Togan, V. Metaheuristic Algorithms for Optimal Design of Truss Structures. In Advances in Structural Engineering—Optimization. Studies in Systems, Decision and Control; Nigdeli, S.M., Bekdaş, G., Kayabekir, A.E., Yucel, M., Eds.; Springer: Cham, Switzerland, 2021; Volume 326. [Google Scholar] [CrossRef]
- Mortazavi, A. The Performance Comparison of Three Metaheuristic Algorithms on the Size, Layout and Topology Optimization of Truss Structures. Mugla J. Sci. Technol. 2019, 5, 28–41. [Google Scholar] [CrossRef]
- Bekdaş, G.; Yucel, M.; Nigdeli, S.M. Evaluation of Metaheuristic-Based Methods for Optimization of Truss Structures via Various Algorithms and Lèvy Flight Modification. Buildings 2021, 11, 49. [Google Scholar] [CrossRef]
- Grzywinski, M.; Selejdak, J.; Dede, T. Shape and size optimization of trusses with dynamic constraints using a metaheuristic algorithm. Steel Compos. Struct. 2019, 33, 747–753. [Google Scholar] [CrossRef]
- Yousefpoor, H.; Kaveh, A. Chaos Embedded Meta-heuristic Algorithms for Optimal Design of Truss Structures. Sci. Iran. 2022, 29, 2868–2885. [Google Scholar] [CrossRef]
- Uray, E.; Tan, Ö.; Çarbaş, S.; Erkan, H. Metaheuristics-based Pre-Design Guide for Cantilever Retaining Walls. Tek. Dergi 2021, 32, 10967–10993. [Google Scholar] [CrossRef]
- Sharma, S.; Saha, A.K.; Lohar, G. Optimization of weight and cost of cantilever retaining wall by a hybrid metaheuristic algorithm. Eng. Comput. 2021, 38, 2897–2923. [Google Scholar] [CrossRef]
- Aydoğdu, I. Comparison of metaheuristics on multi objective (Cost-C02) optimization of RC cantilever retaining walls. Pamukkale Univ. J. Eng. Sci. 2017, 23, 221–231. [Google Scholar] [CrossRef]
- Bekdaş, G.; Cakiroglu, C.; Kim, S.; Geem, Z.W. Optimal Dimensioning of Retaining Walls Using Explainable Ensemble Learning Algorithms. Materials 2022, 15, 4993. [Google Scholar] [CrossRef]
- Kaveh, A.; Hamedani, K.B.; Bakhshpoori, T. Optimal Design of Reinforced Concrete Cantilever Retaining Walls Utilizing Eleven Meta-Heuristic Algorithms: A Comparative Study. Period. Polytech. Civ. Eng. 2020, 64, 156–158. [Google Scholar] [CrossRef]
- Kalemci, E.N.; Ikizler, S.B.; Dede, T.; Angın, Z. Design of reinforced concrete cantilever retaining wall using Grey wolf optimization algorithm. Structures 2019, 23, 245–253. [Google Scholar] [CrossRef]
- Aral, S.; Yılmaz, N.; Bekdaş, G.; Nigdeli, S.M. Jaya Optimization for the Design of Cantilever Retaining Walls with Toe Projection Restriction. In Proceedings of the 6th International Conference on Harmony Search, Soft Computing and Applications (ICHSA 2020), Istanbul, Turkey, 22–24 April 2020; Nigdeli, S.M., Kim, J.H., Bekdaş, G., Yadav, A., Eds.; Advances in Intelligent Systems and Computing. Springer: Singapore, 2021; Volume 1275. [Google Scholar] [CrossRef]
- Kalemci, E.N. Rao-3 algorithm for the weight optimization of reinforced concrete cantilever retaining wall. Geomech. Eng. 2020, 20, 527–536. [Google Scholar] [CrossRef]
- Cakiroglu, C.; Islam, K.; Bekdaş, G.; Nehdi, M.L. Data-driven ensemble learning approach for optimal design of cantilever soldier pile retaining walls. Structures 2023, 51, 1268–1280. [Google Scholar] [CrossRef]
- Jalili, S.; Khani, R.; Maheri, A.; Hosseinzadeh, Y. Performance assessment of meta-heuristics for composite layup optimisation. Neural Comput. Appl. 2021, 34, 2031–2054. [Google Scholar] [CrossRef]
- Nicholas, P.E.; Dharmaraja, C.; Sofia, A.S.; Vasudevan, D. Optimization of laminated composite plates subjected to nonuniform thermal loads. Polym. Polym. Compos. 2019, 27, 314–322. [Google Scholar] [CrossRef]
- Cakiroglu, C.; Islam, K.; Bekdaş, G.; Kim, S.; Geem, Z.W. Metaheuristic Optimization of Laminated Composite Plates with Cut-Outs. Coatings 2021, 11, 1235. [Google Scholar] [CrossRef]
- Nicholas, P.E.; Padmanaban, K.; Vasudevan, D. Buckling optimization of laminated composite plate with elliptical cutout using ANN and GA. Struct. Eng. Mech. 2014, 52, 815–827. [Google Scholar] [CrossRef]
- Javidrad, F.; Nazari, M.; Javidrad, H.R. An Innovative Optimized Design for Laminated Composites in terms of a Proposed Bi-Objective Technique. J. Soft Comput. Civ. Eng. 2020, 4, 1–28. [Google Scholar] [CrossRef]
- Topal, U.; Vo-Duy, T.; Dede, T.; Nazarimofrad, E. Buckling load optimization of laminated plates resting on Pasternak foundation using TLBO. Struct. Eng. Mech. Int. J. 2018, 67, 617–628. [Google Scholar] [CrossRef]
- Jafari, M.; Chaleshtari, M.H.B.; Khoramishad, H.; Altenbach, H. Minimization of thermal stress in perforated composite plate using metaheuristic algorithms WOA, SCA and GA. Compos. Struct. 2023, 304, 116403. [Google Scholar] [CrossRef]
- Cakiroglu, C.; Bekdaş, G.; Geem, Z.W. Harmony Search Optimisation of Dispersed Laminated Composite Plates. Materials 2020, 13, 2862. [Google Scholar] [CrossRef]
- Cakiroglu, C.; Bekdaş, G.; Kim, S.; Geem, Z.W. Optimisation of Shear and Lateral–Torsional Buckling of Steel Plate Girders Using Meta-Heuristic Algorithms. Appl. Sci. 2020, 10, 3639. [Google Scholar] [CrossRef]
- Elbelbisi, A.H.; El-Sisi, A.A.; Hassan, H.A.; Salim, H.A.; Shabaan, H.F. Parametric Study on Steel–Concrete Composite Beams Strengthened with Post-Tensioned CFRP Tendons. Sustainability 2022, 14, 15792. [Google Scholar] [CrossRef]
- Elsheshtawy, S.S.; Shoeib, A.K.; Hassanin, A.; Ors, D.M. Influence of the Distribution and Level of Post-Tensioning Force on the Punching Shear of Flat Slabs. Designs 2022, 7, 1. [Google Scholar] [CrossRef]
- Attia, M.M.; Khalil, A.H.H.; Mohamed, G.N.; Samaan, M.F.; Katunský, D. Nonlinear Behavior of Bonded and Unbonded Two-Way Post-Tensioned Slabs Pre-Strengthened with CFRP Laminates. Buildings 2022, 13, 35. [Google Scholar] [CrossRef]
- Tahmasebinia, F.; Hu, Z.; Wei, Q.; Ma, W. Numerically Evaluation of Dynamic Behavior of Post-Tensioned Concrete Flat Slabs under Free Vibration. Sustainability 2023, 15, 845. [Google Scholar] [CrossRef]
- Vavrus, M.; Kralovanec, J. Study of Application of Fiber Reinforced Concrete in Anchorage Zone. Buildings 2023, 13, 524. [Google Scholar] [CrossRef]
- Lei, H.; Liu, Z.; Alsomiri, M. Bearing capacity of concentric anchorage zones in post-tensioned members: A stress field solution. Structures 2023, 50, 1368–1375. [Google Scholar] [CrossRef]
- Joyklad, P.; Ali, N.; Chaiyasarn, K.; Suparp, S.; Hussain, Q. Time-dependent behavior of full-scale precast post-tensioned (PCPT) girders: Experimental and finite element analysis. Case Stud. Constr. Mater. 2022, 17, e01310. [Google Scholar] [CrossRef]
- Yu, F.; Wang, M.; Yao, D.; Liu, Y. Experimental research on flexural behavior of post-tensioned self-compacting concrete beams with recycled coarse aggregate. Constr. Build. Mater. 2023, 377, 131098. [Google Scholar] [CrossRef]
- Bekdaş, G.; Yucel, M.; Nigdeli, S.M. Generation of eco-friendly design for post-tensioned axially symmetric reinforced concrete cylindrical walls by minimizing of CO2 emission. Struct. Des. Tall Spéc. Build. 2022, 31, e1948. [Google Scholar] [CrossRef]
- ACI 318M–05; Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute: Farmington Hills, MI, USA, 2005.
- Love, A. A Treatise on the Mathematical Theory of Elasticity. 1, 1892. ⟨hal-01307751⟩. Available online: https://hal.science/hal-01307751 (accessed on 23 February 2023).
- Hetenyi, M. Beams on Elastic Foundation; The University of Michigan Press: Ann Arbor, MI, USA, 1946. [Google Scholar]
- Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68. [Google Scholar] [CrossRef]
- Yadav, N.; Ngo, T.T.; Kim, J.H. An algorithm for numerical solution of differential equations using harmony search and neural networks. J. Appl. Anal. Comput. 2022, 12, 1277–1293. [Google Scholar] [CrossRef]
- Geem, Z.W. Multiobjective Optimization of Time-Cost Trade-Off Using Harmony Search. J. Constr. Eng. Manag. 2010, 136, 711–716. [Google Scholar] [CrossRef]
- Chang, Y.-Z.; Li, Z.-W.; Kou, Y.-X.; Sun, Q.-P.; Yang, H.-Y.; Zhao, Z.-Y. A New Approach to Weapon-Target Assignment in Cooperative Air Combat. Math. Probl. Eng. 2017, 2017, 2936279. [Google Scholar] [CrossRef]
- Shih, P.-C.; Chiu, C.-Y.; Chou, C.-H. Using Dynamic Adjusting NGHS-ANN for Predicting the Recidivism Rate of Commuted Prisoners. Mathematics 2019, 7, 1187. [Google Scholar] [CrossRef]
- Xu, C.; Wang, X. Transient content caching and updating with modified harmony search for Internet of Things. Digit. Commun. Netw. 2018, 5, 24–33. [Google Scholar] [CrossRef]
- Gonzalez, P.; Mora, A.; Garrido, S.; Barber, R.; Moreno, L. Multi-LiDAR Mapping for Scene Segmentation in Indoor Environments for Mobile Robots. Sensors 2022, 22, 3690. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, L.; Lansivaara, T.; Chi, S.; Sun, Y. An improved harmony search minimization algorithm using different slip surface generation methods for slope stability analysis. Eng. Optim. 2008, 40, 95–115. [Google Scholar] [CrossRef]
- Lee, K.S.; Geem, Z.W. A new structural optimization method based on the harmony search algorithm. Comput. Struct. 2004, 82, 781–798. [Google Scholar] [CrossRef]
- Lee, K.S.; Geem, Z.W.; Lee, S.-H.; Bae, K.-W. The harmony search heuristic algorithm for discrete structural optimization. Eng. Optim. 2005, 37, 663–684. [Google Scholar] [CrossRef]
- García-Segura, T.; Yepes, V.; Alcalá, J. Computer-support tool to optimize bridges automatically. Int. J. Comput. Methods Exp. Meas. 2017, 5, 171–178. [Google Scholar] [CrossRef]
- Aladsani, M.A.; Burton, H.; Abdullah, S.A.; Wallace, J.W. Explainable Machine Learning Model for Predicting Drift Capacity of Reinforced Concrete Walls. ACI Struct. J. 2022, 119, 191–204. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3146–3154. [Google Scholar]
- Dorogush, A.V.; Ershov, V.; Gulin, A. CatBoost: Gradient boosting with categorical features support. arXiv 2018, arXiv:1810.11363. [Google Scholar]
- Gandomi, A.H.; Roke, D.A. Assessment of artificial neural network and genetic programming as predictive tools. Adv. Eng. Softw. 2015, 88, 63–72. [Google Scholar] [CrossRef]
- Madár, J.; Abonyi, J.; Szeifert, F. Genetic Programming for the Identification of Nonlinear Input−Output Models. Ind. Eng. Chem. Res. 2005, 44, 3178–3186. [Google Scholar] [CrossRef]
- Gondia, A.; Ezzeldin, M.; El-Dakhakhni, W. Mechanics-Guided Genetic Programming Expression for Shear-Strength Prediction of Squat Reinforced Concrete Walls with Boundary Elements. J. Struct. Eng. 2020, 146, 04020223. [Google Scholar] [CrossRef]
- Mangalathu, S.; Hwang, S.-H.; Jeon, J.-S. Failure mode and effects analysis of RC members based on machine-learning-based SHapley Additive exPlanations (SHAP) approach. Eng. Struct. 2020, 219, 110927. [Google Scholar] [CrossRef]
Algorithm | R2 | MAE | RMSE | Duration [s] | |||
---|---|---|---|---|---|---|---|
Train | Test | Train | Test | Train | Test | ||
XGBoost | 0.9999 | 0.9999 | 0.0001 | 0.0002 | 0.0003 | 0.0003 | 4.81 |
Random Forest | 0.9999 | 0.9999 | 10−5 | 3 × 10−5 | 9 × 10−5 | 0.0002 | 3.87 |
LightGBM | 0.9999 | 0.9999 | 0.0005 | 0.0006 | 0.0012 | 0.0014 | 4.52 |
CatBoost | 0.9999 | 0.9999 | 0.0002 | 0.0003 | 0.0002 | 0.0004 | 32.82 |
GP | 0.9584 | 0.9573 | 0.0465 | 0.0460 | 0.0573 | 0.0570 | 359 |
Algorithm | R2 | MAE | RMSE | Duration [s] | |||
---|---|---|---|---|---|---|---|
Train | Test | Train | Test | Train | Test | ||
XGBoost | 0.9967 | 0.9825 | 0.0087 | 0.021 | 0.0139 | 0.0346 | 5.66 |
Random Forest | 0.9973 | 0.9850 | 0.0077 | 0.019 | 0.0126 | 0.0320 | 5.14 |
LightGBM | 0.9908 | 0.9864 | 0.0153 | 0.019 | 0.0234 | 0.0305 | 4.39 |
CatBoost | 0.9931 | 0.9863 | 0.0129 | 0.018 | 0.0203 | 0.0306 | 25.15 |
GP | 0.9588 | 0.9581 | 0.0422 | 0.045 | 0.0501 | 0.0531 | 150 |
Model | Parameter Name | Value |
---|---|---|
GP | population_size | 5000 |
p_crossover | 0.7 | |
p_subtree_mutation | 0.1 | |
p_hoist_mutation | 0.05 | |
p_point_mutation | 0.1 | |
tournament_size | 150 | |
function_set | (‘add’, ‘sin’, ‘cos’, ‘tan’, ‘log’, ‘sub’, ‘mul’, ‘div’, ‘sqrt’) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bekdaş, G.; Cakiroglu, C.; Kim, S.; Geem, Z.W. Optimal Dimensions of Post-Tensioned Concrete Cylindrical Walls Using Harmony Search and Ensemble Learning with SHAP. Sustainability 2023, 15, 7890. https://doi.org/10.3390/su15107890
Bekdaş G, Cakiroglu C, Kim S, Geem ZW. Optimal Dimensions of Post-Tensioned Concrete Cylindrical Walls Using Harmony Search and Ensemble Learning with SHAP. Sustainability. 2023; 15(10):7890. https://doi.org/10.3390/su15107890
Chicago/Turabian StyleBekdaş, Gebrail, Celal Cakiroglu, Sanghun Kim, and Zong Woo Geem. 2023. "Optimal Dimensions of Post-Tensioned Concrete Cylindrical Walls Using Harmony Search and Ensemble Learning with SHAP" Sustainability 15, no. 10: 7890. https://doi.org/10.3390/su15107890
APA StyleBekdaş, G., Cakiroglu, C., Kim, S., & Geem, Z. W. (2023). Optimal Dimensions of Post-Tensioned Concrete Cylindrical Walls Using Harmony Search and Ensemble Learning with SHAP. Sustainability, 15(10), 7890. https://doi.org/10.3390/su15107890