The Construction of Critical Factors for Successfully Introducing Chatbots into Mental Health Services in the Army: Using a Hybrid MCDM Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Questionnaire Development
2.2.1. Technologies
2.2.2. Activities
2.2.3. Boundaries
2.2.4. Goals
2.3. Evaluation Criteria
- (1)
- If two triangular fuzzy numbers did not overlap, that is, ≤ , this indicated the presence of a consensus zone among the interval values of all the specialist opinions, which tended to fall within the scope of the consensus zone. Therefore, let the expert consensus value Gi for an assessment item i be equal to the arithmetic mean of and . Then, Gi = ( + )/2.
- (2)
- If two triangular fuzzy numbers overlapped, that is, > , and the gray zone of the fuzzy relation (Zi = − ) was smaller than the interval range between the geometric mean of the optimistically perceived value and the geometric mean of conservatively perceived value for an assessment item rated by specialists (Mi = − ), this indicated that although there was no consensus zone among the interval values of specialist opinions, the two specialists giving extreme values, that is, the divergence between the most conservative and optimistic perceptions of an assessment item i, compared to other specialists’ opinions, was not sufficiently significant to create a difference in opinion. Thus, we determined the consensus importance value Gi of assessment item i by taking the fuzzy relation of the two triangular fuzzy numbers and performing an intersection (min) operation. Next, we found the quantitative score of the fuzzy set with the maximum membership value.
- (3)
- If two triangular fuzzy numbers overlapped, that is, > , and the gray zone of the fuzzy relation (Zi = − ) was greater than the interval range between the geometric mean of the optimistically perceived value and the geometric mean of conservatively perceived value for an assessment item rated by specialists (Mi = − ), this indicated that there was no consensus zone among the interval values of specialist opinions, and that the two specialists who gave extreme values, that is, when the specialists’ opinions showed significant divergence due to extreme values given by the most conservative and optimistic specialists, the assessment items were considered unresolved. These unresolved items were then provided to the specialists for their reference, and Steps 1 to 4 were repeated to conduct another survey until a consensus was reached on all assessment items. The objective was to obtain the consensus-importance value Gi.
2.4. Decision-Making Trial and Evaluation Laboratory (DEMATEL): Constructing Influential Network Relation Map (INRM)
2.5. DEMATEL-Based Analytic Network Process (DANP): Constructing Influential Weights
2.6. Participants
2.7. Ethical Considerations
3. Results
3.1. Characteristics of Expert Panel
3.2. Results of the Fuzzy-Delphi-Specialist Survey
3.3. Constructing Cause–Effect Relationships among Dimensions and Indicators
3.4. DANP Influencial Weights of Dimensions and Indicators
4. Discussion
4.1. Principal Findings
4.2. Implications of This Study for Sustainability in Healthcare
4.3. Strengths and Limitations
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Dimension | Assessment Criteria | Indicator | References |
---|---|---|---|
A. Technologies | Changes in the acceptance of introduction of chatbots into the military to assist with mental health services | A1—enhancing the ease of system operations | [55,57] |
A2—focus on a case’s perceptions toward user experience | [55,57] | ||
B. Activities | Fundamental changes in military mental-health services after the introduction of chatbots | B1—revising guidelines for military mental health services | [61,62] |
B2—adjusting the content of mental health advocacy and education activities | [64] | ||
B3—adjusting the content of the mental-health-service website | [64] | ||
B4—adjusting selection criteria for military-mental-health-management trainees | [59] | ||
B5—adjusting the content of programs for mental-health-management trainees | [60] | ||
B6—adjusting the content of and hours spent in on-the-job education and training | [60,64] | ||
B7—examining and modifying psychological testing and assessment tools | Expert interview | ||
B8—adjusting the currently practiced three-tier-prevention and referral mechanism, namely, primary detection and prevention, secondary profession counseling, and tertiary medical interventions | Expert interview | ||
B9—adjusting the current practice of professional supervision for mentalhealth services | Expert interview | ||
B10—improving privacy and data security issues | [63,67] | ||
C. Boundaries | Expansion, contraction, or even disappearance of organization, staffing, and the power of the unit responsible for policy implementation after the introduction of chatbots into the military to assist with mental health services | C1—adjusting the organizational structure of the responsible department | [64,65,66] |
C2—adjusting the rank of the manager responsible for relevant affairs | [64,65,66] | ||
C3—adding operating mechanisms for communication and coordination with other departments | [66] | ||
C4—endowing practitioners with responsibilities and powers | [53,64] | ||
C5—enhancing recognition and support from the commander | [53] | ||
C6—reviewing the budget | Expert interview | ||
D. Goals | Effects on the work performance and project inspection of the unit responsible for policy implementation after chatbots are introduced into the military | D1—adjusting how work performance is presented | [53] |
D2—adjusting administrative supervision items | [53] | ||
D3—adjusting selection criteria for personnel with outstanding performance | Expert interview |
Num. | Gender | Class | Education | Services | Unit Type | Job Type | Years |
---|---|---|---|---|---|---|---|
P1 | female | CPT | Master’s | Army | Logistics | Practical | 6 |
P2 | female | LCDR | Master’s | NAVY | Collection | Practical | 7 |
P3 | female | MAJ | Bachelor’s | Air Force | Air wing | Practical | 9 |
P4 | male | MAJ | Master’s | Air Force | Logistics | Practical | 6 |
P5 | male | MAJ | Machelor’s | Air Force | Logistics | Practical | 14 |
P6 | female | MAJ | Master’s | Air Force | Training | Education training | 9 |
P7 | female | MAJ | Master’s | Army | Field | Practical | 8 |
P8 | male | MAJ | Bachelor’s | Air Force | Air wing | Practical | 7 |
P9 | male | MAJ | Master’s | Army | Reserve | Practical | 7 |
P10 | male | MAJ | Bachelor’s | Air Force | Air wing | Practical | 10 |
P11 | female | CPT | Bachelor’s | Air Force | Training | Practical | 6 |
P12 | male | LCDR | Master’s | NAVY | Senior staff | planning and supervision | 7 |
P13 | male | LTC | Master’s | Military Police | Senior staff | planning and supervision | 10 |
P14 | male | MAJ | Bachelor’s | Air Force | Senior staff | planning and supervision | 7 |
P15 | male | CPT | Master’s | Air Force | Antiaircraft missile | Practical | 4 |
P16 | female | MAJ | Master’s | Army | Field | Practical | 9 |
P17 | male | LTC | Master’s | Army | Training | education training | 6 |
P18 | male | LTC | Master’s | Army | Senior staff | planning and supervision | 5 |
P19 | male | SSG | Bachelor’s | Army | Special operations | Practical | 2 |
P20 | female | MAJ | Master’s | Air Force | Antiaircraft missile | Practical | 6 |
P21 | female | MAJ | Master’s | Air Force | Training | Practical | 6 |
P22 | female | civilian | Master’s | None | Hospital | Practical | 2 |
Indicators | SD | SD | Ci | Oi | Mi − Zi | Gi | Gi > 7 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
A1 | 7 | 9 | 8 | 10 | 8.12 0.86 | 9.24 0.83 | 8.00 | 9.09 | 0.12 | 8.58 | Yes |
A2 | 7 | 9 | 8 | 10 | 8.29 0.85 | 9.41 0.87 | 8.28 | 9.37 | 0.12 | 8.67 | Yes |
B1 | 6 | 9 | 8 | 10 | 7.82 1.01 | 9.06 0.90 | 7.65 | 8.95 | 0.24 | 8.47 | Yes |
B2 | 6 | 9 | 8 | 10 | 7.82 1.13 | 9.12 0.93 | 7.55 | 8.91 | 0.30 | 8.49 | Yes |
B3 | 6 | 9 | 8 | 10 | 7.53 1.12 | 9.00 0.94 | 7.47 | 8.91 | 0.47 | 8.40 | Yes |
B4 | 6 | 9 | 8 | 10 | 7.59 1.12 | 8.76 0.90 | 7.34 | 8.55 | 0.17 | 8.35 | Yes |
B5 | 6 | 9 | 8 | 10 | 7.53 0.94 | 8.76 0.83 | 7.34 | 8.64 | 0.23 | 8.34 | Yes |
B6 | 6 | 9 | 8 | 10 | 7.82 0.95 | 9.12 0.86 | 7.76 | 9.00 | 0.30 | 8.49 | Yes |
B7 | 5 | 8 | 7 | 9 | 6.88 1.05 | 8.06 0.83 | 6.74 | 7.91 | 0.18 | 7.49 | Yes |
B8 | 5 | 8 | 7 | 9 | 6.76 0.90 | 7.88 0.78 | 6.51 | 7.78 | 0.12 | 7.42 | Yes |
B9 | 5 | 8 | 7 | 9 | 6.82 1.13 | 8.12 0.78 | 6.67 | 8.05 | 0.30 | 7.49 | Yes |
B10 | 8 | 9 | 9 | 10 | 8.59 0.51 | 9.71 0.47 | 8.67 | 9.76 | 1.12 * | 9.15 | Yes |
C1 | 6 | 9 | 8 | 10 | 8.00 1.00 | 9.29 0.85 | 8.07 | 9.33 | 0.29 | 8.56 | Yes |
C2 | 6 | 9 | 8 | 10 | 8.35 1.06 | 9.53 0.80 | 8.20 | 9.42 | 0.18 | 8.70 | Yes |
C3 | 7 | 9 | 8 | 10 | 8.47 0.72 | 9.59 0.71 | 8.42 | 9.52 | 0.12 | 8.75 | Yes |
C4 | 7 | 9 | 8 | 10 | 8.59 0.71 | 9.71 0.69 | 8.51 | 9.61 | 0.12 | 8.81 | Yes |
C5 | 7 | 9 | 8 | 10 | 8.47 0.80 | 9.59 0.80 | 8.47 | 9.56 | 0.12 | 8.75 | Yes |
C6 | 6 | 9 | 8 | 10 | 8.29 0.92 | 9.47 0.80 | 8.22 | 9.37 | 0.18 | 8.68 | Yes |
D1 | 6 | 9 | 8 | 10 | 7.82 1.01 | 8.94 0.83 | 7.89 | 9.01 | 0.12 | 8.44 | Yes |
D2 | 7 | 9 | 9 | 10 | 8.41 0.62 | 9.47 0.51 | 8.38 | 9.49 | 1.11 * | 8.94 | Yes |
D3 | 7 | 9 | 8 | 10 | 8.18 0.73 | 9.24 0.75 | 8.06 | 9.10 | 0.06 | 8.60 | Yes |
Indicators | A1 | A2 | B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B9 | B10 | C1 | C2 | C3 | C4 | C5 | C6 | D1 | D2 | D3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | 0.05 | 0.13 | 0.06 | 0.10 | 0.08 | 0.05 | 0.10 | 0.10 | 0.09 | 0.06 | 0.04 | 0.06 | 0.03 | 0.03 | 0.07 | 0.13 | 0.15 | 0.14 | 0.14 | 0.09 | 0.05 |
A2 | 0.11 | 0.03 | 0.05 | 0.07 | 0.06 | 0.03 | 0.06 | 0.06 | 0.05 | 0.04 | 0.05 | 0.04 | 0.03 | 0.02 | 0.05 | 0.10 | 0.11 | 0.10 | 0.07 | 0.05 | 0.04 |
B1 | 0.03 | 0.04 | 0.02 | 0.06 | 0.04 | 0.03 | 0.05 | 0.04 | 0.04 | 0.05 | 0.04 | 0.02 | 0.02 | 0.01 | 0.04 | 0.07 | 0.05 | 0.04 | 0.09 | 0.11 | 0.05 |
B2 | 0.03 | 0.07 | 0.04 | 0.03 | 0.07 | 0.02 | 0.05 | 0.04 | 0.04 | 0.04 | 0.03 | 0.02 | 0.01 | 0.01 | 0.04 | 0.05 | 0.08 | 0.05 | 0.05 | 0.05 | 0.03 |
B3 | 0.03 | 0.04 | 0.02 | 0.06 | 0.01 | 0.01 | 0.03 | 0.02 | 0.01 | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 | 0.02 | 0.04 | 0.04 | 0.04 | 0.03 | 0.03 | 0.02 |
B4 | 0.03 | 0.03 | 0.03 | 0.03 | 0.02 | 0.02 | 0.05 | 0.04 | 0.03 | 0.02 | 0.03 | 0.03 | 0.03 | 0.03 | 0.04 | 0.07 | 0.07 | 0.05 | 0.05 | 0.04 | 0.07 |
B5 | 0.03 | 0.03 | 0.03 | 0.04 | 0.03 | 0.04 | 0.03 | 0.07 | 0.03 | 0.03 | 0.04 | 0.03 | 0.02 | 0.02 | 0.03 | 0.07 | 0.07 | 0.06 | 0.05 | 0.04 | 0.04 |
B6 | 0.03 | 0.03 | 0.02 | 0.05 | 0.02 | 0.03 | 0.04 | 0.02 | 0.02 | 0.02 | 0.03 | 0.03 | 0.01 | 0.01 | 0.02 | 0.04 | 0.04 | 0.06 | 0.03 | 0.03 | 0.02 |
B7 | 0.04 | 0.04 | 0.08 | 0.07 | 0.04 | 0.02 | 0.06 | 0.06 | 0.02 | 0.03 | 0.04 | 0.03 | 0.02 | 0.02 | 0.03 | 0.05 | 0.06 | 0.06 | 0.06 | 0.08 | 0.04 |
B8 | 0.04 | 0.04 | 0.11 | 0.10 | 0.08 | 0.04 | 0.12 | 0.09 | 0.05 | 0.03 | 0.05 | 0.03 | 0.04 | 0.03 | 0.06 | 0.08 | 0.10 | 0.07 | 0.08 | 0.08 | 0.05 |
B9 | 0.02 | 0.02 | 0.02 | 0.03 | 0.02 | 0.02 | 0.03 | 0.03 | 0.01 | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.03 | 0.03 | 0.04 | 0.03 | 0.03 | 0.02 |
B10 | 0.09 | 0.12 | 0.07 | 0.06 | 0.05 | 0.03 | 0.08 | 0.06 | 0.05 | 0.04 | 0.04 | 0.03 | 0.02 | 0.02 | 0.05 | 0.10 | 0.10 | 0.10 | 0.09 | 0.08 | 0.04 |
C1 | 0.08 | 0.05 | 0.09 | 0.08 | 0.07 | 0.06 | 0.07 | 0.07 | 0.05 | 0.06 | 0.05 | 0.04 | 0.04 | 0.09 | 0.13 | 0.13 | 0.15 | 0.14 | 0.13 | 0.11 | 0.06 |
C2 | 0.05 | 0.05 | 0.09 | 0.09 | 0.06 | 0.06 | 0.07 | 0.07 | 0.04 | 0.05 | 0.05 | 0.05 | 0.11 | 0.04 | 0.14 | 0.15 | 0.16 | 0.15 | 0.13 | 0.11 | 0.07 |
C3 | 0.04 | 0.04 | 0.05 | 0.05 | 0.04 | 0.03 | 0.05 | 0.05 | 0.03 | 0.05 | 0.03 | 0.03 | 0.07 | 0.06 | 0.04 | 0.09 | 0.10 | 0.10 | 0.07 | 0.06 | 0.03 |
C4 | 0.08 | 0.07 | 0.11 | 0.11 | 0.08 | 0.09 | 0.11 | 0.11 | 0.08 | 0.10 | 0.08 | 0.09 | 0.10 | 0.10 | 0.13 | 0.08 | 0.16 | 0.13 | 0.13 | 0.12 | 0.10 |
C5 | 0.09 | 0.08 | 0.08 | 0.10 | 0.09 | 0.07 | 0.10 | 0.10 | 0.07 | 0.07 | 0.05 | 0.06 | 0.11 | 0.10 | 0.15 | 0.16 | 0.09 | 0.17 | 0.15 | 0.12 | 0.09 |
C6 | 0.11 | 0.07 | 0.06 | 0.10 | 0.07 | 0.06 | 0.11 | 0.13 | 0.10 | 0.07 | 0.09 | 0.08 | 0.05 | 0.04 | 0.07 | 0.09 | 0.12 | 0.07 | 0.10 | 0.09 | 0.07 |
D1 | 0.03 | 0.03 | 0.03 | 0.05 | 0.03 | 0.03 | 0.04 | 0.04 | 0.04 | 0.03 | 0.02 | 0.02 | 0.03 | 0.03 | 0.04 | 0.06 | 0.09 | 0.06 | 0.04 | 0.08 | 0.05 |
D2 | 0.02 | 0.02 | 0.04 | 0.05 | 0.03 | 0.02 | 0.04 | 0.04 | 0.03 | 0.03 | 0.04 | 0.03 | 0.03 | 0.02 | 0.04 | 0.05 | 0.06 | 0.05 | 0.09 | 0.03 | 0.05 |
D3 | 0.02 | 0.03 | 0.03 | 0.04 | 0.02 | 0.03 | 0.03 | 0.04 | 0.02 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.03 | 0.05 | 0.05 | 0.04 | 0.10 | 0.05 | 0.02 |
Dimensions/Indicators | d | r | d + r | d − r | Cause/ Effect |
---|---|---|---|---|---|
A | 1.76 | 1.05 | 2.81 | 0.72 | cause |
A1 | 1.20 | 1.06 | 2.26 | 0.15 | cause |
A2 | 0.95 | 1.13 | 2.08 | −0.18 | effect |
B | 0.84 | 1.36 | 2.20 | −0.52 | effect |
B1 | 0.54 | 1.03 | 1.57 | −0.48 | effect |
B2 | 0.83 | 0.78 | 1.62 | 0.05 | cause |
B3 | 0.83 | 1.31 | 2.14 | −0.47 | effect |
B4 | 0.61 | 1.28 | 1.89 | −0.67 | effect |
B5 | 0.93 | 0.91 | 1.84 | 0.01 | cause |
B6 | 1.37 | 0.89 | 2.26 | 0.48 | cause |
B7 | 0.45 | 0.87 | 1.32 | −0.43 | effect |
B8 | 1.31 | 0.77 | 2.08 | 0.54 | cause |
B9 | 1.73 | 0.81 | 2.53 | 0.92 | cause |
B10 | 1.81 | 0.73 | 2.54 | 1.08 | cause |
C | 1.09 | 1.23 | 2.32 | −0.14 | effect |
C1 | 2.16 | 1.66 | 3.82 | 0.50 | cause |
C2 | 2.09 | 1.88 | 3.97 | 0.21 | cause |
C3 | 1.75 | 1.72 | 3.47 | 0.04 | cause |
C4 | 0.86 | 1.70 | 2.56 | −0.84 | effect |
C5 | 0.81 | 1.47 | 2.28 | −0.66 | effect |
C6 | 0.71 | 1.02 | 1.72 | −0.31 | effect |
D | 1.76 | 1.05 | 2.81 | 0.72 | cause |
D1 | 1.20 | 1.06 | 2.26 | 0.15 | cause |
D2 | 0.95 | 1.13 | 2.08 | −0.18 | effect |
D3 | 0.84 | 1.36 | 2.20 | −0.52 | effect |
Indicators | A1 | A2 | B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B9 | B10 | C1 | C2 | C3 | C4 | C5 | C6 | D1 | D2 | D3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 |
A2 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 |
B1 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
B2 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
B3 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
B4 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
B5 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
B6 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
B7 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
B8 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
B9 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
B10 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
C1 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
C2 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
C3 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |
C4 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 |
C5 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 |
C6 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 |
D1 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 |
D2 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
D3 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 |
Dimensions/Indicators | Local Weight | Overall Weight | Ranking |
---|---|---|---|
A | 0.390 | 1 | |
A1 | 0.507 | 0.109 | 2 |
A2 | 0.493 | 0.106 | 3 |
B | 0.072 | 4 | |
B1 | 0.101 | 0.020 | 15 |
B2 | 0.135 | 0.027 | 11 |
B3 | 0.098 | 0.019 | 16 |
B4 | 0.077 | 0.015 | 21 |
B5 | 0.123 | 0.024 | 13 |
B6 | 0.122 | 0.024 | 14 |
B7 | 0.093 | 0.018 | 17 |
B8 | 0.088 | 0.018 | 18 |
B9 | 0.086 | 0.017 | 19 |
B10 | 0.078 | 0.015 | 20 |
C | 0.171 | 3 | |
C1 | 0.097 | 0.028 | 10 |
C2 | 0.088 | 0.025 | 12 |
C3 | 0.145 | 0.041 | 9 |
C4 | 0.208 | 0.059 | 8 |
C5 | 0.246 | 0.069 | 6 |
C6 | 0.216 | 0.061 | 7 |
D | 0.368 | 2 | |
D1 | 0.416 | 0.127 | 1 |
D2 | 0.339 | 0.103 | 4 |
D3 | 0.245 | 0.075 | 5 |
References
- Redmond, S.A.; Wilcox, S.L.; Campbell, S.; Kim, A.; Finney, K.; Barr, K.; Hassan, A.M. A brief introduction to the military workplace culture. Work 2015, 50, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Brooks, S.K.; Greenberg, N. Non-deployment factors affecting psychological wellbeing in military personnel: Literature review. J. Ment. Health 2018, 27, 80–90. [Google Scholar] [CrossRef]
- Blais, R.K.; Tirone, V.; Orlowska, D.; Lofgreen, A.; Klassen, B.; Held, P.; Stevens, N.; Zalta, A.K. Self-reported PTSD symptoms and social support in U.S. military service members and veterans: A meta-analysis. Eur. J. Psychotraumatol. 2021, 12, 1851078. [Google Scholar] [CrossRef] [PubMed]
- Loignon, A.; Ouellet, M.-C.; Belleville, G. A Systematic Review and Meta-analysis on PTSD Following TBI Among Military/Veteran and Civilian Populations. J. Head Trauma Rehabil. 2020, 35, E21–E35. [Google Scholar] [CrossRef]
- Stevelink, S.A.M.; Jones, M.; Hull, L.; Pernet, D.; MacCrimmon, S.; Goodwin, L.; MacManus, D.; Murphy, D.; Jones, N.; Greenberg, N.; et al. Mental health outcomes at the end of the British involvement in the Iraq and Afghanistan conflicts: A cohort study. Br. J. Psychiatry J. Ment. Sci. 2018, 213, 690–697. [Google Scholar] [CrossRef]
- Seal, K.H.; Metzler, T.J.; Gima, K.S.; Bertenthal, D.; Maguen, S.; Marmar, C.R. Trends and risk factors for mental health diagnoses among Iraq and Afghanistan veterans using Department of Veterans Affairs health care, 2002–2008. Am. J. Public Health 2009, 99, 1651–1658. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Cao, F.; Lu, H.; Zhu, X.; Miao, D. Changes of anxiety in Chinese military personnels over time: A cross-temporal meta-analysis. Int. J. Ment. Health Syst. 2014, 8, 19. [Google Scholar] [CrossRef]
- Taillieu, T.L.; Afifi, T.O.; Turner, S.; Cheung, K.; Fortier, J.; Zamorski, M.; Sareen, J. Risk Factors, Clinical Presentations, and Functional Impairments for Generalized Anxiety Disorder in Military Personnel and the General Population in Canada. Can. J. Psychiatry 2018, 63, 610–619. [Google Scholar] [CrossRef]
- Erickson, J.; Kinley, D.J.; Afifi, T.O.; Zamorski, M.A.; Pietrzak, R.H.; Stein, M.B.; Sareen, J. Epidemiology of generalized anxiety disorder in Canadian military personnel. J. Mil. Veteran Fam. Health 2015, 1, 26–36. [Google Scholar] [CrossRef]
- Bonde, J.P.; Utzon-Frank, N.; Bertelsen, M.; Borritz, M.; Eller, N.H.; Nordentoft, M.; Olesen, K.; Rod, N.H.; Rugulies, R. Risk of depressive disorder following disasters and military deployment: Systematic review with meta-analysis. Br. J. Psychiatry 2016, 208, 330–336. [Google Scholar] [CrossRef]
- Ikin, J.F.; McKenzie, D.P.; Gwini, S.M.; Kelsall, H.L.; Creamer, M.; McFarlane, A.C.; Clarke, D.M.; Wright, B.; Sim, M. Major depression and depressive symptoms in Australian Gulf War veterans 20 years after the Gulf War. J. Affect. Disord. 2016, 189, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Gadermann, A.M.; Engel, C.C.; Naifeh, J.A.; Nock, M.K.; Petukhova, M.; Santiago, P.N.; Wu, B.; Zaslavsky, A.M.; Kessler, R.C. Prevalence of DSM-IV Major Depression Among U.S. Military Personnel: Meta-Analysis and Simulation. Mil. Med. 2012, 177, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Nock, M.K.; Stein, M.B.; Heeringa, S.G.; Ursano, R.J.; Colpe, L.J.; Fullerton, C.S.; Hwang, I.; Naifeh, J.A.; Sampson, N.A.; Schoenbaum, M.; et al. Prevalence and Correlates of Suicidal Behavior Among Soldiers: Results From the Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS). JAMA Psychiatry 2014, 71, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Bryan, C.J.; Griffith, J.E.; Pace, B.T.; Hinkson, K.; Bryan, A.O.; Clemans, T.A.; Imel, Z.E. Combat Exposure and Risk for Suicidal Thoughts and Behaviors Among Military Personnel and Veterans: A Systematic Review and Meta-Analysis. Suicide Life-Threat. Behav. 2015, 45, 633–649. [Google Scholar] [CrossRef] [PubMed]
- Meadows, S.O.; Engel, C.C.; Collins, R.L.; Beckman, R.L.; Breslau, J.; Bloom, E.L.; Dunbar, M.S.; Gilbert, M.; Grant, D.; Hawes-Dawson, J.; et al. 2018 Department of Defense Health Related Behaviors Survey (HRBS): Results for the Active Component; RAND Corporation: Santa Monica, CA, USA, 2021. [Google Scholar]
- Jenkins, M.M.; Colvonen, P.J.; Norman, S.B.; Afari, N.; Allard, C.B.; Drummond, S.P.A. Prevalence and Mental Health Correlates of Insomnia in First-Encounter Veterans with and without Military Sexual Trauma. Sleep 2015, 38, 1547–1554. [Google Scholar] [CrossRef]
- Taylor, D.J.; Pruiksma, K.E.; Hale, W.J.; Kelly, K.; Maurer, D.; Peterson, A.L.; Mintz, J.; Litz, B.T.; Williamson, D.E. Prevalence, Correlates, and Predictors of Insomnia in the US Army prior to Deployment. Sleep 2016, 39, 1795–1806. [Google Scholar] [CrossRef]
- Schaughency, K.C.L.; Watkins, E.Y.; Barnes, S.; Smith, J.D.; Forrest, L.J.; Christopher, P.K.; Anke, K.M.; Sikka, R.; Pecko, J.A.; Cox, K.L. Financial costs to the U.S. Army for suicides by newly enlisted Soldiers. Suicide Life-Threat. Behav. 2021, 51, 907–915. [Google Scholar] [CrossRef]
- Geiling, J.; Rosen, J.M.; Edwards, R.D. Medical Costs of War in 2035: Long-Term Care Challenges for Veterans of Iraq and Afghanistan. Mil. Med. 2012, 177, 1235–1244. [Google Scholar] [CrossRef]
- Koven, S.G. PTSD Treatment Problems at the U.S. Veterans Administration. Psychiatry Int. 2021, 2, 25–31. [Google Scholar] [CrossRef]
- Wells, T.S.; Miller, S.C.; Adler, A.B.; Engel, C.C.; Smith, T.C.; Fairbank, J.A. Mental health impact of the Iraq and Afghanistan conflicts: A review of US research, service provision, and programmatic responses. Int. Rev. Psychiatry 2011, 23, 144–152. [Google Scholar] [CrossRef]
- Coleman, S.J.; Stevelink, S.A.M.; Hatch, S.L.; Denny, J.A.; Greenberg, N. Stigma-related barriers and facilitators to help seeking for mental health issues in the armed forces: A systematic review and thematic synthesis of qualitative literature. Psychol. Med. 2017, 47, 1880–1892. [Google Scholar] [CrossRef] [PubMed]
- Heyman, R.E.; Slep, A.M.S.; Parsons, A.M.; Ellerbeck, E.L.; McMillan, K.K. Systematic Review of the Military Career Impact of Mental Health Evaluation and Treatment. Mil. Med. 2022, 187, e598–e618. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, M.; McEnany, G.P. Stigma, American military personnel and mental health care: Challenges from Iraq and Afghanistan. J. Ment. Health 2015, 24, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Sharp, M.-L.; Fear, N.T.; Rona, R.J.; Wessely, S.; Greenberg, N.; Jones, N.; Goodwin, L. Stigma as a Barrier to Seeking Health Care Among Military Personnel with Mental Health Problems. Epidemiol. Rev. 2015, 37, 144–162. [Google Scholar] [CrossRef]
- Warner, C.H.; Appenzeller, G.N.; Grieger, T.; Belenkiy, S.; Breitbach, J.; Parker, J.; Warner, C.M.; Hoge, C. Importance of Anonymity to Encourage Honest Reporting in Mental Health Screening After Combat Deployment. Arch. Gen. Psychiatry 2011, 68, 1065–1071. [Google Scholar] [CrossRef]
- Tanielian, T.; Woldetsadik, M.A.; Jaycox, L.H.; Batka, C.; Moen, S.; Farmer, C.; Engel, C.C. Barriers to Engaging Service Members in Mental Health Care within the U.S. Military Health System. Psychiatr. Serv. 2016, 67, 718–727. [Google Scholar] [CrossRef]
- Soares, E.E.; Thrall, J.N.; Stephens, T.N.; Rodriguez Biglieri, R.; Consoli, A.J.; Bunge, E.L. Publication Trends in Psychotherapy: Bibliometric Analysis of the Past 5 Decades. Am. J. Psychother. 2020, 73, 85–94. [Google Scholar] [CrossRef]
- Mohr, D.C.; Zhang, M.; Schueller, S.M. Personal Sensing: Understanding Mental Health Using Ubiquitous Sensors and Machine Learning. Ann. Rev. Clin. Psychol. 2017, 13, 23–47. [Google Scholar] [CrossRef]
- Andersson, G.; Titov, N.; Dear, B.F.; Rozental, A.; Carlbring, P. Internet-delivered psychological treatments: From innovation to implementation. World Psychiatry 2019, 18, 20–28. [Google Scholar] [CrossRef]
- Bhugra, D.; Tasman, A.; Pathare, S.; Priebe, S.; Smith, S.; Torous, J.; Arbuckle, M.R.; Langford, A.; Alarcón, R.D.; Chiu, H.F.K. The WPA-lancet psychiatry commission on the future of psychiatry. Lancet Psychiatry 2017, 4, 775–818. [Google Scholar] [CrossRef]
- Gratzer, D.; Goldbloom, D. Open for Business: Chatbots, E-therapies, and the Future of Psychiatry. Can. J. Psychiatry 2019, 64, 453–455. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.E.H.; Halpern, J. AI chatbots cannot replace human interactions in the pursuit of more inclusive mental healthcare. SSM Ment. Health 2021, 1, 100017. [Google Scholar] [CrossRef]
- Lucas, G.M.; Rizzo, A.; Gratch, J.; Scherer, S.; Stratou, G.; Boberg, J.; Morency, L.-P. Reporting Mental Health Symptoms: Breaking Down Barriers to Care with Virtual Human Interviewers. Front. Robot. AI 2017, 4, 51. [Google Scholar] [CrossRef]
- Rizzo, A.; Scherer, S.; DeVault, D.; Gratch, J.; Artstein, R.; Hartholt, A.; Lucas, G.; Marsella, S.; Morbini, F.; Nazarian, A. Detection and computational analysis of psychological signals using a virtual human interviewing agent. J. Pain Manag. 2016, 9, 311–321. [Google Scholar]
- Khanna, A.; Pandey, B.; Vashishta, K.; Kalia, K.; Bhale, P.; Das, T. A Study of Today’s A.I. through Chatbots and Rediscovery of Machine Intelligence. Int. J. u- e-Serv. Sci. Technol. 2015, 8, 277–284. [Google Scholar] [CrossRef]
- Weizenbaum, J. ELIZA—A computer program for the study of natural language communication between man and machine. Commun. ACM 1966, 9, 36–45. [Google Scholar] [CrossRef]
- Abd-alrazaq, A.A.; Alajlani, M.; Alalwan, A.A.; Bewick, B.M.; Gardner, P.; Househ, M. An overview of the features of chatbots in mental health: A scoping review. Int. J. Med. Inform. 2019, 132, 103978. [Google Scholar] [CrossRef]
- Klos, M.C.; Escoredo, M.; Joerin, A.; Lemos, V.N.; Rauws, M.; Bunge, E.L. Artificial Intelligence–Based Chatbot for Anxiety and Depression in University Students: Pilot Randomized Controlled Trial. JMIR Form. Res. 2021, 5, e20678. [Google Scholar] [CrossRef]
- Fulmer, R.; Joerin, A.; Gentile, B.; Lakerink, L.; Rauws, M. Using Psychological Artificial Intelligence (Tess) to Relieve Symptoms of Depression and Anxiety: Randomized Controlled Trial. JMIR Ment. Health 2018, 5, e64. [Google Scholar] [CrossRef]
- Gabrielli, S.; Rizzi, S.; Bassi, G.; Carbone, S.; Maimone, R.; Marchesoni, M.; Forti, S. Engagement and Effectiveness of a Healthy-Coping Intervention via Chatbot for University Students During the COVID-19 Pandemic: Mixed Methods Proof-of-Concept Study. JMIR mHealth uHealth 2021, 9, e27965. [Google Scholar] [CrossRef]
- Fitzpatrick, K.K.; Darcy, A.; Vierhile, M. Delivering Cognitive Behavior Therapy to Young Adults with Symptoms of Depression and Anxiety Using a Fully Automated Conversational Agent (Woebot): A Randomized Controlled Trial. JMIR Ment. Health 2017, 4, e19. [Google Scholar] [CrossRef] [PubMed]
- Prochaska, J.J.; Vogel, E.A.; Chieng, A.; Kendra, M.; Baiocchi, M.; Pajarito, S.; Robinson, A. A Therapeutic Relational Agent for Reducing Problematic Substance Use (Woebot): Development and Usability Study. J. Med. Internet Res. 2021, 23, e24850. [Google Scholar] [CrossRef] [PubMed]
- Daley, K.; Hungerbuehler, I.; Cavanagh, K.; Claro, H.G.; Swinton, P.A.; Kapps, M. Preliminary Evaluation of the Engagement and Effectiveness of a Mental Health Chatbot. Front. Digital Health 2020, 2, 576361. [Google Scholar] [CrossRef] [PubMed]
- Armitage, R. Digital psychological first aid in humanitarian contexts. Lancet Psychiatry 2022, 9, e34. [Google Scholar] [CrossRef]
- Assonov, D.; Voznitsyna, K.; Sirenko, T. Delivering AI-based mental healthcare to build resilience in Ukrainian servicemen and veterans: A call for cooperation. Psychosom. Med. Gen. Pract. 2022, 7, e0701352. [Google Scholar] [CrossRef]
- De la Boutetière, H.; Montagner, A.; Reich, A. Unlocking Success in Digital Transformations; McKinsey Co.: New York, NY, USA, 2018; p. 29. [Google Scholar]
- Davenport, T.H. The AI Advantage: How to Put the Artificial Intelligence Revolution to Work; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Potts, C.; Ennis, E.; Bond, R.B.; Mulvenna, M.D.; McTear, M.F.; Boyd, K.; Broderick, T.; Malcolm, M.; Kuosmanen, L.; Nieminen, H.; et al. Chatbots to Support Mental Wellbeing of People Living in Rural Areas: Can User Groups Contribute to Co-design? J. Technol. Behav. Sci. 2021, 6, 652–665. [Google Scholar] [CrossRef]
- Abd-Alrazaq, A.A.; Alajlani, M.; Ali, N.; Denecke, K.; Bewick, B.M.; Househ, M. Perceptions and Opinions of Patients About Mental Health Chatbots: Scoping Review. J. Med. Internet Res. 2021, 23, e17828. [Google Scholar] [CrossRef]
- Chen, H.; Li, L.; Chen, Y. Explore success factors that impact artificial intelligence adoption on telecom industry in China. J. Manag. Anal. 2021, 8, 36–68. [Google Scholar] [CrossRef]
- Hall, L.K. The Importance of Understanding Military Culture. Soc. Work Health Care 2011, 50, 4–18. [Google Scholar] [CrossRef]
- Abdullah, A.L.; Mohammad Yusof, Z.; Mokhtar, U.A. Factors influencing the implementation of electronic records and information management: A case study in military service in Malaysia. Rec. Manag. J. 2020, 30, 81–99. [Google Scholar] [CrossRef]
- Siemon, D.; Ahmad, R.; Harms, H.; de Vreede, T. Requirements and Solution Approaches to Personality-Adaptive Conversational Agents in Mental Health Care. Sustainability 2022, 14, 3832. [Google Scholar] [CrossRef]
- Tzeng, G.-H.; Shen, K.-Y. New Concepts and Trends of Hybrid Multiple Criteria Decision Making; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Holmstrom, J. From AI to digital transformation: The AI readiness framework. Bus. Horiz. 2021, 65, 329–339. [Google Scholar] [CrossRef]
- Fs, S.; Salloum, S.; Mhamdi, C. Implementing Artificial Intelligence in the United Arab Emirates Healthcare Sector: An Extended Technology Acceptance Model. Int. J. Inf. Technol. Lang. Stud. 2019, 3, 27–42. [Google Scholar]
- Chatterjee, S.; Chaudhuri, R.; Vrontis, D.; Basile, G. Digital transformation and entrepreneurship process in SMEs of India: A moderating role of adoption of AI-CRM capability and strategic planning. J. Strategy Manag. 2021, 15, 416–433. [Google Scholar] [CrossRef]
- Yablonsky, S. AI-driven platform enterprise maturity: From human led to machine governed. Kybernetes 2021, 50, 2753–2789. [Google Scholar] [CrossRef]
- Sousa, M.J.; Rocha, Á. Digital learning: Developing skills for digital transformation of organizations. Futur. Gener. Comput. Syst. 2019, 91, 327–334. [Google Scholar] [CrossRef]
- Warner, K.S.R.; Wäger, M. Building dynamic capabilities for digital transformation: An ongoing process of strategic renewal. Long Range Plan. 2019, 52, 326–349. [Google Scholar] [CrossRef]
- Antonucci, Y.L.; Fortune, A.; Kirchmer, M. An examination of associations between business process management capabilities and the benefits of digitalization: All capabilities are not equal. Bus. Process Manag. J. 2021, 27, 124–144. [Google Scholar] [CrossRef]
- Gopal, G.; Suter-Crazzolara, C.; Toldo, L.; Eberhardt, W. Digital transformation in healthcare—Architectures of present and future information technologies. Clin. Chem. Lab. Med. (CCLM) 2019, 57, 328–335. [Google Scholar] [CrossRef]
- Frick, N.R.J.; Mirbabaie, M.; Stieglitz, S.; Salomon, J. Maneuvering through the stormy seas of digital transformation: The impact of empowering leadership on the AI readiness of enterprises. J. Decis. Syst. 2021, 30, 235–258. [Google Scholar] [CrossRef]
- Balakrishnan, R.; Das, S. How do firms reorganize to implement digital transformation? Strateg. Chang. 2020, 29, 531–541. [Google Scholar] [CrossRef]
- Lucija, I.; Vesna Bosilj, V.; Mario, S. Mastering the Digital Transformation Process: Business Practices and Lessons Learned. Technol. Innov. Manag. Rev. 2019, 9, 36–50. [Google Scholar]
- Ahmad, A.; Alshurideh, M.; Al Kurdi, B.; Aburayya, A.; Hamadneh, S. Digital transformation metrics: A conceptual view. J. Manag. Inf. Decis. Sci. 2021, 24, 1–18. [Google Scholar]
- Keeney, S.; Hasson, F.; McKenna, H.P. A critical review of the Delphi technique as a research methodology for nursing. Int. J. Nurs. Stud. 2001, 38, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Murray, T.J.; Pipino, L.L.; van Gigch, J.P. A pilot study of fuzzy set modification of Delphi. Hum. Syst. Manag. 1985, 5, 76–80. [Google Scholar] [CrossRef]
- Jeng, T. Fuzzy Assessment Model for Maturity of Software Organization in Improving Its Staff’s Capability. Master’s Thesis, National Taiwan University of Science and Technology, Taipei City, Taiwan, 2001. [Google Scholar]
- Shen, K.-Y.; Tzeng, G.-H. A decision rule-based soft computing model for supporting financial performance improvement of the banking industry. Soft Comput. 2015, 19, 859–874. [Google Scholar] [CrossRef]
- Lu, I.-Y.; Kuo, T.; Lin, T.-S.; Tzeng, G.-H.; Huang, S.-L. Multicriteria Decision Analysis to Develop Effective Sustainable Development Strategies for Enhancing Competitive Advantages: Case of the TFT-LCD Industry in Taiwan. Sustainability 2016, 8, 646. [Google Scholar] [CrossRef]
- Huang, K.-W.; Huang, J.-H.; Tzeng, G.-H. New Hybrid Multiple Attribute Decision-Making Model for Improving Competence Sets: Enhancing a Company’s Core Competitiveness. Sustainability 2016, 8, 175. [Google Scholar] [CrossRef]
- Wu, J.; Huang, Y. The Establishment of Vulnerability Evaluation Indexes: The Case Study on Shuili Township, Nantou. City Plan 2011, 38, 195–218. [Google Scholar]
- Lustgarten, S.D.; Garrison, Y.L.; Sinnard, M.T.; Flynn, A.W.P. Digital privacy in mental healthcare: Current issues and recommendations for technology use. Curr. Opin. Psychol. 2020, 36, 25–31. [Google Scholar] [CrossRef]
- Ferrell, R.S. Army Transformation and Digitization-Training and Resource Challenges; W.S. Army War College: Carlisle Barracks, PA, USA, 2002. [Google Scholar]
Demographic | Description | N | % | Cumulative Percentage |
---|---|---|---|---|
Gender | Male | 12 | 54.55 | 54.55 |
Female | 10 | 45.45 | 100.00 | |
Education | Bachelor | 7 | 31.82 | 31.82 |
Master | 15 | 68.18 | 100.00 | |
Service | Army | 7 | 31.82 | 31.82 |
NAVY | 2 | 9.09 | 40.91 | |
Air Force | 11 | 50.00 | 90.91 | |
Military Police | 1 | 4.55 | 95.46 | |
Civilian | 1 | 4.55 | 100.00 | |
Job Type | Practical | 16 | 72.73 | 72.73 |
Education Training | 2 | 9.09 | 81.82 | |
Planning and Supervision | 4 | 18.18 | 100.00 | |
Working Years | 1–5 | 4 | 18.18 | 18.18 |
6–10 | 17 | 77.27 | 95.45 | |
11–15 | 1 | 4.55 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, M.-C. The Construction of Critical Factors for Successfully Introducing Chatbots into Mental Health Services in the Army: Using a Hybrid MCDM Approach. Sustainability 2023, 15, 7905. https://doi.org/10.3390/su15107905
Hsu M-C. The Construction of Critical Factors for Successfully Introducing Chatbots into Mental Health Services in the Army: Using a Hybrid MCDM Approach. Sustainability. 2023; 15(10):7905. https://doi.org/10.3390/su15107905
Chicago/Turabian StyleHsu, Ming-Ching. 2023. "The Construction of Critical Factors for Successfully Introducing Chatbots into Mental Health Services in the Army: Using a Hybrid MCDM Approach" Sustainability 15, no. 10: 7905. https://doi.org/10.3390/su15107905
APA StyleHsu, M. -C. (2023). The Construction of Critical Factors for Successfully Introducing Chatbots into Mental Health Services in the Army: Using a Hybrid MCDM Approach. Sustainability, 15(10), 7905. https://doi.org/10.3390/su15107905