Process–Based Identification of Key Tidal Creeks Influenced by Reclamation Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Subzone Division
2.3. Preprocess of Tidal Creek Hydrological Network
2.4. Landscape Resistance Quantification of Reclamation Activity on Tidal Creeks
3. Results
3.1. Identifying Key Tidal Creeks Influenced by Reclamation Activities
3.2. Spatial-Temporal Distribution of Landscape Resistance
3.3. Assessing Hydrological Distances Changes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tessler, Z.D.; Voeroesmarty, C.J.; Grossberg, M.; Gladkova, I.; Aizenman, H.; Syvitski, J.P.M.; Foufoula-Georgiou, E. Profiling risk and sustainability in coastal deltas of the world. Science 2015, 349, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Giosan, L.; Syvitski, J.; Constantinescu, S.; Day, J. Protect the world’s deltas. Nature 2014, 516, 31–33. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Liu, J.; Yan, G.; Zhai, J.; Cong, L.; Dai, L.; Zhang, Z.; Zhang, M. The size and distribution of tidal creeks affects salt marsh restoration. J. Environ. Manag. 2020, 259, 110070. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xie, T.; Ning, Z.; Chen, C.; Man, Y.; Cui, B. Enhancement of lateral connectivity promotes the establishment of plants in saltmarshes. Sci. Total Environ. 2021, 767, 145484. [Google Scholar] [CrossRef] [PubMed]
- Nelson, N.G.; Munoz-Carpena, R.; Neale, P.J.; Tzortziou, M.; Megonigal, J.P. Temporal variability in the importance of hydrologic, biotic, and climatic descriptors of dissolved oxygen dynamics in a shallow tidal-marsh creek. Water Resour. Res. 2017, 53, 7103–7120. [Google Scholar] [CrossRef]
- Holland, A.F.; Sanger, D.M.; Gawle, C.P.; Lerberg, S.B.; Santiago, M.S.; Riekerk, G.; Zimmerman, L.E.; Scott, G.I. Linkages between tidal creek ecosystems and the landscape and demographic attributes of their watersheds. J. Exp. Mar. Biol. Ecol. 2004, 298, 151–178. [Google Scholar] [CrossRef]
- Syvitski, J.P.; Kettner, A.J.; Overeem, I.; Hutton, E.W.; Hannon, M.T.; Brakenridge, G.R.; Day, J.; Vörösmarty, C.; Saito, Y.; Giosan, L.; et al. Sinking deltas due to human activities. Nat. Geosci. 2009, 2, 681–686. [Google Scholar] [CrossRef]
- Studds, C.E.; Kendall, B.E.; Murray, N.J.; Wilson, H.B.; Rogers, D.I.; Clemens, R.S.; Gosbell, K.; Hassell, C.J.; Jessop, R.; Melville, D.S.; et al. Rapid population decline in migratory shorebirds relying on Yellow Sea tidal mudflats as stopover sites. Nat. Commun. 2017, 8, 14895. [Google Scholar] [CrossRef]
- Ma, Z.; Melville, D.S.; Liu, J.; Chen, Y.; Yang, H.; Ren, W.; Zhang, Z.; Piersma, T.; Li, B. Rethinking China’s new great wall. Science 2014, 346, 912–914. [Google Scholar] [CrossRef]
- Iwamura, T.; Possingham, H.P.; Chadès, I.; Minton, C.; Murray, N.J.; Rogers, D.I.; Treml, E.A.; Fuller, R.A. Migratory connectivity magnifies the consequences of habitat loss from sea-level rise for shorebird populations. Proc. R. Soc. B-Biol. Sci. 2013, 280, 20130325. [Google Scholar] [CrossRef]
- Fan, X.; Huang, H.; Zhang, Q.; Sun, N.; Wang, Y. Response of tidal creek networks and tidal connectivity to coastal squeeze of saltmarshes in the southern Bohai Bay. N. Z. J. Mar. Fresh. Res. 2021, 56, 617–631. [Google Scholar] [CrossRef]
- Xie, C.; Cui, B.; Xie, T.; Yu, S.; Liu, Z.; Wang, Q.; Ning, Z. Reclamation shifts the evolutionary paradigms of tidal channel networks in the Yellow River Delta, China. Sci. Total Environ. 2020, 742, 140585. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Shen, Y.; Kang, M. Rapid response of tidal creek network patterns to the reclamation on the central Jiangsu coast. Acta Oceanol. Sin. 2016, 38, 106–115. [Google Scholar] [CrossRef]
- Chen, L.; Han, Z. Study of the Influence of the Deep-Water Channel Project in the Yangtze River Estuary on Ecological Landscape and Fractal Dimensions of Jiuduan Shoal Tidal Channels. J. Coastal Res. 2015, 73, 146–154. [Google Scholar] [CrossRef]
- Chen, Y.; He, Z.; Li, B.; Zhao, B. Spatial Distribution of Tidal Creeks and Quantitative Analysis of Its Driving Factors in Chongming Dongtan, Shanghai. J. Jilin Univ. Earth Sci. Ed. 2013, 43, 212–219. [Google Scholar] [CrossRef]
- Wessel, M.R.; Leverone, J.R.; Beck, M.W.; Sherwood, E.T.; Hecker, J.; West, S.; Janicki, A. Developing a water quality assessment framework for southwest florida tidal creeks. Estuaries Coasts 2022, 45, 17–37. [Google Scholar] [CrossRef]
- McHouell, B.M. Evaluating the Impacts of Coastal Development on the Sinuosity and Water Quality of Tidal Creek Headwaters in the Southeast. Master’s Thesis, College of Charleston, Charleston, SC, USA, 2016. [Google Scholar]
- Boynton, W.R.; Hodgkins, C.; O Leary, C.A.; Bailey, E.M.; Bayard, A.R.; Wainger, L.A. Multi-decade responses of a tidal creek system to nutrient load reductions: Mattawoman Creek, Maryland USA. Estuaries Coasts 2014, 37, 111–127. [Google Scholar] [CrossRef]
- DiDonato, G.T.; Stewart, J.R.; Sanger, D.M.; Robinson, B.J.; Thompson, B.C.; Holland, A.F.; Van Dolah, R.F. Effects of changing land use on the microbial water quality of tidal creeks. Mar. Pollut. Bull. 2009, 58, 97–106. [Google Scholar] [CrossRef]
- Buzzelli, C. Development and application of tidal creek ecosystem models. Ecol Model 2008, 210, 127–143. [Google Scholar] [CrossRef]
- Darrow, E.S.; Carmichael, R.H.; Calci, K.R.; Burkhardt III, W. Land-use related changes to sedimentary organic matter in tidal creeks of the northern Gulf of Mexico. Limnol. Oceanogr. 2017, 62, 686–705. [Google Scholar] [CrossRef]
- Sanger, D.M.; Holland, A.F.; Hernandez, D.L. Evaluation of the impacts of dock structures and land use on tidal creek ecosystems in South Carolina estuarine environments. Environ. Manag. 2004, 33, 385–400. [Google Scholar] [CrossRef] [PubMed]
- Sanger, D.M.; Holland, A.F.; Scott, G.I. Tidal creek and salt marsh sediments in South Carolina coastal estuaries: I. Distribution of trace metals. Arch. Environ. Contam. Toxicol. 1999, 37, 445–457. [Google Scholar] [CrossRef]
- Li, Q.; Ma, C.; Lu, W.; Tian, W.; Zhao, Y. The Effect of Reclamation on Community Structure of Macro-meso Zooplankton in Tidal Creeks of the Chongming Dongtan. Journal of Fudan University. Nat. Sci. 2012, 51, 515–522. [Google Scholar] [CrossRef]
- Washburn, T.; Sanger, D. Land use effects on macrobenthic communities in southeastern United States tidal creeks. Environ. Monit. Assess. 2011, 180, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Bilkovic, D.M. Response of tidal creek fish communities to dredging and coastal development pressures in a shallow-water estuary. Estuaries Coasts 2011, 34, 129–147. [Google Scholar] [CrossRef]
- Jones, S.E. Effects of Urbanization on Nekton Abundance and Food Web Structures in Southeastern Tidal Creeks. Master’s Thesis, College of Charleston, Charleston, SC, USA, 2008. [Google Scholar]
- Lerberg, S.B.; Holland, A.F.; Sanger, D.M. Responses of tidal creek macrobenthic communities to the effects of watershed development. Estuaries 2000, 23, 838–853. [Google Scholar] [CrossRef]
- Sanger, D.; Blair, A.; DiDonato, G.; Washburn, T.; Jones, S.; Riekerk, G.; Wirth, E.; Stewart, J.; White, D.; Vandiver, L.; et al. Impacts of coastal development on the ecology of tidal creek ecosystems of the US southeast including consequences to humans. Estuaries Coasts 2015, 38, 49–66. [Google Scholar] [CrossRef]
- White, D.L.; Wolf, D.; Porter, D.E.; Sanger, D.M.; Riekerk, G.H.; DiDonato, G.; Holland, A.F.; Dabney, D. Development of a data management framework in support of southeastern tidal creek research. Environ. Monit. Assess. 2009, 150, 323–331. [Google Scholar] [CrossRef]
- He, Y. Identification of Key Obstruct Factors of Hydrological Connectivity and Its Effect of the Yellow River Estuary Wetland. Master’s Thesis, Ludong University, Yantai, China, 2021. [Google Scholar]
- Zhou, S.; Wang, C.; Li, Y.; Huang, W.; Jia, Y.; Wang, Y.; Xu, W.; Qiu, C.; Liu, H. Study on spatio-temporal variation and hydrological connectivity of tidal creek evolution in Yancheng coastal wetlands. Environ Sci. Pollut. R 2023, 30, 7143–37156. [Google Scholar] [CrossRef]
- Cavalli, M.; Trevisani, S.; Comiti, F.; Marchi, F. Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 2013, 188, 31–41. [Google Scholar] [CrossRef]
- Yang, Z.; Shenliang, C.; Guochuan, G. Spatial extent and tidal characteristics of the diurnal tidal zone along the Yellow River Delta coast. Chin. J. Hydrodyn. 2015, 30, 540–548. [Google Scholar] [CrossRef]
- Weikang, S.; Xinghua, Z.; Yikai, F.; Yanguang, F. Temporal and spatial characteristics of coastal tides in Shandong Province. J. Ocean Technol. 2018, 37, 68–75. [Google Scholar] [CrossRef]
- Zhang, T.; Zeng, S.; Gao, Y.; Ouyang, Z.; Li, B.; Fang, C.; Zhao, B. Assessing impact of land uses on land salinization in the Yellow River Delta, China using an integrated and spatial statistical model. Land Use Policy 2011, 28, 857–866. [Google Scholar] [CrossRef]
- Huang, L.; Bai, J.; Chen, B.; Zhang, K.; Huang, C.; Liu, P. Two-decade wetland cultivation and its effects on soil properties in salt marshes in the Yellow River Delta, China. Ecol. Inform. 2012, 10, 49–55. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, S.; Zhao, B.; Yu, S.; Ji, H.; Jiang, C. Monitoring tidal flat dynamics affected by human activities along an eroded coast in the Yellow River Delta, China. Environ. Monit. Assess. 2018, 190, 396. [Google Scholar] [CrossRef]
- Peterson, E.; Ver Hoef, J. STARS: An ArcGIS toolset used to calculate the spatial information needed to fit spatial statistical models to stream network data. J. Stat. Softw. 2014, 56, 1–17. [Google Scholar] [CrossRef]
- Ganio, L.M.; Torgersen, C.E.; Gresswell, R.E. A geostatistical approach for describing spatial pattern in stream networks. Front. Ecol. Environ. 2005, 3, 138–144. [Google Scholar] [CrossRef]
- Ver Hoef, J.M.; Peterson, E.; Theobald, D. Spatial statistical models that use flow and stream distance. Environ. Ecol. Stat. 2006, 13, 449–464. [Google Scholar] [CrossRef]
- Ver Hoef, J.; Peterson, E.; Clifford, D.; Shah, R. SSN: An R package for spatial statistical modeling on stream networks. J. Stat. Softw. 2014, 56, 1–45. [Google Scholar] [CrossRef]
- McRae, B.H. Isolation by resistance. Evolution 2006, 60, 1551–1561. [Google Scholar] [CrossRef]
- Peterman, W.E. ResistanceGA: An R package for the optimization of resistance surfaces using genetic algorithms. Methods Ecol. Evol. 2018, 9, 1638–1647. [Google Scholar] [CrossRef]
- Clarke, R.T.; Rothery, P.; Raybould, A.F. Confidence limits for regression relationships between distance matrices: Estimating gene flow with distance. J. Agric. Biol. Environ. Stat. 2002, 7, 361–372. [Google Scholar] [CrossRef]
- Hekou District Local History Committee. Hekou District Annuals; Local Records Publishing House: Beijing, China, 2002; p. 1036. [Google Scholar]
- Dongying District Local History Committee. Dongying District Annuals; Local Records Publishing House: Beijing, China, 2008; p. 654. [Google Scholar]
- Fan, X.; Zhang, L.; Yuan, L.; Guo, B.; Zhang, Q.; Wang, Y.; Wu, Q. Loss of tidal creek ecosystem vitality caused by tidal flat narrowing on the central Jiangsu coast, China. Sci. Total Environ. 2023, 864, 161216. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Wang, Q.; Ning, Z.; Chen, C.; Cui, B.; Bai, J.; Shi, W.; Pang, B. Artificial modification on lateral hydrological connectivity promotes range expansion of invasive Spartina alterniflora in salt marshes of the Yellow River delta, China. Sci. Total Environ. 2021, 769, 144476. [Google Scholar] [CrossRef] [PubMed]
- Mou, K.; Gong, Z.; Qiu, H. Spatiotemporal differentiation and development process of tidal creek network morphological characteristics in the Yellow River Delta. J. Geogr. Sci. 2021, 31, 1633–1654. [Google Scholar] [CrossRef]
- Temmerman, S.; Bouma, T.J.; Van de Koppel, J.; Van der Wal, D.D.; De Vries, M.B.; Herman, P. Vegetation causes channel erosion in a tidal landscape. Geology 2007, 35, 631–634. [Google Scholar] [CrossRef]
- Vandenbruwaene, W.; Bouma, T.J.; Meire, P.; Temmerman, S. Bio-geomorphic effects on tidal channel evolution: Impact of vegetation establishment and tidal prism change. Earth Surf. Proc. Land. 2013, 38, 122–132. [Google Scholar] [CrossRef]
Zone | Period | CreekID | Edges | Length (m) | Reclamation Activity | R2m |
---|---|---|---|---|---|---|
1 | 1990–1995 | 1 | 29 | 411 | Sea enclosure activity a | 0.74 *** |
1 | 2000–2005 | 2 | 10.5 | 602 | Reclaimed land a | 0.89 *** |
1 | 2005–2010 | 3 | 13.5 | 1026 | Sea enclosure activity a | 0.37 *** |
1 | 2010–2015 | 3 | 10 | 1276 | Sea enclosure activity | 0.54 *** |
2 | 1990–1995 | 4 | 6 | 384 | Reclaimed land a | 0.33 ** |
2 | 1995–2000 | 5 | 65 | 1057 | Freshwater resource facility | 0.14 *** |
3 | 1990–1995 | 6 | 18 | 795 | Freshwater resource facility; Freshwater resource facilities | 0.49 *** |
Sea enclosure activity | ||||||
3 | 2000–2005 | 7 | 16.5 | 1126 | Sea enclosure activity; | 0.65 *** |
Engineering in oilfield | ||||||
3 | 2005–2010 | 8 | 7 | 884 | Freshwater resource facility; | 0.90 *** |
Reclaimed land a | ||||||
4 | 1990–1995 | 9 | 7 | 1236 | Engineering in oilfield | 0.83 *** |
4 | 2000–2005 | 10 | 73 | 1705 | Sea enclosure activity | 0.17 *** |
4 | 2005–2010 | 9 | 5 | 982 | Engineering in oilfield | 0.64 *** |
4 | 2010–2015 | 10 | 59 | 1529 | Freshwater resource facility; | 0.11 *** |
Sea enclosure activity; | ||||||
Reclaimed land | ||||||
5 | 1990–1995 | 11 | 24 | 663 | Sea enclosure activity | 0.42 *** |
5 | 1995–2000 | 12 | 13.5 | 1904 | Freshwater resource facility a | 0.95 *** |
5 | 2000–2005 | 13 | 9 | 2129 | Sea enclosure activity | 0.33 *** |
5 | 2005–2010 | 12 | 15 | 1339 | Sea enclosure activity | 0.46 *** |
6 | 1985–1990 | 13 | 26.5 | 2144 | Freshwater resource facility; | 0.13 *** |
Reclaimed land | ||||||
6 | 1990–1995 | 13 | 26 | 2144 | Freshwater resource facility; | 0.63 *** |
Sea enclosure activity | ||||||
6 | 1995–2000 | 13 | 26 | 2144 | Freshwater resource facility; | 0.17 *** |
Sea enclosure activity | ||||||
6 | 2005–2010 | 14 | 10 | 907 | Sea enclosure activity a | 0.89 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Man, Y.; Zhou, F.; Cui, B. Process–Based Identification of Key Tidal Creeks Influenced by Reclamation Activities. Sustainability 2023, 15, 8123. https://doi.org/10.3390/su15108123
Man Y, Zhou F, Cui B. Process–Based Identification of Key Tidal Creeks Influenced by Reclamation Activities. Sustainability. 2023; 15(10):8123. https://doi.org/10.3390/su15108123
Chicago/Turabian StyleMan, Ying, Fangwen Zhou, and Baoshan Cui. 2023. "Process–Based Identification of Key Tidal Creeks Influenced by Reclamation Activities" Sustainability 15, no. 10: 8123. https://doi.org/10.3390/su15108123
APA StyleMan, Y., Zhou, F., & Cui, B. (2023). Process–Based Identification of Key Tidal Creeks Influenced by Reclamation Activities. Sustainability, 15(10), 8123. https://doi.org/10.3390/su15108123