The Impact of Utility Model Patent Quality on Export Performance in China: A Moderated Mediation Effect Model
Abstract
:1. Introduction
2. Theoretical Framework and Hypotheses
2.1. Markup Channel
2.2. Domestic Intermediate Relative Price Channel
3. Materials and Methods
3.1. Measurement Model
3.2. Variables
3.2.1. Patent Quality of the Utility Model
3.2.2. Domestic Value-Added Rates of Enterprise Exports
3.2.3. Control Variables
3.3. Data
3.4. Descriptive Statistics
4. Results
4.1. Baseline Regression
4.2. Regression Analysis Based on Industrial Intensity
4.3. Heterogeneity Analysis Based on Firms’ Trade Patterns and Productivity
4.3.1. Regression Analysis Based on Firms’ Trade Patterns
4.3.2. Regression Analysis Based on Firms’ Productivity Levels
4.4. Robustness Tests
4.4.1. DVAR for Corporate Exports without Considering Indirect Imports
4.4.2. Endogeneity Test
5. Moderated Mediation
5.1. Model Setting
5.2. Mediating and Moderating Variables
5.2.1. Markups
5.2.2. Relative Prices of Domestic Intermediate Goods
5.2.3. Moderating Variables
5.3. Empirical Evidence of Mediation
5.4. Moderated Mediation Effect
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, J.; Li, T.; Zhao, H. Innovation driven development: Current situation, realistic difficult position and countermeasures. China Soft Sci. 2015, 5, 21–30. [Google Scholar]
- Prud’homme, D. Utility model patent regimes and innovation: Balancing appropriability, accessibility, and patent quality in China and beyond. In Patents and Innovation in Mainland China and Hong Kong; Li, Y., Ed.; Cambridge University Press: Cambridge, UK, 2017; pp. 29–78. [Google Scholar]
- Aldieri, L.; Brahmi, M.; Bruno, B.; Vinci, C.P. Circular Economy Business Models: The Complementarities with Sharing Economy and Eco-Innovations Investments. Sustainability 2021, 13, 12438. [Google Scholar] [CrossRef]
- Wu, J.; Xia, Q.; Li, Z. Green innovation and enterprise green total factor productivity at a micro level: A perspective of technical distance. J. Clean. Prod. 2022, 344, 131070. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chu, C.L.; Che, H.C.; Tsai, H.W. Using patent drawings to differentiate stock rate of return of China listed companies—A study on China patent species of utility model grant. Adv. Manag. Appl. Econ. 2022, 12, 1–33. [Google Scholar] [CrossRef]
- Kim, Y.K.; Lee, K.; Park, W.G.; Choo, K. Appropriate intellectual property protection and economic growth in countries at different levels of development. Res. Policy 2012, 41, 358–375. [Google Scholar] [CrossRef]
- Hamdan-Livramento, I.; Raffo, J. What is an incremental but non-patentable invention. In Economics and Statistics Division Working Paper; WIPO: Geneva, Switzerland, 2016. [Google Scholar]
- Maskus, K.E.; McDaniel, C. Impacts of the Japanese patent system on productivity growth. Jap. World Econ. 1999, 11, 557–574. [Google Scholar] [CrossRef]
- Zhai, M.S. The Chinese utility model patent is destroying innovation in China. AIPLA Q. J. 2011, 39, 413. [Google Scholar]
- Mao, H.; Yin, Z.; Zhang, J. Could China’s innovation get rid of the trap of utility model system. China Ind. Econ. 2018, 3, 98–115. [Google Scholar]
- Wang, K.; Wang, J.; Mei, S.; Xiong, S. How does technology import and export affect the innovative performance of firms? From the perspective of emerging markets firms. Complexity 2020, 2020, e3810574. [Google Scholar] [CrossRef]
- Huang, L.; Wu, F.; Wang, F. Global double chains and China’s manufacturing growth: Facts and implications. Stud. Sci. Sci. 2022, 1–19. [Google Scholar] [CrossRef]
- Aldieri, L.; Brahmi, M.; Chen, X.; Vinci, C.P. Knowledge Spillovers and Technical Efficiency for Cleaner Production: An Economic Analysis from Agriculture Innovation. J. Clean. Prod. 2021, 320, 128830. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, X.; Gao, H. Research on the growth mechanism of international innovation center from the perspective of resource “agglomeration” and “radiation”—Taking the Guangdong-Hong Kong-Macao greater bay area as an example. China Ind. Econ. 2022, 11, 97–115. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Wang, W. Can OFDI energize “intelligent manufacturing in China”: An empirical analysis based on the data of micro product level of Chinese listed companies. World Econ. Stud. 2023, 1, 43–57+135. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Z. IPR protection and “catching-up trap”-based on the perspectives of global value chain. China Ind. Econ. 2011, 58–68. [Google Scholar] [CrossRef]
- Bulus, G.C.; Bakirtas, I. Patent, utility model, and economic growth. In Innovation, Catch-Up and Sustainable Development; Pyka, A., Lee, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 309–335. [Google Scholar]
- Hashmi, H.B.A.; Voinea, C.L.; Ooms, W.; Caniëls, M.C. The impact of breakthrough innovations on the export performance of SMEs in developing countries: The moderating role of institutional factors. Front. Psychol. 2022, 13, 888697. [Google Scholar] [CrossRef]
- Kee, H.L.; Tang, H. Domestic value added in exports: Theory and firm evidence from China. Am. Econ. Rev. 2016, 106, 1402–1436. [Google Scholar] [CrossRef]
- Gaglio, C.; Kraemer-Mbula, E.; Lorenz, E. The effects of digital transformation on innovation and productivity: Firm-level evidence of South African manufacturing micro and small enterprises. Technol. Forecast. Soc. Change 2022, 182, 121785. [Google Scholar] [CrossRef]
- Mai, A.N.; Van Vu, H.; Bui, B.X.; Tran, T.Q. The lasting effects of innovation on firm profitability: Panel evidence from a transitional economy. Econ. Res. Ekonomska Istraživanja 2019, 32, 3411–3430. [Google Scholar] [CrossRef]
- Berggren, C. The cumulative power of incremental innovation and the role of project sequence management. Int. J. Proj. Manag. 2019, 37, 461–472. [Google Scholar] [CrossRef]
- Heikkilä, J.; Verba, M. The role of utility models in patent filing strategies: Evidence from European countries. Scientometrics 2018, 116, 689–719. [Google Scholar] [CrossRef]
- Sepehrdoust, H.; Davarikish, R.; Setarehie, M. The knowledge-based products and economic complexity in developing countries. Heliyon 2019, 5, e02979. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Cheng, L.; Sun, T. The effect of the input servitization of manufacturing on upgrading export domestic value added of enterprises-empirical evidence from Chinese micro-enterprise. China Ind. Econ. 2017, 10, 62–80. [Google Scholar]
- Yang, B.; Liu, B.; Peng, J.; Liu, X. The impact of the embedded global value chain position on energy-biased technology progress: Evidence from chinas manufacturing. Technol. Soc. 2022, 71, 102065. [Google Scholar] [CrossRef]
- Xu, Y.; Li, X.; Tao, C.; Zhou, X. Connected knowledge spillovers, technological cluster innovation and efficient industrial structure. J. Innov. Knowl. 2022, 7, 100195. [Google Scholar] [CrossRef]
- Geels, F.W. Conflicts between economic and low-carbon reorientation processes: Insights from a contextual analysis of evolving company strategies in the united kingdom petrochemical industry (1970–2021). Energy Res. Soc. Sci. 2022, 91, 102729. [Google Scholar] [CrossRef]
- Hamrouni, B.; Bourouis, A.; Korichi, A.; Brahmi, M. Explainable Ontology-Based Intelligent Decision Support System for Business Model Design and Sustainability. Sustainability 2021, 13, 9819. [Google Scholar] [CrossRef]
- Huang, Y.; Pan, A. Exports, innovation and markup ratio: An analysis from the perspective of factor intensity. J. World Econ. 2019, 35, 4–26. [Google Scholar]
- Li, Y.; Li, P. A study on heterogeneity impacts of FDI on China industries ’value Chain upgrading. World Econ. Stud. 2018, 5, 37–50+135–136. [Google Scholar]
- Yan, B.; Tian, K. The impact analysis of industrial relocation on China’s GDP and employment: From the perspective of global value Chain. China Ind. Econ. 2020, 12, 121–139. [Google Scholar]
- Liu, Z.; Kong, L. From segmentation to integration: The resistance and countermeasures to promote the construction of a unified domestic. China Ind. Econ. 2021, 8, 20–36. [Google Scholar]
- Li, P.; Li, L.; Xie, Y.; Zhang, X. Investigating the effects of market segmentation on firm survival and their heterogeneities in China. Growth Change 2021, 52, 2614–2634. [Google Scholar] [CrossRef]
- Zhu, Z.; Huang, X.; Yu, X. Import intermediates quality, innovation and firms’ export DVAR. China Ind. Econ. 2018, 8, 116–134. [Google Scholar]
- Lodh, S.; Battaggion, M.R. Technological breadth and depth of knowledge in innovation: The role of mergers and acquisitions in biotech. Ind. Corp. Change 2015, 24, 383–415. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Z.; Liu, Y. Measuring the domestic value added in China’s exports and the mechanism of change. Econ. Res. J. 2013, 48, 124–137. [Google Scholar]
- Upward, R.; Wang, Z.; Zheng, J. Weighing China’s export basket: The domestic content and technology intensity of Chinese exports. J. Comp. Econ. 2013, 41, 527–543. [Google Scholar] [CrossRef]
- Ahn, J.; Khandelwal, A.K.; Wei, S.-J. The role of intermediaries in facilitating trade. J. Int. Econ. 2011, 84, 73–85. [Google Scholar] [CrossRef]
- Koopman, R.; Wang, Z.; Wei, S.-J. Estimating domestic content in exports when processing trade is pervasive. J. Dev. Econ. 2012, 99, 178–189. [Google Scholar] [CrossRef]
- Mwiya, B. Trends of patent and utility model activities in Asia and Africa: A comparison of regional innovation, FDI and economic activity. WIPO 2012, 3, 257–279. [Google Scholar]
- Prud’homme, D. Utility model patent regime “strength” and technological development: Experiences of China and other East Asian latecomers. China Econ. Rev. 2017, 42, 50–73. [Google Scholar] [CrossRef]
- Aghion, P.; Bergeaud, A.; Lequien, M.; Melitz, M.J. The Impact of Exports on Innovation: Theory and Evidence; National Bureau of Economic Research: Cambridge, MA, USA, 2018. [Google Scholar]
- Lv, Y.; Luo, W.; Liu, B. Heterogeneous firms and global value chain embedding: An efficiency and financing perspective. J. World Econ. 2015, 38, 29–55. [Google Scholar]
- Lewbel, A. Constructing instruments for regressions with measurement error when no additional data are available, with an application to patents and R&D. Econometrica 1997, 65, 1201–1213. [Google Scholar]
- Wen, Z.; Ye, B. Analyses of Mediating effects: The development of methods and models. Adv. Psychol. Sci. 2014, 22, 731–745. [Google Scholar] [CrossRef]
- Wen, Z.; Zhang, L.; Hou, J. Mediated moderator and moderated mediator. Acta Psychol. Sinica 2006, 38, 448–452. [Google Scholar]
- De Loecker, J.; Warzynski, F. Markups and firm-level export status. Am. Econ. Rev. 2012, 102, 2437–2471. [Google Scholar] [CrossRef]
- Gao, X.; Liu, Q.; Huang, J. Factor market distortion and domestic value-added ratio of Chinese firms’ export: Facts and mechanism. World Econ. 2018, 41, 26–50. [Google Scholar]
- Gui, Q.; Chen, M.; Lu, M.; Chen, Z. China’s domestic commodity market tends to be segmented or integrated: An analysis based on relative price method. J. World Econ. 2006, 2, 20–30. [Google Scholar]
- Huang, X.; Jin, Z.; Yu, L. Exports, innovation and markup ratio: An analysis from the perspective of factor intensity. J. World Econ. 2018, 41, 125–146. [Google Scholar]
- Klette, T.J.; Griliches, Z. Empirical patterns of firm growth and R&D investment: A quality ladder model interpretation. Econ. J. 2000, 110, 363–387. [Google Scholar]
Variable | DVAR | depit−u | widit−u | Size | Lev | Profit | Capital | Interfinancing | Financing | Age |
---|---|---|---|---|---|---|---|---|---|---|
DVAR | 1 | |||||||||
depit−u | 0.043 *** | 1 | ||||||||
widit−u | 0.001 | 0.493 *** | 1 | |||||||
Size | −0.193 *** | 0.218 *** | 0.330 *** | 1 | ||||||
Lev | 0.062 *** | −0.031 *** | −0.028 *** | −0.073 *** | 1 | |||||
Profit | −0.046 *** | 0.012 *** | 0.006 | 0.088 *** | −0.144 *** | 1 | ||||
Capital | −0.149 *** | 0.021 *** | 0.103 *** | 0.408 *** | −0.205 *** | 0.052 *** | 1 | |||
Interfinancing | −0.023 *** | 0.067 *** | 0.077 *** | 0.078 *** | −0.455 *** | 0.048 *** | 0.014 *** | 1 | ||
Financing | 0.060 *** | 0.053 *** | 0.057 *** | 0.027 *** | 0.271 *** | −0.062 *** | −0.236 *** | −0.161 *** | 1 | |
age | −0.017 *** | 0.110 *** | 0.129 *** | 0.243 *** | −0.050 *** | −0.024 *** | 0.108 *** | 0.041 *** | 0.014 *** | 1 |
M (1) | M (2) | M (3) | M (4) | M (5) | M (6) | M (7) | M (8) | |
---|---|---|---|---|---|---|---|---|
Variable | DVAR | DVAR | DVAR | DVAR | DVAR | DVAR | DVAR | DVAR |
Labor | Capt | Tech | Labor | Capt | Tech | |||
depit−u | 0.003 *** | 0.001 | 0.002 ** | 0.003 *** | ||||
(4.217) | (0.215) | (2.255) | (2.968) | |||||
widit−u | 0.189 ** | −0.023 | 0.297 ** | 0.078 | ||||
(2.548) | (−0.066) | (2.539) | (0.752) | |||||
Imr | 0.066 *** | 0.067 *** | 0.163 *** | 0.097 *** | 0.076 *** | 0.004 | 0.157 *** | 0.061 ** |
(4.538) | (4.681) | (3.074) | (3.147) | (3.782) | (0.039) | (3.307) | (2.488) | |
Control variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Year | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Province | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Industry | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
N | 50,548 | 50,548 | 3416 | 22,972 | 24,160 | 3405 | 22,974 | 24,163 |
r2 | 0.029 | 0.029 | 0.06 | 0.032 | 0.026 | 0.052 | 0.034 | 0.025 |
Variable | M (1) | M (2) | M (3) | M (4) | M (5) | M (6) | M (7) | M (8) |
---|---|---|---|---|---|---|---|---|
Mach | Normal | Mach | Normal | High | Low | High | Low | |
depit−u | 0.003 | 0.003 *** | 0.004 *** | 0.002 * | ||||
(1.295) | (4.630) | (3.830) | (1.679) | |||||
widit−u | 0.385 | 0.164 ** | 0.213 ** | 0.158 | ||||
(1.637) | (2.430) | (1.979) | (1.562) | |||||
imr | 0.032 | 0.041 *** | 0.014 | 0.045 *** | 0.071 *** | 0.044 ** | 0.074 *** | 0.045 ** |
(0.540) | (2.935) | (0.242) | (3.258) | (3.331) | (2.056) | (3.511) | (2.140) | |
Year | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Province | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Industry | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Control variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
N | 6740 | 43,808 | 6740 | 43,808 | 24,012 | 26,536 | 24,012 | 26,536 |
r2 | 0.106 | 0.018 | 0.106 | 0.018 | 0.035 | 0.024 | 0.035 | 0.024 |
Variable | M (1) | M (2) | M (3) | M (4) | M (5) | M (6) |
---|---|---|---|---|---|---|
DVAR | DVAR | DVAR | DVAR | DVAR | DVAR | |
depit−u | 0.002 *** | 0.003 *** | ||||
(2.578) | (3.838) | |||||
widit−u | 0.175 ** | 0.513 *** | ||||
(2.346) | (5.007) | |||||
L. depit−u | 0.002 *** | |||||
(3.024) | ||||||
imr depit−u | 0.053 *** | |||||
(3.347) | ||||||
L. widit−u | 0.172 ** | |||||
(2.101) | ||||||
imr widit−u | 0.052 *** | |||||
(3.328) | ||||||
Control variables | Yes | Yes | Yes | Yes | Yes | Yes |
Year | Yes | Yes | Yes | Yes | Yes | Yes |
Province | Yes | Yes | Yes | Yes | Yes | Yes |
Industry | Yes | Yes | Yes | Yes | Yes | Yes |
Kleibergen–Paap rk LM statistic | 1022.143 [0.00] | 1018.307 [0.00] | ||||
Kleibergen–Paap Wald rk F statistic | 9655.677 [16.38] | 6736.902 [16.38] | ||||
N | 50,548 | 50,548 | 48,166 | 48,166 | ||
r2 | 0.030 | 0.030 | 0.028 | 0.027 |
Variable | M (1) | M (2) | M (3) | M (4) | M (5) | M (6) | M (7) | M (8) |
---|---|---|---|---|---|---|---|---|
Markups | DVAR | Markups | DVAR | DVAR | DVAR | |||
depit−u | 0.001 *** | 0.003 *** | 0.001 ** | 0.002 *** | ||||
(4.590) | (4.139) | (2.425) | (3.633) | |||||
widit−u | 0.078 ** | 0.186 ** | 0.131 * | 0.135 ** | ||||
(2.186) | (2.506) | (1.851) | (2.030) | |||||
markups | 0.041 *** | 0.042 *** | ||||||
(3.467) | (3.547) | |||||||
0.410 *** | 0.410 *** | |||||||
(31.585) | (31.595) | |||||||
Control var | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Year | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Province | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Industry | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
N | 50,548 | 50,548 | 50,548 | 50,548 | 50,548 | 50,548 | 50,548 | 50,548 |
r2 | 0.422 | 0.030 | 0.422 | 0.030 | 0.059 | 0.155 | 0.059 | 0.154 |
Variable | M (1) | M (2) | M (3) | M (4) | M (5) | M (6) | M (7) | M (8) |
---|---|---|---|---|---|---|---|---|
DVAR | DVAR | DVAR | DVAR | DVAR | DVAR | |||
depit−u | 0.171 ** | 0.129 ** | 0.122 ** | 0.122 ** | ||||
(2.465) | (2.050) | (1.968) | (1.975) | |||||
widit−u | 0.003 *** | 0.002 *** | 0.003 *** | 0.003 *** | ||||
(5.057) | (3.252) | (4.318) | (4.299) | |||||
0.380 *** | 0.410 *** | 0.380 *** | 0.409 *** | |||||
(27.138) | (23.989) | (27.115) | (23.967) | |||||
MS | −0.015 *** | −0.012 *** | −0.010 * | −0.017 *** | −0.015 *** | −0.013 *** | −0.010 ** | −0.017 *** |
(−2.697) | (−3.134) | (−1.926) | (−3.161) | (−2.737) | (−3.162) | (−1.962) | (−3.188) | |
* MS | −0.087 *** | −0.087 *** | ||||||
(−3.101) | (−3.085) | |||||||
_cons | 1.079 *** | −0.287 *** | 1.188 *** | 1.187 *** | 1.082 *** | −0.286 *** | 1.190 *** | 1.189 *** |
(21.404) | (−7.844) | (22.900) | (22.843) | (21.522) | (−7.788) | (23.007) | (22.948) | |
Year | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Province | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Industry | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
N | 42,833 | 42,833 | 42,833 | 42,833 | 42,833 | 42,833 | 42,833 | 42,833 |
r2 | 0.018 | 0.065 | 0.125 | 0.125 | 0.019 | 0.065 | 0.125 | 0.126 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, R.; Kong, X.; Wang, M.; Kong, X. The Impact of Utility Model Patent Quality on Export Performance in China: A Moderated Mediation Effect Model. Sustainability 2023, 15, 8181. https://doi.org/10.3390/su15108181
Ma R, Kong X, Wang M, Kong X. The Impact of Utility Model Patent Quality on Export Performance in China: A Moderated Mediation Effect Model. Sustainability. 2023; 15(10):8181. https://doi.org/10.3390/su15108181
Chicago/Turabian StyleMa, Ran, Xiaodan Kong, Mianqing Wang, and Xiangde Kong. 2023. "The Impact of Utility Model Patent Quality on Export Performance in China: A Moderated Mediation Effect Model" Sustainability 15, no. 10: 8181. https://doi.org/10.3390/su15108181
APA StyleMa, R., Kong, X., Wang, M., & Kong, X. (2023). The Impact of Utility Model Patent Quality on Export Performance in China: A Moderated Mediation Effect Model. Sustainability, 15(10), 8181. https://doi.org/10.3390/su15108181