Adapting to the Impacts Posed by Climate Change: Applying the Climate Change Risk Indicator (CCRI) Framework in a Multi-Modal Transport System
Abstract
:1. Introduction
2. Literature Review
2.1. Elaboration of a Corpus on Climate Adaptation Research in the Transport Sector
2.2. Critical Review and Empirical Results
2.2.1. Publication Trends
2.2.2. Research Focused on Each Transport Mode
Sea Transport
Air Transport
Road Transport
Rail Transport
3. The CCRI Assessment Framework on Multi-Modal Transport Systems
- Defining the CCRI hierarchy by climate data and extreme event details by collecting gridded climate data within a specified region;
- Setting the grades of each indicator by identifying a quartile of data in a specified region;
- Implying the evidential reasoning (ER) approach for CCRIs of a particular region or transport mode;
- Evaluating the climate risk of the region/transport mode using climate data against the lowest level indicators;
- Assigning weights to the CCRIs in the hierarchy;
- Synthesising the evaluation of each transport mode to a multi-modal transport level using ER in the entire investigated nations involving multiple regions.
4. Discussion on Multi-Modal Climate Adaptation Studies
4.1. Discussion of the Findings from the Systematic Review
4.2. Discussion and Implications of the Findings from the CCRI Framework
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tseng, Y.Y.; Yue, W.L.; Taylor, M.A. The role of transportation in logistics chain. Proc. East. Asia Soc. Transp. Stud. 2005, 5, 1657–1672. [Google Scholar]
- Chapman, L. Transport and climate change: A review. J. Transp. Geogr. 2007, 15, 354–367. [Google Scholar] [CrossRef]
- Iacobuţă, G.I.; Brandi, C.; Dzebo, A.; Duron, S.D.E. Aligning climate and sustainable development finance through an SDG lens. The role of development assistance in implementing the Paris Agreement. Glob. Environ. Chang. 2022, 74, 102509. [Google Scholar] [CrossRef]
- Becker, A.; Caldwell, M.R. Stakeholder perceptions of seaport resilience strategies: A case study of Gulfport (Mississippi) and Providence (Rhode Island). Coast. Manag. 2015, 43, 1–34. [Google Scholar] [CrossRef]
- Becker, A.; Chase, N.T.; Fischer, M.; Schwegler, B.; Mosher, K. A method to estimate climate-critical construction materials applied to seaport protection. Glob. Environ. Chang. 2016, 40, 125–136. [Google Scholar] [CrossRef]
- Becker, A.; Kretsch, E. The leadership void for climate adaptation planning: Case study of the port of providence (Rhode Island, United States). Front. Earth Sci. 2019, 7, 29. [Google Scholar] [CrossRef]
- Becker, A.; Ng, A.K.; McEvoy, D.; Mullett, J. Implications of climate change for shipping: Ports and supply chains. WIREs Clim. Chang. 2018, 9, e508. [Google Scholar] [CrossRef]
- Becker, A.H.; Acciaro, M.; Asariotis, R.; Cabrera, E.; Cretegny, L.; Crist, P.; Esteban, M.; Mather, A.; Messner, S.; Naruse, S.; et al. A note on climate change adaptation for seaports: A challenge for global ports, a challenge for global society. Clim. Chang. 2013, 120, 683–695. [Google Scholar] [CrossRef]
- Becker, A.H.; Matson, P.; Fischer, M.; Mastrandrea, M.D. Towards seaport resilience for climate change adaptation: Stakeholder perceptions of hurricane impacts in Gulfport (MS) and Providence (RI). Prog. Plan. 2015, 99, 1–49. [Google Scholar] [CrossRef]
- McIntosh, R.D.; Becker, A. Seaport climate vulnerability assessment at the multi-port Scale: A review of approaches. In Resilience and Risk: Methods and Application in Environment, Cyber and Social Domains; Linkov, I., Palma-Oliveira, J.M., Eds.; Springer: Dordrecht, The Netherlands, 2017; pp. 205–224. [Google Scholar]
- McLean, E.L.; Becker, A. Decision makers’ barriers to climate and extreme weather adaptation: A study of North Atlantic high- and medium-use seaports. Sustain. Sci. 2020, 15, 835–847. [Google Scholar] [CrossRef]
- Schweikert, A.; Chinowsky, P.; Espinet, X.; Tarbert, M. Climate change and infrastructure impacts: Comparing the impact on roads in ten countries through 2100. Procedia Eng. 2014, 78, 306–316. [Google Scholar] [CrossRef]
- Schweikert, A.; Chinowsky, P.; Kwiatkowski, K.; Espinet, X. The infrastructure planning support system: Analysing the impact of climate change on road infrastructure and development. Transp. Policy 2014, 35, 146–153. [Google Scholar] [CrossRef]
- Schweikert, A.; Chinowsky, P.; Kwiatkowski, K.; Johnson, A.; Shilling, E.; Strzepek, K.; Strzepek, N. Road infrastructure and climate change: Impacts and adaptations for South Africa. J. Infrastruct. Syst. 2015, 21, 04014046. [Google Scholar] [CrossRef]
- Schweikert, A.; Espinet, X.; Goldstein, S.; Chinowsky, P. Resilience versus Risk: Assessing cost of climate change adaptation to California’s transportation system and the city of Sacramento, California. Transp. Res. Rec. 2015, 2532, 13–20. [Google Scholar] [CrossRef]
- Kempton, W.; Letendre, S.E. Electric vehicles as a new power source for electric utilities. Transp. Res. Part D Transp. Environ. 1997, 2, 157–175. [Google Scholar] [CrossRef]
- Lopes, J.A.P.; Soares, F.J.; Almeida, P.M.R. Integration of electric vehicles in the electric power system. Proc. IEEE 2010, 99, 168–183. [Google Scholar] [CrossRef]
- McCoy, T.J. Electric ships past, present, and future [technology leaders]. IEEE Electrif. Mag. 2015, 3, 4–11. [Google Scholar] [CrossRef]
- Nuchturee, C.; Li, T.; Xia, H. Energy efficiency of integrated electric propulsion for ships—A review. Renew. Sustain. Energy Rev. 2020, 134, 110145. [Google Scholar] [CrossRef]
- Barkenbus, J.N. Eco-driving: An overlooked climate change initiative. Energy Policy 2010, 38, 762–769. [Google Scholar] [CrossRef]
- Kannan, D.; Diabat, A.; Alrefaei, M.; Govindan, K.; Yong, G. A carbon footprint based reverse logistics network design model. Resour. Conserv. Recycl. 2012, 67, 75–79. [Google Scholar] [CrossRef]
- van den Bergh, J.C.J.M. Contribution of global cities to climate change mitigation overrated. In The Barcelona School of Ecological Economics and Political Ecology; Springer: Berlin/Heidelberg, Germany, 2023; pp. 335–346. [Google Scholar]
- de Abreu, V.H.S.; Santos, A.S.; Monteiro, T.G.M. Climate change impacts on the road transport infrastructure: A systematic review on adaptation measures. Sustainability 2022, 14, 8864. [Google Scholar] [CrossRef]
- Moraci, F.; Errigo, M.F.; Fazia, C.; Campisi, T.; Castelli, F. Cities under pressure: Strategies and tools to face climate change and pandemic. Sustainability 2020, 12, 7743. [Google Scholar] [CrossRef]
- Koetse, M.J.; Rietveld, P. Adaptation to climate change in the transport sector. Transp. Rev. 2012, 32, 267–286. [Google Scholar] [CrossRef]
- Wang, T.; Ng, A.K.Y. Responding to the barriers in climate adaptation planning among transport systems: Insights from the case of the port of Montreal. Int. J. Sustain. Transp. 2022, 16, 942–956. [Google Scholar] [CrossRef]
- Shlozberg, R.; Dorling, R.; Spiro, P. Low Water Blues: An Economic Impact Assessment of Future Low Water Levels in the Great Lakes and St. Lawrence River; Mowat Centre for Policy Innovation: Toronto, ON, Canada, 2014. [Google Scholar]
- Robertson, L.S. Reversal of the road death trend in the US in 2015–2016: An examination of the climate and economic hypotheses. J. Transp. Health 2018, 9, 161–168. [Google Scholar] [CrossRef]
- Bang, N.H.; Church Burton, N. Contemporary flood risk perceptions in England: Implications for flood risk management foresight. Clim. Risk Manag. 2021, 32, 100317. [Google Scholar] [CrossRef]
- Heritage, G.; Entwistle, N. Drone based quantification of channel response to an extreme flood for a Piedmont Stream. Remote Sens. 2019, 11, 2031. [Google Scholar] [CrossRef]
- Wang, T.; Qu, Z.; Yang, Z.; Nichol, T.; Dimitriu, D.; Clarke, G.; Bowden, D.; Lee, P.T. Impact analysis of climate change on rail systems for adaptation planning: A UK case. Transp. Res. Part D Transp. Environ. 2020, 83, 102324. [Google Scholar] [CrossRef]
- Hambling, D. Weatherwatch: Protecting UK Roads from Melting in Heatwaves. The Guardian, 12 October 2021. [Google Scholar]
- Leard, B.; Roth, K. Weather, Traffic Accidents, and Climate Change; Resources for the Future: Washington, DC, USA, 2015. [Google Scholar]
- Ronchi, E.; Wong, S.; Suzuki, S.; Theodori, M.; Wadhwani, R.; Vaiciulyte, S.; Gwynne, S.; Rein, G.; Kristoffersen, M.; Lovreglio, R.; et al. Case Studies of Large Outdoor Fires Involving Evacuation; Victoria University: Melbourne, VIC, Australia, 2021. [Google Scholar]
- Poo, M.C.P.; Yang, Z.; Dimitriu, D.; Qu, Z.; Jin, Z.; Feng, X. Climate Change Risk Indicators (CCRI) for seaports in the United Kingdom. Ocean Coast. Manag. 2021, 205, 105580. [Google Scholar] [CrossRef]
- Poo, M.C.P.; Yang, Z.; Dimitriu, D.; Qu, Z. An advanced climate resilience indicator framework for airports: A UK case study. Transp. Res. Part D Transp. Environ. 2021, 101, 103099. [Google Scholar] [CrossRef]
- Wang, T.; Qu, Z.; Yang, Z.; Nichol, T.; Dimitriu, D.; Clarke, G.; Bowden, D. How can the UK road system be adapted to the impacts posed by climate change? By creating a climate adaptation framework. Transp. Res. Part D Transp. Environ. 2019, 77, 403–424. [Google Scholar] [CrossRef]
- Yang, Z.; Ng, A.K.; Lee, P.T.W.; Wang, T.; Qu, Z.; Rodrigues, V.S.; Pettit, S.; Harris, I.; Zhang, D.; Lau, Y.Y. Risk and cost evaluation of port adaptation measures to climate change impacts. Transp. Res. Part D Transp. Environ. 2018, 61, 444–458. [Google Scholar] [CrossRef]
- Wang, T.; Qu, Z.; Yang, Z.; Nichol, T.; Clarke, G.; Ge, Y.-E. Climate change research on transportation systems: Climate risks, adaptation and planning. Transp. Res. Part D Transp. Environ. 2020, 88, 102553. [Google Scholar] [CrossRef]
- Poo, M.C.P.; Yang, Z.; Dimitriu, D.; Qu, Z. Review on seaport and airport adaptation to climate change: A case on sea level rise and flooding. Mar. Technol. Soc. J. 2018, 52, 23–33. [Google Scholar] [CrossRef]
- Rousseau, D.M.; Manning, J.; Denyer, D. 11 Evidence in management and organisational science: Assembling the field’s full weight of scientific knowledge through syntheses. Acad. Manag. Ann. 2008, 2, 475–515. [Google Scholar] [CrossRef]
- Newman, M.E.J. Coauthorship networks and patterns of scientific collaboration. Proc. Natl. Acad. Sci. USA 2004, 101, 5200–5205. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Strotmann, A. Intellectual structure of information science 2011–2020: An author co-citation analysis. J. Doc. 2022, 78, 728–744. [Google Scholar] [CrossRef]
- Hawkes, P.; Pauli, G.; Moser, H.; Arntsen, Ø.; Gaufres, P.; Mai, S.; White, K. Waterborne Transport, Ports and Navigation: Climate Change Drivers, Impacts and Mitigation; PIANC: Manila, Philippines, 2010. [Google Scholar]
- Osthorst, W.; Mänz, C. Types of cluster adaptation to climate change. Lessons from the port and logistics sector of Northwest Germany. Marit. Policy Manag. 2012, 39, 227–248. [Google Scholar] [CrossRef]
- Randrianarisoa, L.M.; Zhang, A. Adaptation to climate change effects and competition between ports: Invest now or later? Transp. Res. Part B Methodol. 2019, 123, 279–322. [Google Scholar] [CrossRef]
- Wang, K.; Yang, H.; Zhang, A. Seaport adaptation to climate change-related disasters: Terminal operator market structure and inter-and intra-port coopetition. Spat. Econ. Anal. 2020, 15, 311–335. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, A. Climate change, natural disasters and adaptation investments: Inter-and intra-port competition and cooperation. Transp. Res. Part B Methodol. 2018, 117, 158–189. [Google Scholar] [CrossRef]
- Itoh, R.; Zhang, A. How should ports share risk of natural and climate change disasters? Analytical modelling and implications for adaptation investments. Econ. Transp. 2023, 33, 100301. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, K.; Fu, X.; Zhang, A.; Ge, Y.-E. The effects of information publicity and government subsidy on port climate change adaptation: Strategy and social welfare analysis. Transp. Res. Part B Methodol. 2022, 166, 284–312. [Google Scholar] [CrossRef]
- Panahi, R.; Ng, A.K.; Pang, J. Climate change adaptation in the port industry: A complex of lingering research gaps and uncertainties. Transp. Policy 2020, 95, 10–29. [Google Scholar] [CrossRef]
- Loza, P.; Veloso-Gomes, F. Literature review on incorporating climate change adaptation measures in the design of new ports and other maritime projects. Sustainability 2023, 15, 4569. [Google Scholar] [CrossRef]
- Bows, A. Aviation and climate change: Confronting the challenge. Aeronaut. J. 2010, 114, 459–468. [Google Scholar] [CrossRef]
- Dolman, N.; Vorage, P. Preparing Singapore Changi Airport for the effects of climate change. J. Airpt. Manag. 2020, 14, 54–66. [Google Scholar]
- Zhao, Y.; Sushama, L. Aircraft Takeoff Performance in a Changing Climate for Canadian Airports. Atmosphere 2020, 11, 418. [Google Scholar] [CrossRef]
- Vogiatzis, K.; Kassomenos, P.; Gerolymatou, G.; Valamvanos, P.; Anamaterou, E. Climate Change Adaptation Studies as a tool to ensure airport’s sustainability: The case of Athens International Airport (AIA). Sci. Total Environ. 2021, 754, 142153. [Google Scholar] [CrossRef]
- Tsalis, T.A.; Botsaropoulou, V.D.; Nikolaou, I.E. A methodology to evaluate the disclosure practices of organisations related to climate change risks: A case study of international airports. Int. J. Glob. Warm. 2018, 15, 257–276. [Google Scholar] [CrossRef]
- Skouloudis, A.; Evangelinos, K.; Moraitis, S. Accountability and stakeholder engagement in the airport industry: An assessment of airports’ CSR reports. J. Air Transp. Manag. 2012, 18, 16–20. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, Z. Measuring the performance of airport resilience to severe weather events. Transp. Res. Part D Transp. Environ. 2020, 83, 102362. [Google Scholar] [CrossRef]
- Ryley, T.; Baumeister, S.; Coulter, L. Climate change influences on aviation: A literature review. Transp. Policy 2020, 92, 55–64. [Google Scholar] [CrossRef]
- Tighe, S.L.; Smith, J.; Mills, B.; Andrey, J. Using the MEPDG to Assess Climate Change Impacts on Southern Canadian roads. In Proceedings of the 7th International Conference on Managing Pavement Assets, Calgary, AB, Canada, 23–28 June 2008. [Google Scholar]
- Guest, G.; Zhang, J.; Atadero, R.; Shirkhani, H. Incorporating the Effects of Climate Change into Bridge Deterioration Modeling: The Case of Slab-on-Girder Highway Bridge Deck Designs across Canada. J. Mater. Civ. Eng. 2020, 32, 04020175. [Google Scholar] [CrossRef]
- Knott, J.F.; Elshaer, M.; Daniel, J.S.; Jacobs, J.M.; Kirshen, P. Assessing the effects of rising groundwater from sea level rise on the service life of pavements in coastal road infrastructure. Transp. Res. Rec. 2017, 2639, 1–10. [Google Scholar] [CrossRef]
- Sladen, W.; Wolfe, S.; Morse, P. Evaluation of threshold freezing conditions for winter road construction over discontinuous permafrost peatlands, subarctic Canada. Cold Reg. Sci. Technol. 2020, 170, 102930. [Google Scholar] [CrossRef]
- Qiao, Y.; Santos, J.; Stoner, A.M.; Flinstch, G. Climate change impacts on asphalt road pavement construction and maintenance: An economic life cycle assessment of adaptation measures in the State of Virginia, United States. J. Ind. Ecol. 2020, 24, 342–355. [Google Scholar] [CrossRef]
- Shahid, S.; Minhans, A. Climate change and road safety: A review to assess impacts in Malaysia. J. Teknol. 2016, 78, 1–8. [Google Scholar] [CrossRef]
- Islam, M.; Alharthi, M.; Alam, M. The impacts of climate change on road traffic accidents in Saudi Arabia. Climate 2019, 7, 103. [Google Scholar] [CrossRef]
- Andreasen, M.H.; Agergaard, J.; Møller-Jensen, L.; Oteng-Ababio, M.; Yiran, G.A.B. Mobility Disruptions in Accra: Recurrent Flooding, Fragile Infrastructure and Climate Change. Sustainability 2022, 14, 13790. [Google Scholar] [CrossRef]
- Sa’adin, S.L.B.; Kaewunruen, S.; Jaroszweski, D. Heavy rainfall and flood vulnerability of Singapore-Malaysia high speed rail system. Aust. J. Civ. Eng. 2016, 14, 123–131. [Google Scholar] [CrossRef]
- Bubeck, P.; Dillenardt, L.; Alfieri, L.; Feyen, L.; Thieken, A.H.; Kellermann, P. Global warming to increase flood risk on European railways. Clim. Chang. 2019, 155, 19–36. [Google Scholar] [CrossRef]
- Dépoues, V. Organisational uptake of scientific information about climate change by infrastructure managers: The case of adaptation of the French railway company. Clim. Chang. 2017, 143, 473–486. [Google Scholar] [CrossRef]
- Forero-Ortiz, E.; Martínez-Gomariz, E.; Porcuna, M.C.; Locatelli, L.; Russo, B. Flood Risk Assessment in an Underground Railway System under the Impact of Climate Change—A Case Study of the Barcelona Metro. Sustainability 2020, 12, 5291. [Google Scholar] [CrossRef]
- Jenkins, K.; Gilbey, M.; Hall, J.; Glenis, V.; Kilsby, C. Implications of climate change for thermal discomfort on underground railways. Transp. Res. Part D Transp. Environ. 2014, 30, 1–9. [Google Scholar] [CrossRef]
- Dawson, D.; Shaw, J.; Gehrels, W.R. Sea-level rise impacts on transport infrastructure: The notorious case of the coastal railway line at Dawlish, England. J. Transp. Geogr. 2016, 51, 97–109. [Google Scholar] [CrossRef]
- Ferranti, E.; Chapman, L.; Lee, S.; Jaroszweski, D.; Lowe, C.; McCulloch, S.; Quinn, A. The hottest July day on the railway network: Insights and thoughts for the future. Meteorol. Appl. 2018, 25, 195–208. [Google Scholar] [CrossRef]
- Kaewunruen, S.; AbdelHadi, M.; Kongpuang, M.; Pansuk, W.; Remennikov, A.M. Digital Twins for Managing Railway Bridge Maintenance, Resilience, and Climate Change Adaptation. Sensors 2023, 23, 252. [Google Scholar] [CrossRef]
- Dikanski, H.; Hagen-Zanker, A.; Imam, B.; Avery, K. Climate change impacts on railway structures: Bridge scour. In Proceedings of the Institution of Civil Engineers—Engineering Sustainability; Thomas Telford Ltd.: London, UK, 2016. [Google Scholar]
- Forzieri, G.; Bianchi, A.; e Silva, F.B.; Herrera, M.A.M.; Leblois, A.; Lavalle, C.; Aerts, J.C.J.H.; Feyen, L. Escalating impacts of climate extremes on critical infrastructures in Europe. Glob. Environ. Chang. 2018, 48, 97–107. [Google Scholar] [CrossRef]
- Hanlon, H.M.; Bernie, D.; Carigi, G.; Lowe, J.A. Future changes to high impact weather in the UK. Clim. Change 2021, 166, 50. [Google Scholar] [CrossRef]
- Pope, J.O.; Brown, K.; Fung, F.; Hanlon, H.M.; Neal, R.; Palin, E.J.; Reid, A. Investigation of future climate change over the British Isles using weather patterns. Clim. Dyn. 2022, 58, 2405–2419. [Google Scholar] [CrossRef]
- Department for Transport. Transport Resilience Review—A Review of the Resilience of the Transport Network to Extreme Weather Events; Department for Transport: London, UK, 2014. [Google Scholar]
- Trinks, C.; Hiete, M.; Comes, T.; Schultmann, F. Extreme weather events and road and rail transportation in Germany. Int. J. Emerg. Manag. 2012, 8, 207–227. [Google Scholar] [CrossRef]
- Doll, C.; Papanikolaou, A.; Maurer, H. The vulnerability of transport logistics to extreme weather events. Int. J. Shipp. Transp. Logist. 2014, 6, 293–313. [Google Scholar] [CrossRef]
- Hands, S.; Hudson, M.D. Incorporating climate change mitigation and adaptation into environmental impact assessment: A review of current practice within transport projects in England. Impact Assess. Proj. Apprais. 2016, 34, 330–345. [Google Scholar] [CrossRef]
- Antonson, H.; Isaksson, K.; Storbjörk, S.; Hjerpe, M. Negotiating climate change responses: Regional and local perspectives on transport and coastal zone planning in South Sweden. Land Use Policy 2016, 52, 297–305. [Google Scholar] [CrossRef]
- Francini, M.; Chieffallo, L.; Palermo, A.; Viapiana, M.F. A Method for the Definition of Local Vulnerability Domains to Climate Change and Relate Mapping. Two Case Studies in Southern Italy. Sustainability 2020, 12, 9454. [Google Scholar] [CrossRef]
- Papagiannakis, A.; Ntafos, K. Impact Assessment of Climate Change on Coastal Transport Systems in the Greater Thessaloniki Area. In Conference on Sustainable Urban Mobility; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Jacobsen, M. Co-producing urban transport systems: Adapting a global model in Dar es Salaam. Sustain. Sci. Pract. Policy 2021, 17, 47–61. [Google Scholar] [CrossRef]
- Bachner, G. Assessing the economy-wide effects of climate change adaptation options of land transport systems in Austria. Reg. Environ. Chang. 2017, 17, 929–940. [Google Scholar] [CrossRef]
- Strauch, R.; Raymond, C.; Rochefort, R.; Hamlet, A.; Lauver, C. Adapting transportation to climate change on federal lands in Washington State, USA. Clim. Chang. 2015, 130, 185–199. [Google Scholar] [CrossRef]
- Michaelides, S.; Leviäkangas, P.; Doll, C.; Heyndrickx, C. Foreward: EU-funded projects on extreme and high-impact weather challenging European transport systems. Nat. Hazards 2014, 72, 5–22. [Google Scholar] [CrossRef]
- Wendler-Bosco, V.; Nicholson, C. Port disruption impact on the maritime supply chain: A literature review. Sustain. Resilient Infrastruct. 2020, 5, 378–394. [Google Scholar] [CrossRef]
- Feneri, A.M.; Rasouli, S.; Timmermans, H.J. Modeling the effect of Mobility-as-a-Service on mode choice decisions. Transp. Lett. 2020, 14, 324–331. [Google Scholar] [CrossRef]
- Chen, H.; Lam, J.S.L.; Liu, N. Strategic investment in enhancing port–hinterland container transportation network resilience: A network game theory approach. Transp. Res. Part B Methodol. 2018, 111, 83–112. [Google Scholar] [CrossRef]
- Miller-Hooks, E.; Zhang, X.; Faturechi, R. Measuring and maximising resilience of freight transportation networks. Comput. Oper. Res. 2012, 39, 1633–1643. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, D.; Zhu, W.; Hou, Y.; Liu, D.; Ma, C.; Li, T.; Yuan, Y. Effective conditions for achieving carbon unlocking targets for transport infrastructure development—Joint analysis based on PLS-SEM and NCA. Int. J. Environ. Res. Public Health 2023, 20, 1170. [Google Scholar] [CrossRef]
- Broin, E.Ó.; Guivarch, C. Transport infrastructure costs in low-carbon pathways. Transp. Res. Part D Transp. Environ. 2017, 55, 389–403. [Google Scholar] [CrossRef]
- Albouy, D.; Graf, W.; Kellogg, R.; Wolff, H. Climate amenities, climate change, and American quality of life. J. Assoc. Environ. Resour. Econ. 2016, 3, 205–246. [Google Scholar] [CrossRef]
- Jones, L.A.; Mannion, P.D.; Farnsworth, A.; Valdes, P.J.; Kelland, S.-J.; Allison, P.A. Coupling of palaeontological and neontological reef coral data improves forecasts of biodiversity responses under global climatic change. R. Soc. Open Sci. 2019, 6, 182111. [Google Scholar] [CrossRef]
- Owen, B.; Lee, D.S.; Lim, L. Flying into the future: Aviation emissions scenarios to 2050. Environ. Sci. Technol. 2010, 44, 2255–2260. [Google Scholar] [CrossRef]
- Poo, M.C.P. Climate Change Adaptation for Seaports and Airports. Ph.D. Thesis, Liverpool John Moores University, Liverpool, UK, 2020. [Google Scholar]
- Stefanon, M.; D’andrea, F.; Drobinski, P. Heatwave classification over europe and the mediterranean region. Environ. Res. Lett. 2012, 7, 014023. [Google Scholar] [CrossRef]
- Yang, J.B.; Singh, M.G. An evidential reasoning approach for multiple-attribute decision making with uncertainty. IEEE Trans. Syst. Man. Cybern. 1994, 24, 1–18. [Google Scholar] [CrossRef]
- Zanobetti, A.; O’neill, M.S.; Gronlund, C.J.; Schwartz, J.D. Susceptibility to mortality in weather extremes: Effect modification by personal and small-area characteristics. Epidemiology 2013, 24, 809–819. [Google Scholar] [CrossRef] [PubMed]
Journal Name | Scopus 2-Year Impact Score | Number |
---|---|---|
Transportation Research Record | 2.06 | 10 |
Transportation Research Part D: Transport and Environment | 7.24 | 10 |
Journal of Infrastructure Systems | 3.71 | 8 |
Climatic Change | 4.59 | 8 |
Sustainability | 4.17 | 6 |
Transport Policy | 6.36 | 6 |
Maritime Policy and Management | 3.41 | 5 |
Regional Environmental Change | 4.40 | 5 |
European Journal of Transport and Infrastructure Research | 1.19 | 4 |
Journal of Transport Geography | 6.02 | 3 |
Natural Hazards | 3.14 | 3 |
Proceedings of the Institution of Civil Engineers: Civil Engineering | 0.66 | 3 |
Season | City | Seaport | Rank | Airport | Rank | Road | Rank | Railway | Rank | Multi-Modal | Rank |
---|---|---|---|---|---|---|---|---|---|---|---|
Recent climate conditions | |||||||||||
Summer | Birmingham | 0.1784 | 4 | 0.1572 | 5 | 0.1927 | 4 | 0.2064 | 4 | 0.1837 | 4 |
Cardiff | 0.2831 | 2 | 0.2183 | 4 | 0.2577 | 3 | 0.2722 | 3 | 0.2582 | 3 | |
Edinburgh | 0.1504 | 5 | 0.1333 | 6 | 0.1439 | 6 | 0.1495 | 6 | 0.1443 | 6 | |
Glasgow | 0.133 | 7 | 0.1076 | 7 | 0.1282 | 7 | 0.136 | 7 | 0.1263 | 7 | |
Liverpool | 0.2888 | 1 | 0.2272 | 3 | 0.2727 | 2 | 0.2891 | 2 | 0.2698 | 2 | |
London | 0.2514 | 3 | 0.2388 | 2 | 0.2956 | 1 | 0.3157 | 1 | 0.2751 | 1 | |
Manchester | 0.1387 | 6 | 0.5993 | 1 | 0.1849 | 5 | 0.1989 | 5 | 0.1741 | 5 | |
Winter | Birmingham | 0.1985 | 6 | 0.2237 | 5 | 0.1889 | 6 | 0.1738 | 6 | 0.196 | 6 |
Cardiff | 0.3971 | 1 | 0.3524 | 1 | 0.3369 | 1 | 0.3266 | 1 | 0.354 | 1 | |
Edinburgh | 0.2455 | 3 | 0.2879 | 2 | 0.2349 | 3 | 0.2174 | 3 | 0.2457 | 3 | |
Glasgow | 0.2219 | 4 | 0.2585 | 3 | 0.2098 | 4 | 0.1915 | 4 | 0.2195 | 4 | |
Liverpool | 0.2824 | 2 | 0.2544 | 4 | 0.2369 | 2 | 0.2282 | 2 | 0.2507 | 2 | |
London | 0.1995 | 5 | 0.219 | 6 | 0.195 | 5 | 0.1834 | 5 | 0.199 | 5 | |
Manchester | 0.1835 | 7 | 0.204 | 7 | 0.1746 | 7 | 0.1599 | 7 | 0.1803 | 7 | |
Future climate conditions | |||||||||||
Summer | Birmingham | 0.3535 | 3 | 0.3424 | 3 | 0.4124 | 3 | 0.4269 | 3 | 0.4139 | 3 |
Cardiff | 0.4673 | 1 | 0.4062 | 1 | 0.4713 | 1 | 0.4832 | 1 | 0.4577 | 1 | |
Edinburgh | 0.3412 | 4 | 0.31 | 5 | 0.3464 | 5 | 0.352 | 5 | 0.3377 | 5 | |
Glasgow | 0.2624 | 7 | 0.2313 | 7 | 0.2664 | 7 | 0.269 | 7 | 0.2576 | 7 | |
Liverpool | 0.4378 | 2 | 0.374 | 2 | 0.4331 | 2 | 0.4425 | 2 | 0.4226 | 2 | |
London | 0.3308 | 5 | 0.3176 | 4 | 0.3807 | 4 | 0.3927 | 4 | 0.3555 | 4 | |
Manchester | 0.2845 | 6 | 0.2678 | 6 | 0.3168 | 6 | 0.3243 | 6 | 0.2985 | 6 | |
Winter | Birmingham | 0.208 | 6 | 0.1982 | 6 | 0.1807 | 6 | 0.17 | 6 | 0.1879 | 6 |
Cardiff | 0.3522 | 2 | 0.2911 | 4 | 0.286 | 3 | 0.2796 | 2 | 0.3028 | 2 | |
Edinburgh | 0.2784 | 5 | 0.2548 | 5 | 0.2432 | 5 | 0.2349 | 5 | 0.253 | 5 | |
Glasgow | 0.3178 | 3 | 0.3231 | 2 | 0.2771 | 4 | 0.2623 | 4 | 0.2927 | 4 | |
Liverpool | 0.3858 | 1 | 0.3459 | 1 | 0.3239 | 1 | 0.3117 | 1 | 0.3429 | 1 | |
London | 0.1366 | 7 | 0.136 | 7 | 0.1247 | 7 | 0.1169 | 7 | 0.03167 | 7 | |
Manchester | 0.3129 | 4 | 0.3095 | 3 | 0.2867 | 2 | 0.2774 | 3 | 0.2967 | 3 |
Mode | Publication No. | Citation No. | Dominant Journals | Main Geographic Location of Authorship | Main Features | Gaps |
---|---|---|---|---|---|---|
Sea | 44 | 374 | Maritime PolicyandManagement | North America | Adapting to climate change impacts has been put on the agenda for many seaports; there have been a few assessments measuring climate vulnerabilities and adaptation measures; most have been qualitative methods. | Large-scale case studies; quantitative risk assessment method; implementation of adaptation measures; standardised adaptation framework; effective stakeholder collaboration. |
Air | 7 | 18 | N/A * | Global | A few regional studies have recently started investigating climate change impacts in airports with adaptation strategies. | Complicated methods; sufficient funding; qualitative investigations; long-term timespan of adaptation planning. |
Road | 44 | 250 | European Journal of Transport and Infrastructure Research; Transportation Research Record | North America | Mainly focuses on physical dimensions of transport infrastructure on a national or regional scale; most have been quantitative methods. | The transformation from technical issues into effective institutional policies and long-term adaptation; result testing of climate risk analysis in diverse regions and other transport systems. |
Rail | 13 | 111 | Climatic Change | Europe | Research starts relatively late; significant geographic features (European countries). | Complex projection of indirect economic and other socio-economic costs; cross-department involvement with a broad range of stakeholders; advanced risk assessment methods. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Poo, M.C.-P.; Ng, A.K.Y.; Yang, Z. Adapting to the Impacts Posed by Climate Change: Applying the Climate Change Risk Indicator (CCRI) Framework in a Multi-Modal Transport System. Sustainability 2023, 15, 8190. https://doi.org/10.3390/su15108190
Wang T, Poo MC-P, Ng AKY, Yang Z. Adapting to the Impacts Posed by Climate Change: Applying the Climate Change Risk Indicator (CCRI) Framework in a Multi-Modal Transport System. Sustainability. 2023; 15(10):8190. https://doi.org/10.3390/su15108190
Chicago/Turabian StyleWang, Tianni, Mark Ching-Pong Poo, Adolf K. Y. Ng, and Zaili Yang. 2023. "Adapting to the Impacts Posed by Climate Change: Applying the Climate Change Risk Indicator (CCRI) Framework in a Multi-Modal Transport System" Sustainability 15, no. 10: 8190. https://doi.org/10.3390/su15108190
APA StyleWang, T., Poo, M. C. -P., Ng, A. K. Y., & Yang, Z. (2023). Adapting to the Impacts Posed by Climate Change: Applying the Climate Change Risk Indicator (CCRI) Framework in a Multi-Modal Transport System. Sustainability, 15(10), 8190. https://doi.org/10.3390/su15108190