Old Landfill Leachate and Municipal Wastewater Co-Treatment by Sequencing Batch Reactor Combined with Coagulation–Flocculation Using Novel Flocculant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Landfill Leachate and Municipal Wastewater Collection
2.2. SBR + Coagulation–Flocculation for Co-Treatment of Landfill Leachate and Municipal Wastewater
2.3. Analysis
2.4. Data Analysis
3. Results and Discussion
3.1. Physico-Chemical Characteristics of Landfill Leachate and Municipal Wastewater
3.2. SBR for Co-Treatment of Landfill Leachate and Municipal Wastewater
3.3. Coagulation–Flocculation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, A.H.; López-Maldonado, E.A.; Khan, N.A.; Villarreal-Gomez, L.Z.; Munshi, F.M.; Alsabhan, A.H.; Perveen, K. Current solid waste management strategies and energy recovery in developing countries—State of art review. Chemosphere 2021, 291, 133088. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, N.; Umesh, M.; Chakraborty, P.; Kaur, K.; Duhan, L.; Sarojini, S.; Thazeem, B.; Pasrija, R.; Vangnai, A.S.; et al. Micropollutants characteristics, fate, and sustainable removal technologies for landfill leachate: A technical perspective. J. Water Process Eng. 2023, 53, 103649. [Google Scholar] [CrossRef]
- Bandala, E.R.; Liu, A.; Wijesiri, B.; Zeidman, A.B.; Goonetilleke, A. Emerging materials and technologies for landfill leachate treatment: A critical review. Environ. Pollut. 2021, 291, 118133. [Google Scholar] [CrossRef]
- Ruíz-Delgado, A.; Ponce-Robles, L.; Salmerón, I.; Oller, I.; Polo-López, M.; Malato, S. Advanced microbiological tools for tracking complex wastewater treatment efficiency through the combination of physicochemical and biological technologies. J. Environ. Chem. Eng. 2022, 10, 108651. [Google Scholar] [CrossRef]
- Li, M.; Liu, L.; Sun, Z.; Hu, B.; Li, X.; Lan, M.; Guo, H.; Li, B. Mainstream wastewater treatment by polyaluminium ferric chloride (PAFC) flocculation and nitritation-denitritation membrane aerated biofilm reactor (MABR). J. Water Process. Eng. 2023, 52, 103563. [Google Scholar] [CrossRef]
- Hu, Y.; Gu, Z.; He, J.; Li, Q. Novel strategy for controlling colloidal instability during the flocculation pretreatment of landfill leachate. Chemosphere 2022, 287, 132051. [Google Scholar] [CrossRef]
- Chakraborty, S.; Kumar, R.N. Assessment of groundwater quality at a MSW landfill site using standard and AHP based water quality index: A case study from Ranchi, Jharkhand, India. Environ. Monit. Assess. 2016, 188, 335. [Google Scholar] [CrossRef]
- Singh, M.; Verma, M.; Kumar, R.N. Effects of open dumping of MSW on metal contamination of soil, plants, and earthworms in Ranchi, Jharkhand, India. Environ. Monit. Assess. 2018, 190, 139. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, S.A.; Al-Mamun, A.; Baawain, M.S.; Sana, A. A critical review of the recently developed laboratory-scale municipal solid waste landfill leachate treatment technologies. Sustain. Energy Technol. Assess. 2022, 52, 102011. [Google Scholar] [CrossRef]
- Yu, D.; Pei, Y.; Ji, Z.; He, X.; Yao, Z. A review on the landfill leachate treatment technologies and application prospects of three-dimensional electrode technology. Chemosphere 2022, 291, 132895. [Google Scholar] [CrossRef] [PubMed]
- Dang, Q.; Zhao, X.; Li, Y.; Xi, B. Revisiting the biological pathway for methanogenesis in landfill from metagenomic perspective—A case study of county-level sanitary landfill of domestic waste in North China plain. Environ. Res. 2023, 222, 115185. [Google Scholar] [CrossRef] [PubMed]
- Brennan, R.; Clifford, E.; Devroedt, C.; Morrison, L.; Healy, M. Treatment of landfill leachate in municipal wastewater treatment plants and impacts on effluent ammonium concentrations. J. Environ. Manag. 2017, 188, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Bakera, B.R.; Mohameda, R.; Al-Gheethia, A.; Azizb, H.A. Modification of sequencing batch reactor (SBR) using novel acryl-fiber (AFBC) for sanitary landfill leachate safe disposal. Desalin. Water Treat 2020, 195, 57–63. [Google Scholar] [CrossRef]
- Jagaba, A.H.; Kutty, S.R.M.; Lawal, I.M.; Abubakar, S.; Hassan, I.; Zubairu, I.; Umaru, I.; Abdurrasheed, A.S.; Adam, A.A.; Ghaleb, A.A.S.; et al. Sequencing batch reactor technology for landfill leachate treatment: A state-of-the-art review. J. Environ. Manag. 2021, 282, 111946. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-Y.; Chang, F.-Y.; Chang, C.-H. Co-digestion of leachate with septage using a UASB reactor. Bioresour. Technol. 2000, 73, 175–178. [Google Scholar] [CrossRef]
- Bai, F.; Tian, H.; Wang, C.; Ma, J. Treatment of nanofiltration concentrate of landfill leachate using advanced oxidation processes incorporated with bioaugmentation. Environ. Pollut. 2023, 318, 120827. [Google Scholar] [CrossRef]
- Lin, S.H.; Chang, C.C. Treatment of landfill leachate by combined electro-Fenton oxidation and sequencing batch reactor method. Water Res. 2000, 34, 4243–4249. [Google Scholar] [CrossRef]
- Marttinen, S.; Kettunen, R.; Sormunen, K.; Soimasuo, R.; Rintala, J. Screening of physical–chemical methods for removal of organic material, nitrogen and toxicity from low strength landfill leachates. Chemosphere 2002, 46, 851–858. [Google Scholar] [CrossRef]
- Tatsi, A.A.; Zouboulis, A.I.; Matis, K.A.; Samaras, P. Coagulation-flocculation pretreatment of sanitary landfill leachates. Chemosphere 2003, 53, 737–744. [Google Scholar] [CrossRef]
- Li, H.; Zhou, S.; Sun, Y.; Feng, P.; Li, J. Advanced treatment of landfill leachate by a new combination process in a full-scale plant. J. Hazard. Mater. 2009, 172, 408–415. [Google Scholar] [CrossRef]
- Verma, M.; Chakraborty, S.; Kumari, S.; Gupta, A.; Kumar, D.; Iqbal, J.; Banu, J.R.; Pugazhendi, A.; Kumar, R.N. Co-treatment of stabilized landfill leachate and municipal wastewater in a granular activated carbon-sequencing batch reactor (GAC-SBR). Process Saf. Environ. Prot. 2023, 174, 424–432. [Google Scholar] [CrossRef]
- Vilar, A.; Eiroa, M.; Kennes, C.; Veiga, M.C. Optimization of the landfill leachate treatment by the Fenton process. Water Environ. J. 2013, 27, 120–126. [Google Scholar] [CrossRef]
- Singh, A.; Srivastava, A.; Saidulu, D.; Gupta, A.K. Advancements of sequencing batch reactor for industrial wastewater treatment: Major focus on modifications, critical operational parameters, and future perspectives. J. Environ. Manag. 2022, 317, 115305. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, K.; Chakraborty, S.; Verma, M.; Iqbal, J.; Kumar, R.N. Co-treatment of old landfill leachate and municipal wastewater in sequencing batch reactor (SBR): Effect of landfill leachate concentration. Water Qual. Res. J. 2016, 51, 377–387. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Lai, S.; Gan, Y.; Li, J.; Ye, T.; You, J.; Wang, S.; Chen, H.; Deng, W. Efficient organic pollutants re-moval from industrial paint wastewater plant employing Fenton with integration of oxic/hydrolysis acidification/oxic. Chem. Eng. J. 2018, 332, 440–448. [Google Scholar] [CrossRef]
- Del Borghi, A.; Binaghi, L.; Converti, A.; Del Borghi, M. Combined treatment of leachate from sanitary landfill and municipal wastewater by activated sludge. Chem. Biochem. Eng. Q. 2003, 17, 277–284. [Google Scholar]
- Reddy, C.V.; Rao, D.S.; Kalamdhad, A.S. Combined treatment of high-strength fresh leachate from municipal solid waste landfill using coagulation-flocculation and fixed bed upflow anaerobic filter. J. Water Process. Eng. 2022, 46, 102554. [Google Scholar] [CrossRef]
- Verma, M.; Chakraborty, S.; Kumar, R.N. Evaluation of coagulation–flocculation process as pretreatment option for landfill leachate using alum, ferric chloride and polyacrylamide grafted gum ghatti. In The 30th International Conference on Solid Waste Technology and Management; Widener University: Chester, PA, USA, 2015; p. 19013. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association, American Water Works Association and Water Environmental Federation: Washington, DC, USA, 1998. [Google Scholar]
- Luo, K.; Pang, Y.; Li, X.; Chen, F.; Liao, X.; Lei, M.; Song, Y. Landfill leachate treatment by coagulation/flocculation combined with microelectrolysis—Fenton processes. Environ. Technol. 2019, 40, 1862–1870. [Google Scholar] [CrossRef]
- Harmsen, J. Identification of organic compounds in leachate from a waste tip. Water Res. 1983, 17, 699–705. [Google Scholar] [CrossRef]
- Atta, M.; Yaacob, W.Z.W.; Jaafar, O.B. The potential impact of leachate contaminated groundwater of an ex-landfill site at Taman Beringin Kuala Lumpur, Malaysia. Environ. Earth Sci. 2015, 73, 3913–3923. [Google Scholar] [CrossRef]
- Bashir, M.J.K.; Amr, S.S.A.; Hui, E.Y.W.; Aun, C.N.; Aziz, H.A. Optimization of ammoniacal nitrogen removal from mature landfill leachate via ultrasonication. Am.-Eurasian J. Sustain. Agric. 2015, 9, 43–50. [Google Scholar]
- Carley, B.N.; Mavinic, D.S. The effects of external carbon loading on nitrification and denitrification of a high-ammonia landfill leachate. Res. J. Water Pollut. Control. Fed. 1991, 63, 51–58. [Google Scholar]
- Surmacz-Górska, J.; Miksch, K.; Kita, M. Potential for pre-treatment of landfill leachate by biological methods. Environ. Arch. 2000, 26, 43–54. [Google Scholar]
- El-Salam, M.M.A.; Abu-Zuid, G.I. Impact of landfill leachate on the groundwater quality: A case study in Egypt. J. Adv. Res. 2015, 6, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Kulikowska, D.; Klimiuk, E. The effect of landfill age on municipal leachate composition. Bioresour. Technol. 2007, 99, 5981–5985. [Google Scholar] [CrossRef]
- Haile, T.; Abiye, T.H. Environmental impact and vulnerability of the surface and ground water system from municipal solid waste dumpsite Koshe, Addis Ababa. Environ. Earth Sci. 2012, 67, 71–80. [Google Scholar] [CrossRef]
- Fatta, D.; Papadopoulos, A.; Loizidou, M. A study on the landfill leachate and its impact on the groundwater quality of the greater area. Environ. Geochem. Health 1999, 21, 175–190. [Google Scholar] [CrossRef]
- Egbi, C.D.; Akiti, T.T.; Osae, S.; Dampare, S.B.; Abass, G.; Adomako, D. Assessment of groundwater quality by unsaturated zone study due to migration of leachate from Abloradjei waste disposal site, Ghana. Appl. Water Sci. 2017, 7, 845–859. [Google Scholar] [CrossRef]
- Singh, S.; Janardhana, N.R.; Gossel, W.; Wycisk, P. Assessment of pollution potential of leachate from the municipal solid waste disposal site and its impact on groundwater quality, Varanasi environs, India. Arab. J. Geosci. 2016, 9, 131. [Google Scholar] [CrossRef]
- Cui, F.; Yang, S.; Zhang, L.; Li, Y.; Ren, Y. Landfill leachate treatment by SBR process with ozonation and adsorption. In Proceedings of the 2010 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, 18–20 June 2010; pp. 1–4. [Google Scholar]
- Neczaj, E.; Okoniewska, E.; Kacprzak, M. Treatment of landfill leachate by sequencing batch reactor. Desalination 2005, 185, 357–362. [Google Scholar] [CrossRef]
- Capodici, M.; Di Trapani, D.; Viviani, G. Co-treatment of landfill leachate in laboratory-scale sequencing batch reactors: Analysis of system performance and biomass activity by means of respirometric techniques. Water Sci. Technol. 2014, 69, 1267–1274. [Google Scholar] [CrossRef] [PubMed]
- El-Fadel, M.; Matar, F.; Hashisho, J. Combined coagulation–flocculation and sequencing batch reactor with phosphorus adjustment for the treatment of high-strength landfill leachate: Experimental kinetics and chemical oxygen demand fractionation. J. Air Waste Manag. Assoc. 2013, 63, 591–604. [Google Scholar] [CrossRef] [PubMed]
- Seid-Mohammadi, A.; Asgari, G.; Rafiee, M.; Samadi, M.T.; Nouri, F.; Pirsaheb, M.; Asadi, F. Fate and inhibition of Bis (2-Ethylhexyl) phthalate in biophysical reactors for treating real landfill leachate. Process. Saf. Environ. Prot. 2022, 160, 450–464. [Google Scholar] [CrossRef]
- Esteves, B.M.; Rodrigues, C.S.D.; Maldonado-Hódar, F.J.; Madeira, L.M. Treatment of high-strength olive mill wastewater by combined Fenton-like oxidation and coagulation/flocculation. J. Environ. Chem. Eng. 2019, 7, 103252. [Google Scholar] [CrossRef]
- Kundu, P.; Debsarkar, A.; Mukherjee, S. Kinetic Modeling for Simultaneous Organic Carbon Oxidation, Nitrification, and Denitrification of Abattoir Wastewater in Sequencing Batch Reactor. Bioremediation J. 2014, 18, 267–286. [Google Scholar] [CrossRef]
- Aziz, H.A.; Alias, S.; Adlan, M.N.; Asaari, A.H.; Zahari, M.S. Colour removal from landfill leachate by coagulation and flocculation processes. Bioresour. Technol. 2007, 98, 218–220. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Zeng, Y.; Cheng, Y.; He, D.; Pan, X. Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment. Sci. Total Environ. 2020, 703, 135468. [Google Scholar] [CrossRef]
- Muniz, G.L.; Borges, A.C.; da Silva, T.C.F. Performance of natural coagulants obtained from agro-industrial wastes in dairy wastewater treatment using dissolved air flotation. J. Water Process. Eng. 2020, 37, 101453. [Google Scholar] [CrossRef]
- Muniz, G.L.; da Silva, T.C.F.; Borges, A.C. Assessment and optimization of the use of a novel natural coagulant (Guazuma ulmifolia) for dairy wastewater treatment. Sci. Total Environ. 2020, 744, 140864. [Google Scholar] [CrossRef]
- Zazouli, M.A.; Yousefi, Z. Removal of heavy metals form solid wastes leachates coagulation-flocculation process. J. Appl. Sci. 2008, 8, 2142–2147. [Google Scholar]
- Li, W.; Hua, T.; Zhou, Q.; Zhang, S.; Li, F. Treatment of stabilized landfill leachate by the combined process of coagulation/flocculation and powder activated carbon adsorption. Desalination 2010, 264, 56–62. [Google Scholar] [CrossRef]
- Marañón, E.; Castrillón, L.; Fernández-Nava, Y.; Fernández-Méndez, A.; Fernández-Sánchez, A. Coagulation–flocculation as a pretreatment process at a landfill leachate nitrification–denitrification plant. J. Hazard. Mater. 2008, 156, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Luan, Z.K.; Tang, H.X.; Yu, C.F. Dynamic transformation and stability of hydrolyzed alum and poly-aluminum in the coagulation and flocculation processes. Acta Sci. Circums. 1997, 17, 321–327. [Google Scholar]
Aerobic Phase | Anoxic Phase | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
COD (mg/L) | Ammonia (mg/L) | Phosphate (mg/L) | COD (mg/L) | Nitrate (mg/L) | Phosphate (mg/L) | |||||||||||
I | E1 | % R | I | E1 | % R | I | E1 | % R | E2 | % R | I | E2 | % R | E2 | % R | |
5% | 1404 ± 69 | 750 ± 31 | 46.6 ± 4 | 172 ± 24 | 19 ± 1.5 | 89 ± 1 | 2.9 ± 0.1 | 0.9 ± 0.1 | 65 ± 1.6 | 420 ± 38 | 61 ± 2.8 | 156 ± 26 | 37 ± 5 | 76 ± 1 | 0.4 ± 0.2 | 56 ± 17 |
10% | 1502 ± 73 | 884 ± 93 | 41.1 ± 3 | 189 ± 22 | 13 ± 5 | 93 ± 3 | 4.1 ± 0.8 | 0.9 ± 0.4 | 78 ± 5 | 450 ± 20 | 63 ± 1.3 | 160 ± 9 | 39 ± 8 | 76 ± 3.4 | 0.2 ± 0.1 | 78 ± 22 |
15% | 1500 ± 40 | 1043 ± 67 | 30.5 ± 6 | 160 ± 16 | 18.2 ± 12 | 89 ± 6 | 2.2 ± 0.7 | 0.3 ± 0.2 | 86 ± 5 | 525 ± 39 | 61 ± 2.8 | 145 ± 3 | 25 ± 5 | 83 ± 3 | 0.2 ± 0.1 | 33 ± 12 |
20% | 1770 ± 80 | 1100 ± 101 | 37.8 ± 5 | 169 ± 14 | 27.1 ± 5 | 84 ± 4 | 2.0 ± 0.6 | 1.0 ± 0.2 | 50 ± 2 | 750 ± 44 | 47 ± 4 | 164 ± 9 | 29 ± 8 | 82 ± 5 | 0.6 ± 0.2 | 40 ± 18 |
Alum Dose | COD | Turbidity | TSS | Color | |
---|---|---|---|---|---|
Alum dose | 1 | ||||
COD | −0.80 * | 1 | |||
Turbidity | −0.99 * | 0.78 * | 1 | ||
TSS | −0.67 * | 0.86 * | 0.71 * | 1 | |
Color | −0.38 | 0.37 * | 0.48 | 0.71 * | 1 |
FeCl3 dose | COD | Turbidity | TSS | Color | |
FeCl3 dose | 1 | ||||
COD | −0.70 * | 1 | |||
Turbidity | −0.97 * | 0.76 * | 1 | ||
TSS | −0.94 * | 0.73 * | 0.99 * | 1 | |
Color | −0.92 * | 0.83 * | 0.98 * | 0.96 * | 1 |
SBR + Coagulation– Flocculation (Alum) | COD (mg/L) | Ammonia (mg/L) | Nitrate (mg/L) | Phosphate (mg/L) | TSS (mg/L) |
---|---|---|---|---|---|
5% (Leachate) | 319 | 22 | 34 | 0.7 | 138 |
10% (Leachate) | 306 | 15 | 37 | 0.01 | 158 |
15% (Leachate) | 263 | 20 | 20 | 0.2 | 150 |
20% (Leachate) | 195 | 27 | 25 | 0.6 | 100 |
SBR + Coagulation– Flocculation (Ferric chloride) | |||||
5% (Leachate) | 185 | 17 | 32 | 0.7 | 175 |
10% (Leachate) | 150 | 11 | 35 | 0.01 | 138 |
15% (Leachate) | 165 | 15 | 22 | 0.3 | 111 |
20% (Leachate) | 172 | 22 | 24 | 0.5 | 90 |
* Wastewater discharge criteria | 250 | 50 | 10 | 5 | 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, R.N.; Sadaf, S.; Verma, M.; Chakraborty, S.; Kumari, S.; Polisetti, V.; Kallem, P.; Iqbal, J.; Banat, F. Old Landfill Leachate and Municipal Wastewater Co-Treatment by Sequencing Batch Reactor Combined with Coagulation–Flocculation Using Novel Flocculant. Sustainability 2023, 15, 8205. https://doi.org/10.3390/su15108205
Kumar RN, Sadaf S, Verma M, Chakraborty S, Kumari S, Polisetti V, Kallem P, Iqbal J, Banat F. Old Landfill Leachate and Municipal Wastewater Co-Treatment by Sequencing Batch Reactor Combined with Coagulation–Flocculation Using Novel Flocculant. Sustainability. 2023; 15(10):8205. https://doi.org/10.3390/su15108205
Chicago/Turabian StyleKumar, Radhakrishnan Naresh, Somya Sadaf, Mohini Verma, Shubhrasekhar Chakraborty, Shweta Kumari, Veerababu Polisetti, Parashuram Kallem, Jawed Iqbal, and Fawzi Banat. 2023. "Old Landfill Leachate and Municipal Wastewater Co-Treatment by Sequencing Batch Reactor Combined with Coagulation–Flocculation Using Novel Flocculant" Sustainability 15, no. 10: 8205. https://doi.org/10.3390/su15108205
APA StyleKumar, R. N., Sadaf, S., Verma, M., Chakraborty, S., Kumari, S., Polisetti, V., Kallem, P., Iqbal, J., & Banat, F. (2023). Old Landfill Leachate and Municipal Wastewater Co-Treatment by Sequencing Batch Reactor Combined with Coagulation–Flocculation Using Novel Flocculant. Sustainability, 15(10), 8205. https://doi.org/10.3390/su15108205