Differential Expression of Antioxidant Enzymes in Chlorine-Resistant Acinetobacter and Serratia spp. Isolated from Water Distribution Sites in Mumbai: A Study on Mechanisms of Chlorine Resistance for Sustainable Water Treatment Strategies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Cultures
2.2. Chlorine Treatment
2.3. Enzyme Extraction
2.4. SOD Assay
2.5. Catalase (CAT) Assay
2.6. Guaiacol Peroxidase (GPX) Activity
2.7. Ascorbate Peroxidase (APX) Activity
2.8. Statistical Analysis
3. Result
3.1. SOD Assay
3.2. CAT Assay
3.3. GPX Activity
3.4. APX Activity
3.5. Analysis of Antioxidant Enzyme Activities Using a Heat Map and PCA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, Y.-W.; Liang, X.-X.; Wang, C.-Y.; Chen, D.; Liu, H. Synergistic nanowire-assisted electroporation and chlorination for inactivation of chlorine-resistant bacteria in drinking water systems via inducing cell pores for chlorine permeation. Water Res. 2023, 229, 119399. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.; Stoianov, I.; O’Hare, D. Continuous Chlorine Detection in Drinking Water and a Review of New Detection Methods. Johns. Matthey Technol. Rev. 2018, 63, 103. [Google Scholar] [CrossRef]
- Luo, L.-W.; Wu, Y.-H.; Yu, T.; Wang, Y.-H.; Chen, G.-Q.; Tong, X.; Bai, Y.; Xu, C.; Wang, H.-B.; Ikuno, N.; et al. Evaluating Method and Potential Risks of Chlorine-Resistant Bacteria (CRB): A Review. Water Res. 2021, 188, 116474. [Google Scholar] [CrossRef]
- Jo, I.; Kim, D.; No, T.; Hong, S.; Ahn, J.; Ryu, S.; Ha, N.-C. Structural Basis for HOCl Recognition and Regulation Mechanisms of HypT, a Hypochlorite-Specific Transcriptional Regulator. Proc. Natl. Acad. Sci. USA 2019, 116, 3740–3745. [Google Scholar] [CrossRef]
- Zhao, X.; Drlica, K. Reactive Oxygen Species and the Bacterial Response to Lethal Stress. Curr. Opin. Microbiol. 2014, 21, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Shim, S.-Y.; Kim, H.-S. Oxidative Stress and the Antioxidant Enzyme System in the Developing Brain. Korean J. Pediatr. 2013, 56, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Fridovich, I. The Biology of Oxygen Radicals. Science 1978, 201, 875–880. [Google Scholar] [CrossRef]
- Jathar, S.; Shinde, D.; Dakhni, S.; Fernandes, A.; Jha, P.; Desai, N.; Jobby, R. Identification and Characterization of Chlorine-Resistant Bacteria from Water Distribution Sites of Mumbai. Arch. Microbiol. 2021, 203, 5241–5248. [Google Scholar] [CrossRef]
- Ridgway, H.F.; Olson, B.H. Chlorine Resistance Patterns of Bacteria from Two Drinking Water Distribution Systems. Appl. Environ. Microbiol. 1982, 44, 972–987. [Google Scholar] [CrossRef]
- Weydert, C.J.; Cullen, J.J. Measurement of Superoxide Dismutase, Catalase and Glutathione Peroxidase in Cultured Cells and Tissue. Nat. Protoc. 2010, 5, 51–66. [Google Scholar] [CrossRef]
- Aebi, H. Catalase. Methods of Enzymatic Analysis, 2nd ed.; Bergmeyer, H.U., Ed.; Academic Press: New York, NY, USA, 1974; pp. 673–684. [Google Scholar]
- Uarrota, V.G.; Moresco, R.; Schmidt, E.C.; Bouzon, Z.L.; da Costa Nunes, E.; de Oliveira Neubert, E.; Peruch, L.A.M.; Rocha, M.; Maraschin, M. The Role of Ascorbate Peroxidase, Guaiacol Peroxidase, and Polysaccharides in Cassava (Manihot Esculenta Crantz) Roots under Postharvest Physiological Deterioration. Food Chem. 2016, 197, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Meora, R.; Sushmitha, T.J.; Krishnan, G.P.; Toleti, S.R.; Pandian, S. Systematic Assessment of Chlorine Tolerance Mechanism in a Potent Biofilm-Forming Marine Bacterium Halomonas Boliviensis. Int. Biodeterior. Biodegrad. 2020, 151, 104967. [Google Scholar]
- Jobby, R.; Shah, K.; Shah, R.; Jha, P.; Desai, N. Differential Expression of Antioxidant Enzymes under Arsenic Stress in Enterobacter sp. Environ. Progress. Sustain. Energy 2016, 35, 1642–1645. [Google Scholar] [CrossRef]
- Role of Hydrogen Peroxide and Different Classes of Antioxidants in the Regulation of Catalase and Glutathione S-Transferase Gene Expression in Maize (Zea mays L.). Physiol. Plant. 1999, 106, 112–120. [CrossRef]
- Khademian, M.; Imlay, J.A. Escherichia Coli Cytochrome c Peroxidase Is a Respiratory Oxidase That Enables the Use of Hydrogen Peroxide as a Terminal Electron Acceptor. Proc. Natl. Acad. Sci. USA 2017, 114, E6922–E6931. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Zhao, Y.; Ni, K.; Shi, Y.; Xu, Q. Characterization of Ligninolytic Bacteria and Analysis of Alkali-Lignin Biodegradation Products. Pol. J. Microbiol. 2020, 69, 339–347. [Google Scholar] [CrossRef]
- Yu, X.Q.; Belhaj, A.; Elmerich, C.; Lin, M. Diversity of Degradation Pathways of Some Aromatic Compounds by Phenotype and Genotype Testing in Acinetobacter Strains. World J. Microbiol. Biotechnol. 2004, 20, 623–627. [Google Scholar] [CrossRef]
- Caverzan, A.; Passaia, G.; Rosa, S.B.; Ribeiro, C.W.; Lazzarotto, F.; Margis-Pinheiro, M. Plant Responses to Stresses: Role of Ascorbate Peroxidase in the Antioxidant Protection. Genet. Mol. Biol. 2012, 35, 1011–1019. [Google Scholar] [CrossRef]
- Tan, B.L.; Norhaizan, M.E.; Liew, W.-P.-P.; Sulaiman Rahman, H. Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases. Front. Pharm. 2018, 9, 1162. [Google Scholar] [CrossRef]
- Mohamd, O.; Hussein, R.; Ibrahim, D.; Badawi, M.; Makboul, H. Effects of Serratia Marcescens and Prodigiosin Pigment on the Root-Knot Nematode Meloidogyne Incognita. Middle East. J. Agric. Res. 2020, 9, 243–252. [Google Scholar]
- Calabrese, J.P.; Bissonnette, G.K. Improved Membrane Filtration Method Incorporating Catalase and Sodium Pyruvate for Detection of Chlorine-Stressed Coliform Bacteria. Appl. Environ. Microbiol. 1990, 56, 3558–3564. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.H.A.; Alkhalifah, D.H.M.; Al Yousef, S.A.; Beemster, G.T.S.; Mousa, A.S.M.; Hozzein, W.N.; AbdElgawad, H. Salinity Stress Enhances the Antioxidant Capacity of Bacillus and Planococcus Species Isolated From Saline Lake Environment. Front. Microbiol. 2020, 11, 561816. [Google Scholar] [CrossRef] [PubMed]
- Najmuldeen, H.; Alghamdi, R.; Alghofaili, F.; Yesilkaya, H. Functional Assessment of Microbial Superoxide Dismutase Isozymes Suggests a Differential Role for Each Isozyme. Free. Radic. Biol. Med. 2019, 134, 215–228. [Google Scholar] [CrossRef] [PubMed]
- Younus, H. Therapeutic Potentials of Superoxide Dismutase. Int. J. Health Sci. 2018, 12, 88–93. [Google Scholar]
- da Cruz Nizer, W.S.; Inkovskiy, V.; Overhage, J. Surviving Reactive Chlorine Stress: Responses of Gram-Negative Bacteria to Hypochlorous Acid. Microorganisms 2020, 8, 1220. [Google Scholar] [CrossRef]
- D’arcy-Lameta, A.; Ferrari-Iliou, R.; Contour-Ansel, D.; Pham-Thi, A.-T.; Zuily-Fodil, Y. Isolation and Characterization of Four Ascorbate Peroxidase CDNAs Responsive to Water Deficit in Cowpea Leaves. Ann. Bot. 2006, 97, 133–140. [Google Scholar] [CrossRef]
- Kassa-Laouar, M.; Mechakra, A.; Rodrigue, A.; Meghnous, O.; Bentellis, A.; Rached, O. Antioxidative Enzyme Responses to Antimony Stress of Serratia Marcescens—An Endophytic Bacteria of Hedysarum Pallidum Roots. Pol. J. Environ. Stud. 2020, 29, 141. [Google Scholar] [CrossRef]
- Doughari, H.J.; Ndakidemi, P.A.; Human, I.S.; Benade, S. The Ecology, Biology and Pathogenesis of Acinetobacter Spp.: An Overview. Microbes Environ. 2011, 26, 101–112. [Google Scholar] [CrossRef]
- Apel, K.; Hirt, H. Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant. Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jathar, S.; Dakhni, S.; Shinde, D.; Fernandes, A.; Jha, P.; Desai, N.; Sonawane, T.; Jobby, R. Differential Expression of Antioxidant Enzymes in Chlorine-Resistant Acinetobacter and Serratia spp. Isolated from Water Distribution Sites in Mumbai: A Study on Mechanisms of Chlorine Resistance for Sustainable Water Treatment Strategies. Sustainability 2023, 15, 8287. https://doi.org/10.3390/su15108287
Jathar S, Dakhni S, Shinde D, Fernandes A, Jha P, Desai N, Sonawane T, Jobby R. Differential Expression of Antioxidant Enzymes in Chlorine-Resistant Acinetobacter and Serratia spp. Isolated from Water Distribution Sites in Mumbai: A Study on Mechanisms of Chlorine Resistance for Sustainable Water Treatment Strategies. Sustainability. 2023; 15(10):8287. https://doi.org/10.3390/su15108287
Chicago/Turabian StyleJathar, Santosh, Sanabil Dakhni, Disha Shinde, Abigail Fernandes, Pamela Jha, Neetin Desai, Tareeka Sonawane, and Renitta Jobby. 2023. "Differential Expression of Antioxidant Enzymes in Chlorine-Resistant Acinetobacter and Serratia spp. Isolated from Water Distribution Sites in Mumbai: A Study on Mechanisms of Chlorine Resistance for Sustainable Water Treatment Strategies" Sustainability 15, no. 10: 8287. https://doi.org/10.3390/su15108287
APA StyleJathar, S., Dakhni, S., Shinde, D., Fernandes, A., Jha, P., Desai, N., Sonawane, T., & Jobby, R. (2023). Differential Expression of Antioxidant Enzymes in Chlorine-Resistant Acinetobacter and Serratia spp. Isolated from Water Distribution Sites in Mumbai: A Study on Mechanisms of Chlorine Resistance for Sustainable Water Treatment Strategies. Sustainability, 15(10), 8287. https://doi.org/10.3390/su15108287