A Comparative Analysis of Public Awareness Level about Drinking Water Quality in Guangzhou (China) and Karachi (Pakistan)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Methodology
2.3. Questionnaires
3. Results and Discussion
3.1. The Sociodemographic Characteristics of Respondents in Guangzhou and Karachi
3.2. Public Awareness about Drinking Water Quality, Attitude, and Practices
3.3. Influencing Factors on Respondents’ Opinion about Drinking Water Quality: Prediction and Likelihood Ratio Test Results
3.4. Influencing Factors of Public Awareness about Drinking Water Pollution Accidents
3.5. Awareness about Drinking Water Quality Standard and the Role of Local Agencies in Protecting the Environment
3.6. The Level of Trust of Respondents in Services Provided by the Ministry of Environment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNICEF. Progress on Drinking Water, Sanitation and Hygiene; UNICEF: New York, NY, USA, 2017. [Google Scholar]
- Darko, G.; Obiri-Yeboah, S.; Takyi, S.A.; Amponsah, O.; Borquaye, L.S.; Amponsah, L.O.; Fosu-Mensah, B.Y. Urbanizing with or without nature: Pollution effects of human activities on water quality of major rivers that drain the Kumasi Metropolis of Ghana. Environ. Monit. Assess. 2022, 194, 38. [Google Scholar] [CrossRef] [PubMed]
- Subba Rao, N.; Sunitha, B.; Das, R.; Anil Kumar, B. Monitoring the causes of pollution using groundwater quality and chemistry before and after the monsoon. Phys. Chem. Earth Parts A/B/C 2022, 128, 103228. [Google Scholar] [CrossRef]
- Liu, J.-S.; Guo, L.-C.; Luo, X.-L.; Chen, F.-R.; Zeng, E.Y. Impact of anthropogenic activities on urban stream water quality: A case study in Guangzhou, China. Environ. Sci. Pollut. Res. 2014, 21, 13412–13419. [Google Scholar] [CrossRef] [PubMed]
- Ravindra, B.; Subba Rao, N.; Dhanamjaya Rao, E.N. Groundwater quality monitoring for assessment of pollution levels and potability using WPI and WQI methods from a part of Guntur district, Andhra Pradesh, India. Environ. Dev. Sustain. 2022, 1–31. [Google Scholar] [CrossRef]
- WHO. Manganese in Drinking Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Hoedjes, J.C.B. Public Participation in Environmental Research. Occasional Paper 22; World Agroforestry Centre: Nairobi, Kenya, 2014; p. 22. [Google Scholar]
- Ocloo, J.; Matthews, R. From tokenism to empowerment: Progressing patient and public involvement in healthcare improvement. BMJ Qual. Saf. 2016, 25, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, M.; Yang, X.; Yuan, X. Public awareness and willingness to pay for tackling smog pollution in China: A case study. J. Clean. Prod. 2016, 112, 1627–1634. [Google Scholar] [CrossRef]
- Yang, C.-H.; Tseng, Y.-H.; Chen, C.-P. Environmental regulations, induced R&D, and productivity: Evidence from Taiwan’s manufacturing industries. Resour. Energy Econ. 2012, 34, 514–532. [Google Scholar]
- Collingwood Environmental Planning. Public Participation, Contributing to Better Water Management: Experiences from Eight Case Studies across Europe; Collingwood Environmental Planning: London, UK, 2014. [Google Scholar]
- Wang, L.; Zhang, L.; Lv, J.; Zhang, Y.; Ye, B. Public awareness of drinking water safety and contamination accidents: A case study in Hainan Province, China. Water 2018, 10, 446. [Google Scholar] [CrossRef]
- Mahler, R.; Barber, M.; Shafii, B. Urban public satisfaction with drinking water since 2002 in the Pacific Northwest, USA. Int. J. Sustain. Dev. Plan. 2015, 10, 620–634. [Google Scholar] [CrossRef]
- Fröhler, M.; Elmadfa, I. Public perception of drinking water quality in Austria. Ernährung 2010, 34, 206–214. [Google Scholar]
- Wright, J.A.; Yang, H.; Rivett, U.; Gundry, S.W. Public perception of drinking water safety in South Africa 2002–2009: A repeated cross-sectional study. BMC Public Health 2012, 12, 556. [Google Scholar] [CrossRef] [PubMed]
- de França Doria, M.; Pidgeon, N.; Hunter, P.R. Perceptions of drinking water quality and risk and its effect on behaviour: A cross-national study. Sci. Total Environ. 2009, 407, 5455–5464. [Google Scholar] [CrossRef] [PubMed]
- Cotruvo, J.A. 2017 WHO guidelines for drinking water quality: First addendum to the fourth edition. J. Am. Water Work. Assoc. 2017, 109, 44–51. [Google Scholar] [CrossRef]
- Figueiredo Nascimento, S.; Cuccillato, E.; Schade, S.; Guimarães Pereira, A. Citizen Engagement in Science and Policy-Making; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar]
- Benameur, T.; Benameur, N.; Saidi, N.; Tartag, S.; Sayad, H.; Agouni, A. Predicting factors of public awareness and perception about the quality, safety of drinking water, and pollution incidents. Environ. Monit. Assess. 2021, 194, 22. [Google Scholar] [CrossRef]
- Lin, L.; Zuo, L.-Z.; Peng, J.-P.; Cai, L.-Q.; Fok, L.; Yan, Y.; Li, H.-X.; Xu, X.-R. Occurrence and distribution of microplastics in an urban river: A case study in the Pearl River along Guangzhou City, China. Sci. Total Environ. 2018, 644, 375–381. [Google Scholar] [CrossRef]
- Chen, W.Y.; Su, Y.; Liekens, I. Environmental information disclosure and public choice decisions for urban river restoration: A comparative study between Brussels (Belgium) and Guangzhou (China). J. Environ. Manag. 2022, 319, 115692. [Google Scholar] [CrossRef]
- Mangi, M.Y.; Yue, Z.; Kalwar, S.; Ali Lashari, Z. Comparative Analysis of Urban Development Trends of Beijing and Karachi Metropolitan Areas. Sustainability 2020, 12, 451. [Google Scholar] [CrossRef]
- Zheng, S.; Huang, G.; Zhou, X.; Zhu, X. Climate-change impacts on electricity demands at a metropolitan scale: A case study of Guangzhou, China. Appl. Energy 2020, 261, 114295. [Google Scholar] [CrossRef]
- Zafar, S.; Zaidi, A. Impact of urbanization on basin hydrology: A case study of the Malir Basin, Karachi, Pakistan. Reg. Environ. Chang. 2019, 19, 1815–1827. [Google Scholar] [CrossRef]
- Wu, X.; Lang, L.; Ma, W.; Song, T.; Kang, M.; He, J.; Zhang, Y.; Lu, L.; Lin, H.; Ling, L. Non-linear effects of mean temperature and relative humidity on dengue incidence in Guangzhou, China. Sci. Total Environ. 2018, 628–629, 766–771. [Google Scholar] [CrossRef]
- Fazal, O.; Hotez, P.J. NTDs in the age of urbanization, climate change, and conflict: Karachi, Pakistan as a case study. PLoS Negl. Trop. Dis. 2020, 14, e0008791. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Liu, Y.T.; He, S.J.; Shaw, D. From development zones to edge urban areas in China: A case study of Nansha, Guangzhou City. Cities 2017, 71, 110–122. [Google Scholar] [CrossRef]
- Zhou, S.; Wu, Z.; Cheng, L. The impact of spatial mismatch on residents in low-income housing neighbourhoods: A study of the Guangzhou metropolis, China. Urban Stud. 2013, 50, 1817–1835. [Google Scholar] [CrossRef]
- Dong, Y.; Mei, Y. Influence of urbanization on the surface water quality in Guangzhou, China. Wuhan Univ. J. Nat. Sci. 2010, 15, 78–84. [Google Scholar] [CrossRef]
- Iqbal, S.; Woodcock, A.; Osmond, J. The effects of gender transport poverty in Karachi. J. Transp. Geogr. 2020, 84, 102677. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, Z.; He, S. Analysis of water quality of Guangzhou waterworks based on grey correlation method. J. Phys. Conf. Ser. 2021, 2012, 012103. [Google Scholar] [CrossRef]
- Samo, S.R.; Channa, R.S.A.; Mukwana, K.C. Assessment of drinking water quality and its health impact on local community in coastal belt Karachi. Adv. Environ. Res 2017, 6, 203–216. [Google Scholar] [CrossRef]
- Xiang, J.; Hansen, A.; Liu, Q.; Liu, X.; Tong, M.X.; Sun, Y.; Cameron, S.; Hanson-Easey, S.; Han, G.-S.; Williams, C.; et al. Association between dengue fever incidence and meteorological factors in Guangzhou, China, 2005–2014. Environ. Res. 2017, 153, 17–26. [Google Scholar] [CrossRef]
- Han, Y.; Wang, Q.-J.; Mo, C.-H.; Li, Y.-W.; Gao, P.; Tai, Y.-P.; Zhang, Y.; Ruan, Z.-L.; Xu, J.-W. Determination of four fluoroquinolone antibiotics in tap water in Guangzhou and Macao. Environ. Pollut. 2010, 158, 2350–2358. [Google Scholar] [CrossRef]
- Khan, S.; Alvarez, L.C.M.; Wei, Y. Sustainable management of municipal solid waste under changing climate: A case study of Karachi, Pakistan. Asian J. Environ. Biotechnol. 2018, 2, 23–32. [Google Scholar]
- Saleem, F.; Mustafa, A.; Kori, J.A.; Hussain, M.S.; Kamran Azim, M. Metagenomic Characterization of Bacterial Communities in Drinking Water Supply System of a Mega City. Microb. Ecol. 2018, 76, 899–910. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.Y.; Cho, F.H.T. Understanding China’s transition to environmental information transparency: Citizens’ protest attitudes and choice behaviours. J. Environ. Pol. Plan. 2021, 23, 275–301. [Google Scholar] [CrossRef]
- Mohd Nasir, F.A.; Praveena, S.M.; Aris, A.Z. Public awareness level and occurrence of pharmaceutical residues in drinking water with potential health risk: A study from Kajang (Malaysia). Ecotoxicol. Environ. Saf. 2019, 185, 109681. [Google Scholar] [CrossRef] [PubMed]
- Ab Razak, N.H.; Praveena, S.M.; Aris, A.Z.; Hashim, Z. Quality of Kelantan drinking water and knowledge, attitude and practice among the population of Pasir Mas, Malaysia. Public Health 2016, 131, 103–111. [Google Scholar] [CrossRef]
- Wu, K.; Meng, Y.; Gong, Y.; Wu, L.; Liu, W.; Ding, X. Drinking water elements constituent profiles and health risk assessment in Wuxi, China. Environ. Monit. Assess. 2022, 194, 106. [Google Scholar] [CrossRef]
- Wang, D.; Li, S.-M. Socio-economic differentials and stated housing preferences in Guangzhou, China. Habitat Int. 2006, 30, 305–326. [Google Scholar] [CrossRef]
- Jiang, N.; Nuţă, A.C.; Zamfir, C.G. Literacy rate impact on innovations and environmental pollution in China. Front. Environ. Sci. 2023, 11, 275. [Google Scholar] [CrossRef]
- Ziadat, A.H. Major factors contributing to environmental awareness among people in a third world country/Jordan. Environ. Dev. Sustain. 2010, 12, 135–145. [Google Scholar] [CrossRef]
- Khalil, R.; Naeem, Z.; Zaman, A.; Gul, S.; Das, J. Stigma and discrimination experienced by people living with HIV/AIDS at health care facilities in Karachi, Pakistan. SMU Med. J. 2015, 2, 127–138. [Google Scholar]
- Habib, S.S.; Zaidi, S. Exploring willingness to pay for health insurance and preferences for a benefits package from the perspective of women from low-income households of Karachi, Pakistan. BMC Health Serv. Res. 2021, 21, 380. [Google Scholar] [CrossRef]
- Napolitano, F.; Izzo, M.T.; Di Giuseppe, G.; Angelillo, I.F. Public Knowledge, Attitudes, and Experience Regarding the Use of Antibiotics in Italy. PLoS ONE 2013, 8, e84177. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.H.; Liu, H.; Ma, L.H.; Wang, S.; Tian, Y.L.; Zhang, F.F.; Li, Z.Y.; Song, Y.Y.; Jiang, X.L. Knowledge, attitude and practice of residents in the prevention and control of COVID-19: An online questionnaire survey. J. Adv. Nurs. 2021, 77, 1839–1855. [Google Scholar] [CrossRef] [PubMed]
- Praveena, S.M.; Rashid, M.Z.M.; Nasir, F.A.M.; Wee, S.Y.; Aris, A.Z. Occurrence, Human Health Risks, and Public Awareness Level of Pharmaceuticals in Tap Water from Putrajaya (Malaysia). Expos. Health 2021, 13, 93–104. [Google Scholar] [CrossRef]
- Wasim, A. No Safe Drinking Water in Major Cities, NA Told. Available online: https://www.dawn.com/news/1639701 (accessed on 10 August 2021).
- Babar, M.S.; Tazyeen, S.; Khan, H.; Tsagkaris, C.; Essar, M.Y.; Ahmad, S. Impact of climate change on health in Karachi, Pakistan. J. Clim. Chang. Health 2021, 2, 100013. [Google Scholar] [CrossRef]
- Mobin, R.; Urooj, H. Household Water Quality, Sources, Storage and Treatment in Korangi and Landhi Town of Karachi. Nurture 2015, 9, 29–32. [Google Scholar] [CrossRef]
- van der Linden, S. Exploring Beliefs About Bottled Water and Intentions to Reduce Consumption:The Dual-Effect of Social Norm Activation and Persuasive Information. Environ. Behav. 2015, 47, 526–550. [Google Scholar] [CrossRef]
- Hyun Tae, K.; Tae Shik, K. Analysis of Brand Naming and Marketing Implications of Mineral Water Sold in China: Jeju SamDaSoo, Evian, and Tibet Spring 5100. J. Humanit. 2015, 36, 81–97. [Google Scholar]
- Cordner, A.; De La Rosa, V.Y.; Schaider, L.A.; Rudel, R.A.; Richter, L.; Brown, P. Guideline levels for PFOA and PFOS in drinking water: The role of scientific uncertainty, risk assessment decisions, and social factors. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 157–171. [Google Scholar] [CrossRef]
- Zhang, L.; Mo, A.P.J.; He, G.Z. Transparency and information disclosure in China’s environmental governance. Curr. Opin. Env. Sust. 2016, 18, 17–24. [Google Scholar] [CrossRef]
|
Guangzhou | Karachi | |||
---|---|---|---|---|
N | %age | N | %age | |
Total | 1000 | 800 | ||
Nonrespondent | 171 | 17.10 | 193 | 24.12 |
Respondent | 829 | 82.90 | 607 | 75.88 |
Gender | ||||
Male | 326 | 39.30 | 360 | 59.30 |
Female | 503 | 60.70 | 247 | 40.70 |
Age (years) | ||||
50 and above | 96 | 11.6 | 54 | 8.9 |
40–49 | 162 | 19.5 | 115 | 18.9 |
30–39 | 216 | 26.1 | 161 | 26.5 |
18–29 | 355 | 42.8 | 277 | 45.6 |
Monthly household income (USD) | ||||
<200 | 81 | 9.80 | 305 | 50.20 |
201–500 | 51 | 6.20 | 190 | 31.30 |
501–1000 | 298 | 35.90 | 96 | 15.80 |
>1000 | 399 | 48.10 | 16 | 2.60 |
Household size (persons/family) | ||||
1–4 (small) | 682 | 82.30 | 242 | 39.90 |
5–7 (medium) | 147 | 17.70 | 224 | 36.90 |
>7 (big) | 0 | 0.00 | 141 | 23.20 |
Education level | ||||
No education | 7 | 0.80 | 50 | 8.20 |
School | 68 | 8.20 | 86 | 14.20 |
College | 58 | 7.00 | 130 | 21.40 |
University | 696 | 84.00 | 341 | 56.20 |
Guangzhou | Karachi | Given Score | |||
---|---|---|---|---|---|
Variables | N | %age | N | %age | |
Do you know that drinking water may contain water contaminants? | |||||
Yes | 723 | 87.20 | 398 | 65.60 | 1 |
No | 48 | 5.80 | 111 | 18.30 | 0 |
Not sure | 58 | 7.00 | 98 | 16.10 | 0 |
Do you know the names and details of drinking water contaminants with harmful effects on humans? | |||||
Do not know | 194 | 23.40 | 355 | 58.50 | 0 |
Contaminants’ names and details | 635 | 76.60 | 252 | 41.50 | 1 |
Do you know the source of drinking water provided by the city/provincial government? | |||||
Yes | 691 | 83.40 | 470 | 77.40 | 1 |
No | 1 | 0.10 | 38 | 6.30 | 0 |
Not sure | 137 | 16.50 | 99 | 16.30 | 0 |
Which of the following sources of drinking water are provided by the city/provincial government? | |||||
River/rain water | 690 | 83.20 | 486 | 80.10 | 1 |
Ground water | 0 | 0.00 | 0 | 0.00 | 1 |
Not sure | 139 | 16.80 | 121 | 19.90 | 0 |
Have you acquired knowledge regarding the standard of drinking water? (Note: assessment of drinking water quality awareness events) | |||||
Yes | 221 | 26.66 | 111 | 18.30 | 1 |
No | 608 | 73.34 | 496 | 81.70 | 0 |
Do you know the drinking water quality standards of your country? | |||||
Yes | 416 | 50.20 | 272 | 44.80 | 1 |
No | 346 | 41.74 | 309 | 50.90 | 0 |
Not sure | 67 | 8.06 | 26 | 4.30 | 0 |
Do you know the responsibilities of the environmental protection agency (EPA) of your city? | |||||
Yes | 619 | 74.70 | 432 | 71.20 | 1 |
No | 210 | 25.30 | 175 | 28.80 | 0 |
Total given score | 7 | ||||
Total mean score (SD) | 5.687 (3.56) | 3.9885 (1.78) | |||
% good awareness (score ≥ 6) | 46.20% | 23.10% | |||
% poor awareness (score ≤ 5) | 53.80% | 76.90% |
Variables | Guangzhou | Karachi | Given Score | ||
---|---|---|---|---|---|
N | %age | N | %age | ||
Type of drinking water used in household | |||||
Bore well/hand pump/community well water/public tap water | 621 | 74.9 | 494 | 81.40 | −1 |
Bottled water/mineral water | 208 | 25.1 | 113 | 18.60 | +1 |
Degree of public satisfaction regarding drinking water quality | |||||
Very satisfied | 99 | 11.9 | 131 | 21.6 | +1 |
Satisfied | 618 | 74.5 | 279 | 48.9 | +1 |
Dissatisfied | 112 | 13.5 | 179 | 29.50 | −1 |
Drinking water issues in home | |||||
Odor | 8 | 0.9 | 27 | 4.44 | −1 |
Color (A, B, C, D) | 5 | 0.6 | 17 | 2.8 | −1 |
Taste | 10 | 1.2 | 77 | 12.7 | −1 |
None | 806 | 97.3 | 486 | 80.06 | +1 |
Drinking water can have harmful water contaminants, which must be removed/reduced to achieve safe drinking water | |||||
Strongly disagree/disagree | 350 | 42.20 | 232 | 38.20 | −1 |
Strongly agree/agree | 479 | 57.80 | 375 | 61.80 | +1 |
Boiling tap water can reduce all contaminants in drinking water | |||||
Strongly agree/agree | 148 | 17.90 | 191 | 31.50 | −1 |
Strongly disagree/disagree | 681 | 82.10 | 416 | 68.50 | +1 |
Normal/traditional filter plants can reduce all contaminants in drinking water | |||||
Strongly agree/agree | 245 | 29.60 | 168 | 27.70 | −1 |
Strongly disagreed/disagree | 584 | 70.40 | 439 | 72.30 | +1 |
Is there any public awareness event/education program about drinking water quality awareness arranged by the government/NGOs? | |||||
No/do not know | 592 | 71.40 | 484 | 79.70 | −1 |
Yes | 237 | 28.60 | 123 | 20.30 | +1 |
What sources of drinking water are provided by the city/provincial government? | |||||
Gound water/not sure | 110 | 13.30 | 116 | 19.10 | −1 |
River/rain water | 719 | 86.70 | 491 | 80.90 | +1 |
River and rainwater are clean sources of drinking water | |||||
Strongly disagree/disagree | 135 | 16.30 | 126 | 20.80 | −1 |
Strongly agree/Agree | 694 | 83.70 | 481 | 79.20 | +1 |
Do you pay attention to news stories on water pollution accidents reported on TV, on radio, in newspapers, or elsewhere? | |||||
Yes | 630 | 76.0 | 481 | 79.2 | +1 |
No | 199 | 24.0 | 126 | 20.8 | −1 |
What types of incidents related to drinking water contamination do you follow? | |||||
Chemicals/microbial/ sewage water | 517 | 37.6 | 432 | 71.2 | +1 |
Do not follow | 312 | 62.4 | 175 | 28.8 | −1 |
Overall score | 11 | ||||
Overall mean score (SD) | 4.00 (3.09) | 3.21 (2.64) | |||
% highly confident attitude and respectable practice (score ≥ 6) | 30.0% | 7.40% | |||
% less confident attitude and respectable practice (score ≤ 5) | 70.0% | 94.60% |
Guangzhou | Karachi | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Parameter Estimates | Parameter Estimates | ||||||||||
Public Opinion about Drinking Water a | B | Std. Error | Sig. | 95% Confidence Interval for Exp(B) | B | Std. Error | Sig. | 95% Confidence Interval for Exp(B) | |||
Lower Bound | Upper Bound | Lower Bound | Upper Bound | ||||||||
Very satisficed | Intercept | −1.902 | 0.560 | 0.001 | 1.441 | 1.228 | 0.241 | ||||
Male | 1.139 | 0.325 | 0.000 | 1.652 | 5.904 | −0.377 | 0.270 | 0.162 | 0.404 | 1.164 | |
Female | 0 b | 0 b | |||||||||
NIL | 2.243 | 1.235 | 0.069 | 0.837 | 106.056 | 0.680 | 0.417 | 0.103 | 0.872 | 4.468 | |
School | 1.417 | 0.836 | 0.090 | 0.801 | 21.225 | 2.150 | 0.416 | 0.000 | 3.803 | 19.395 | |
College | 1.475 | 0.515 | 0.004 | 1.594 | 11.993 | 1.349 | 0.369 | 0.000 | 1.869 | 7.941 | |
University | 0 b | 0 b | |||||||||
<200 USD | −0.121 | 0.642 | 0.851 | 0.252 | 3.117 | −3.373 | 1.140 | 0.003 | 0.004 | 0.320 | |
200–600 USD | 1.633 | 0.904 | 0.071 | 0.870 | 30.098 | −2.625 | 1.136 | 0.021 | 0.008 | 0.671 | |
601–1000 USD | 0.087 | 0.414 | 0.833 | 0.485 | 2.456 | −2.613 | 1.170 | 0.026 | 0.007 | 0.727 | |
>1000 USD | 0 b | 0 b | |||||||||
[Small household] | 0.708 | 0.462 | 0.126 | 0.820 | 5.020 | 0.150 | 0.338 | 0.657 | 0.599 | 2.256 | |
[Medium household] | 0 b | −0.023 | 0.331 | 0.945 | 0.511 | 1.869 | |||||
[Big household] | 0.361 | 0.614 | 0.557 | 0.430 | 4.785 | 0 b | |||||
[Age = 18–29] | 0.501 | 0.591 | 0.397 | 0.518 | 5.255 | 1.123 | 0.536 | 0.036 | 1.075 | 8.788 | |
[Age = 30–39] | 0.922 | 0.588 | 0.117 | 0.794 | 7.965 | 0.577 | 0.586 | 0.325 | 0.565 | 5.613 | |
[Age = 40–49] | 0.244 | 0.604 | 0.686 | 0.391 | 4.169 | ||||||
[Age = 50 and above] | 0 b | 0 b | |||||||||
Satisfied | Intercept | 1.018 | 0.340 | 0.003 | 1.285 | 1.127 | 0.254 | ||||
Male | 1.117 | 0.257 | 0.000 | 1.846 | 5.061 | 0.779 | 0.222 | 0.000 | 1.410 | 3.367 | |
Female | 0 b | 0 b | |||||||||
NIL | −0.192 | 1.186 | 0.871 | 0.081 | 8.436 | −1.168 | 0.420 | 0.005 | 0.137 | 0.708 | |
School | 1.768 | 0.711 | 0.013 | 1.455 | 23.594 | 1.380 | 0.380 | 0.000 | 1.886 | 8.377 | |
College | −0.051 | 0.474 | 0.915 | 0.375 | 2.409 | 0.813 | 0.298 | 0.006 | 1.258 | 4.046 | |
University | 0 b | 0 b | |||||||||
<200 USD | −0.684 | 0.498 | 0.169 | 0.190 | 1.339 | −2.250 | 1.077 | 0.037 | 0.013 | 0.870 | |
200–600 USD | 1.306 | 0.792 | 0.099 | 0.782 | 17.443 | −1.473 | 1.074 | 0.170 | 0.028 | 1.880 | |
601–1000 USD | −0.226 | 0.305 | 0.457 | 0.439 | 1.449 | −1.775 | 1.100 | 0.107 | 0.020 | 1.465 | |
>1000 USD | 0 b | 0 b | |||||||||
[Small household] | 0.182 | 0.302 | 0.546 | 0.664 | 2.166 | 0.319 | 0.283 | 0.259 | 0.790 | 2.394 | |
[Medium household] | 0 b | 0.046 | 0.272 | 0.866 | 0.615 | 1.783 | |||||
[Big household] | 0 b | ||||||||||
[Age = 18–29] | 0.153 | 0.426 | 0.720 | 0.505 | 2.685 | 0.408 | 0.376 | 0.277 | 0.720 | 3.143 | |
[Age = 30–39] | 0.302 | 0.392 | 0.440 | 0.628 | 2.914 | 0.200 | 0.427 | 0.639 | 0.529 | 2.820 | |
[Age = 40–49] | 0.371 | 0.399 | 0.352 | 0.663 | 3.164 | 0.398 | 0.428 | 0.353 | 0.643 | 3.447 | |
[Age = 50 and above] | 0 b | 0 b |
Observed | Guangzhou Predicted | Karachi Predicted | ||||||
---|---|---|---|---|---|---|---|---|
Very Satisfied | Satisfied | Dissatisfied | Percent Correct | Very Satisfied | Satisfied | Dissatisfied | Percent Correct | |
Very satisfied | 0 | 99 | 0 | 0.00 | 24 | 85 | 22 | 18.30 |
Satisfied | 0 | 618 | 0 | 100.00 | 19 | 246 | 32 | 82.80 |
Dissatisfied | 0 | 112 | 0 | 0.00 | 6 | 125 | 48 | 26.80 |
Overall percentage | 0.00% | 100.00% | 0.00% | 74.50 | 8.10% | 75.10% | 16.80% | 52.40 |
Effect | Model Fitting Criteria | Likelihood Ratio Tests | Model Fitting Criteria | Likelihood Ratio Tests | ||||
---|---|---|---|---|---|---|---|---|
−2 Log Likelihood of Reduced Model | Chi-Square | df | Sig. | −2 Log Likelihood of Reduced Model | Chi-Square | df | Sig. | |
Intercept | 340.964 | 37.693 | 2 | 0.000 | 340.964 | 37.693 | 2 | 0.000 |
Gender | 324.173 | 20.902 | 2 | 0.000 | 324.173 | 20.902 | 2 | 0.000 |
Education level | 314.178 | 10.907 | 2 | 0.004 | 314.178 | 10.907 | 2 | 0.004 |
Household income/month | 303.842 | 0.571 | 2 | 0.752 | 303.842 | 0.571 | 2 | 0.752 |
Household size | 305.747 | 2.476 | 2 | 0.290 | 305.747 | 2.476 | 2 | 0.290 |
Age | 303.482 | 0.211 | 2 | 0.900 | 303.482 | 0.211 | 2 | 0.900 |
Parameter Estimates for Guangzhou | Parameter Estimates for Karachi | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Public Awareness of Water Pollution Accidents a | B | Std. Error | Sig. | Exp(B) | 95% Confidence Interval for Exp(B) | B | Std. Error | Sig. | Exp(B) | 95% Confidence Interval for Exp(B) | |||
Lower Bound | Upper Bound | Lower Bound | Upper Bound | ||||||||||
Yes | Intercept | 2.071 | 0.321 | 0 | 18.97 | 0.589 | 0 | ||||||
Male | −0.698 | 0.177 | 0 | 0.498 | 0.352 | 0.705 | 0.743 | 0.278 | 0.007 | 2.103 | 1.221 | 3.624 | |
Female | 0 b | . | . | . | . | . | 0 b | . | . | . | . | . | |
NIL | −22.927 | 0 | . | 1.1 × 10−10 | 1.1 × 10−10 | 1.1 × 10−10 | −4.804 | 0.548 | 0 | 0.008 | 0.003 | 0.024 | |
School | −0.638 | 0.346 | 0.065 | 0.528 | 0.268 | 1.04 | −1.426 | 0.32 | 0 | 0.24 | 0.128 | 0.45 | |
College | −0.59 | 0.309 | 0.056 | 0.555 | 0.303 | 1.016 | −1.146 | 0.339 | 0.001 | 0.318 | 0.164 | 0.618 | |
University | 0 b | . | . | . | . | . | 0 b | . | . | . | . | . | |
<200 USD | −0.768 | 0.36 | 0.033 | 0.464 | 0.229 | 0.939 | −17.777 | 0.4 | 0 | 1.90 × 10−8 | 8.68 × 10−9 | 4.17 × 10−8 | |
200–600 USD | −0.764 | 0.385 | 0.047 | 0.466 | 0.219 | 0.991 | −17.183 | 0.44 | 0 | 3.45 × 10−8 | 1.46 × 10−8 | 8.16 × 10−8 | |
601–1000 USD | 0.451 | 0.26 | 0.083 | 1.569 | 0.942 | 2.615 | −17.163 | 0 | . | 3.52 × 10−8 | 3.52 × 10−8 | 3.52 × 10−8 | |
>1000 USD | 0 b | . | . | . | . | . | 0 b | . | . | . | . | . | |
[Small household] | −0.612 | 0.288 | 0.034 | 0.542 | 0.308 | 0.954 | −0.233 | 0.359 | 0.516 | 0.792 | 0.392 | 1.601 | |
[Medium household] | 0 b | . | . | . | . | . | −0.318 | 0.35 | 0.363 | 0.728 | 0.366 | 1.445 | |
[Big household] | 0 b | . | . | . | . | . | |||||||
[Age = 18–29] | −0.008 | 0.356 | 0.981 | 0.992 | 0.494 | 1.993 | 1.265 | 0.464 | 0.006 | 3.542 | 1.425 | 8.802 | |
[Age = 30–39] | 0.243 | 0.343 | 0.479 | 1.275 | 0.651 | 2.498 | 0.122 | 0.494 | 0.805 | 1.13 | 0.429 | 2.973 | |
[Age =40–49] | 0.06 | 0.343 | 0.862 | 1.061 | 0.542 | 2.077 | 0.744 | 0.532 | 0.162 | 2.104 | 0.742 | 5.97 | |
[Age = 50 and above] | 0 b | . | . | . | . | . | 0 b | . | . | . | . | . |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, I.; Hayat, W.; Gong, S.; Yang, X.; Lai, W.-F. A Comparative Analysis of Public Awareness Level about Drinking Water Quality in Guangzhou (China) and Karachi (Pakistan). Sustainability 2023, 15, 8408. https://doi.org/10.3390/su15108408
Hussain I, Hayat W, Gong S, Yang X, Lai W-F. A Comparative Analysis of Public Awareness Level about Drinking Water Quality in Guangzhou (China) and Karachi (Pakistan). Sustainability. 2023; 15(10):8408. https://doi.org/10.3390/su15108408
Chicago/Turabian StyleHussain, Imtiaz, Waseem Hayat, Siyuan Gong, Xiangjing Yang, and Wing-Fu Lai. 2023. "A Comparative Analysis of Public Awareness Level about Drinking Water Quality in Guangzhou (China) and Karachi (Pakistan)" Sustainability 15, no. 10: 8408. https://doi.org/10.3390/su15108408
APA StyleHussain, I., Hayat, W., Gong, S., Yang, X., & Lai, W. -F. (2023). A Comparative Analysis of Public Awareness Level about Drinking Water Quality in Guangzhou (China) and Karachi (Pakistan). Sustainability, 15(10), 8408. https://doi.org/10.3390/su15108408