A Meta-Learning-Based Train Dynamic Modeling Method for Accurately Predicting Speed and Position
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
1.3. Contributions
1.4. Scope and Assumptions
2. The GRU Network Based on the AM
2.1. GRU Networks
2.2. Attention Networks
2.3. Attention-Based GRU Networks
3. The Meta-Learner Design
3.1. Design of the Meta-Task
3.2. The AMGRU Network Based on the MAML Framework
Algorithm 1 The principle of meta-learning algorithm |
|
4. Experiment Results
4.1. Data Processing
4.2. Performance of the AMGRU Model
4.2.1. The AMGRU Model Parameters Selection
4.2.2. Comparison with Other Prediction Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yin, J.; Tang, T.; Yang, L.; Xun, J.; Huang, Y.; Gao, Z. Research and development of automatic train operation for railway transportation systems: A survey. Transp. Res. Part C Emerg. Technol. 2017, 85, 548–572. [Google Scholar] [CrossRef]
- Katrakazas, C.; Quddus, M.; Chen, W.H.; Deka, L. Real-time motion planning methods for autonomous on-road driving: State-of-the-art and future research directions. Transp. Res. Part C Emerg. Technol. 2015, 60, 416–442. [Google Scholar] [CrossRef]
- Wang, Z.L.; Yang, J.P.; Shi, K.; Xu, H.; Qiu, F.Q.; Yang, Y.B. Recent advances in researches on vehicle scanning method for bridges. Int. J. Struct. Stab. Dyn. 2022, 2230005. [Google Scholar] [CrossRef]
- Su, S.; She, J.; Li, K.; Wang, X.; Zhou, Y. A Nonlinear Safety Equilibrium Spacing-Based Model Predictive Control for Virtually Coupled Train Set Over Gradient Terrains. IEEE Trans. Transp. Electrif. 2022, 8, 2810–2824. [Google Scholar] [CrossRef]
- Wang, X.; Hu, M.; Wang, H.; Dong, H.; Ying, Z. Formation Control for Virtual Coupling Trains with Parametric Uncertainty and Unknown Disturbances. IEEE Trans. Circuits Syst. II Express Briefs, 2023; early access. [Google Scholar] [CrossRef]
- Chou, M.; Xia, X.; Kayser, C. Modelling and model validation of heavy-haul trains equipped with electronically controlled pneumatic brake systems. Control. Eng. Pract. 2007, 15, 501–509. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.; Tang, T.; Yang, L. Event-triggered predictive control for automatic train regulation and passenger flow in metro rail systems. IEEE Trans. Intell. Transp. Syst. 2020, 23, 1782–1795. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.; Tang, T. Robust efficient cruise control for heavy haul train via the state-dependent intermittent control. Nonlinear Anal. Hybrid Syst. 2020, 38, 100918. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.; Tang, T.; Wang, X.; Xun, J. Intelligent operation of heavy haul train with data imbalance: A machine learning method. Knowl.-Based Syst. 2019, 163, 36–50. [Google Scholar] [CrossRef]
- Bokare, P.S.; Maurya, A.K. Acceleration-deceleration behaviour of various vehicle types. Transp. Res. Procedia 2017, 25, 4733–4749. [Google Scholar] [CrossRef]
- Fadhloun, K.; Rakha, H.; Loulizi, A.; Abdelkefi, A. Vehicle dynamics model for estimating typical vehicle accelerations. Transp. Res. Rec. 2015, 2491, 61–71. [Google Scholar] [CrossRef]
- Wang, J.; Rakha, H.A. Longitudinal train dynamics model for a rail transit simulation system. Transp. Res. Part C Emerg. Technol. 2018, 86, 111–123. [Google Scholar] [CrossRef]
- Oprea, R.A.; Cruceanu, C.; Spiroiu, M.A. Alternative friction models for braking train dynamics. Veh. Syst. Dyn. 2013, 51, 460–480. [Google Scholar] [CrossRef]
- Wu, Q.; Cole, C.; Luo, S.; Spiryagin, M. A review of dynamics modelling of friction draft gear. Veh. Syst. Dyn. 2014, 52, 733–758. [Google Scholar] [CrossRef]
- Khmelnitsky, E. On an optimal control problem of train operation. IEEE Trans. Autom. Control. 2000, 45, 1257–1266. [Google Scholar] [CrossRef]
- Dong, H.R.; Gao, S.G.; Ning, B.; Li, L. Extended fuzzy logic controller for high speed train. Neural Comput. Appl. 2013, 22, 321–328. [Google Scholar] [CrossRef]
- Wang, X.; Su, S.; Cao, Y.; Qin, L.; Liu, W. Robust Cruise Control for the Heavy Haul Train Subject to Disturbance and Actuator Saturation. IEEE Trans. Intell. Transp. Syst. 2023; early access. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, Z.; Cheng, F.; Su, S. Trajectory optimization for high-speed trains via a mixed integer linear programming approach. IEEE Trans. Intell. Transp. Syst. 2022, 23, 17666–17676. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y.; Su, S.; Xun, J.; Tang, T. An analytical optimal control approach for virtually coupled high-speed trains with local and string stability. Transp. Res. Part C Emerg. Technol. 2021, 125, 102886. [Google Scholar] [CrossRef]
- Wang, X.; Su, S.; Cao, Y.; Wang, X. Robust control for dynamic train regulation in fully automatic operation system under uncertain wireless transmissions. IEEE Trans. Intell. Transp. Syst. 2022, 23, 20721–20734. [Google Scholar] [CrossRef]
- Liu, X.; Xun, J.; Ning, B.; Wang, C. Braking process identification of high-speed trains for automatic train stop control. ISA Trans. 2021, 111, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Ai, Y.; Li, Z.; Gan, M.; Zhang, Y.; Yu, D.; Chen, W.; Ju, Y. A deep learning approach on short-term spatiotemporal distribution forecasting of dockless bike-sharing system. Neural Comput. Appl. 2019, 31, 1665–1677. [Google Scholar] [CrossRef]
- Li, J.; Dai, Q.; Ye, R. A novel double incremental learning algorithm for time series prediction. Neural Comput. Appl. 2019, 31, 6055–6077. [Google Scholar] [CrossRef]
- Zheng, J.; Fu, X.; Zhang, G. Research on exchange rate forecasting based on deep belief network. Neural Comput. Appl. 2019, 31, 573–582. [Google Scholar] [CrossRef]
- Zou, W.; Xia, Y. Back propagation bidirectional extreme learning machine for traffic flow time series prediction. Neural Comput. Appl. 2019, 31, 7401–7414. [Google Scholar] [CrossRef]
- Su, S.; Qu, J.; Cao, Y.; Li, R.; Wang, G. Adversarial training lattice lstm for named entity recognition of rail fault texts. IEEE Trans. Intell. Transp. Syst. 2022, 23, 21201–21215. [Google Scholar] [CrossRef]
- Su, S.; Liu, W.; Zhu, Q.; Li, R.; Tang, T.; Lv, J. A cooperative collision-avoidance control methodology for virtual coupling trains. Accid. Anal. Prev. 2022, 173, 106703. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Chen, D.; Yin, J.; Chen, L. Data-driven train operation models based on data mining and driving experience for the diesel-electric locomotive. Adv. Eng. Inform. 2016, 30, 553–563. [Google Scholar] [CrossRef]
- Yin, J.; Su, S.; Xun, J.; Tang, T.; Liu, R. Data-driven approaches for modeling train control models: Comparison and case studies. ISA Trans. 2020, 98, 349–363. [Google Scholar] [CrossRef]
- Li, Z.; Tang, T.; Gao, C. Long short-term memory neural network applied to train dynamic model and speed prediction. Algorithms 2019, 12, 173. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.; Cao, Y.; Xin, T.; Yang, L. Dynamic speed trajectory generation and tracking control for autonomous driving of intelligent high-speed trains combining with deep learning and backstepping control methods. Eng. Appl. Artif. Intell. 2022, 115, 105230. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Dulebenets, M.A. An Adaptive Polyploid Memetic Algorithm for scheduling trucks at a cross-docking terminal. Inf. Sci. 2021, 565, 390–421. [Google Scholar] [CrossRef]
- Ning, F.; Jiang, G.; Lam, S.K.; Ou, C.; He, P.; Sun, Y. Passenger-centric vehicle routing for first-mile transportation considering request uncertainty. Inf. Sci. 2021, 570, 241–261. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, D.; Yan, R.; Mao, K.; Shen, F.; Wang, J. Machine health monitoring using local feature-based gated recurrent unit networks. IEEE Trans. Ind. Electron. 2017, 65, 1539–1548. [Google Scholar] [CrossRef]
- Wang, Y.; Liao, W.; Chang, Y. Gated recurrent unit network-based short-term photovoltaic forecasting. Energies 2018, 11, 2163. [Google Scholar] [CrossRef]
- Minh, D.L.; Sadeghi-Niaraki, A.; Huy, H.D.; Min, K.; Moon, H. Deep learning approach for short-term stock trends prediction based on two-stream gated recurrent unit network. IEEE Access 2018, 6, 55392–55404. [Google Scholar] [CrossRef]
- Yang, Z.B.; Zhang, J.P.; Zhao, Z.B.; Zhai, Z.; Chen, X.F. Interpreting network knowledge with attention mechanism for bearing fault diagnosis. Appl. Soft Comput. 2020, 97, 106829. [Google Scholar] [CrossRef]
- Ran, X.; Shan, Z.; Fang, Y.; Lin, C. An LSTM-based method with attention mechanism for travel time prediction. Sensors 2019, 19, 861. [Google Scholar] [CrossRef]
- Alshehri, H.A.; Junath, N.; Panwar, P.; Shukla, K.; Rahin, S.A.; Martin, R.J. Self-Attention-Based Edge Computing Model for Synthesis Image to Text through Next-Generation AI Mechanism. Math. Probl. Eng. 2022, 2022, 4973535. [Google Scholar] [CrossRef]
- Sun, X.; Wang, B.; Wang, Z.; Li, H.; Li, H.; Fu, K. Research progress on few-shot learning for remote sensing image interpretation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2387–2402. [Google Scholar] [CrossRef]
- Schweighofer, N.; Doya, K. Meta-learning in reinforcement learning. Neural Netw. 2003, 16, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Snell, J.; Swersky, K.; Zemel, R. Prototypical networks for few-shot learning. Adv. Neural Inf. Process. Syst. 2017, 30, 4080–4090. [Google Scholar]
- Vinyals, O.; Blundell, C.; Lillicrap, T.; Wierstra, D. Matching networks for one shot learning. Adv. Neural Inf. Process. Syst. 2016, 29, 3630–3638. [Google Scholar]
- Ravi, S.; Larochelle, H. Optimization as a Model for Few-Shot Learning. 2016. Available online: https://openreview.net/forum?id=rJY0-Kcll (accessed on 4 May 2016).
- Bengio, S.; Bengio, Y.; Cloutier, J.; Gescei, J. On the optimization of a synaptic learning rule. In Optimality in Biological and Artificial Networks; Routledge: London, UK, 2013; pp. 281–303. [Google Scholar]
- Andrychowicz, M.; Denil, M.; Colmenarejo, S.G.; Hoffman, M.W.; Pfau, D.; Schaul, T.; Shillingford, B.; de Freitas, N. Learning to learn by gradient descent by gradient descent. Adv. Neural Inf. Process. Syst. 2016, 29, 3988–3996. [Google Scholar]
- Weiss, K.; Khoshgoftaar, T.M.; Wang, D.D. A survey of transfer learning. J. Big Data 2016, 3, 1–40. [Google Scholar] [CrossRef]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A comprehensive survey on transfer learning. Proc. IEEE 2020, 109, 43–76. [Google Scholar] [CrossRef]
- Ma, X.; Tao, Z.; Wang, Y.; Yu, H.; Wang, Y. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transp. Res. Part C Emerg. Technol. 2015, 54, 187–197. [Google Scholar] [CrossRef]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar]
- Fu, R.; Zhang, Z.; Li, L. Using LSTM and GRU neural network methods for traffic flow prediction. In Proceedings of the 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), Wuhan, China, 1–13 November 2016; pp. 324–328. [Google Scholar]
- Dey, R.; Salem, F.M. Gate-variants of gated recurrent unit (GRU) neural networks. In Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA, 6–9 August 2017; pp. 1597–1600. [Google Scholar]
- Luong, M.T.; Pham, H.; Manning, C.D. Effective approaches to attention-based neural machine translation. arXiv 2015, arXiv:1508.04025. [Google Scholar]
- Mnih, V.; Heess, N.; Graves, A. Recurrent models of visual attention. Adv. Neural Inf. Process. Syst. 2014, 27, 2204–2212. [Google Scholar]
- Liu, G.; Guo, J. Bidirectional LSTM with attention mechanism and convolutional layer for text classification. Neurocomputing 2019, 337, 325–338. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Adv. Neural Inf. Process. Syst. 2015, 28, 802–810. [Google Scholar]
- Wang, X.; Xin, T.; Wang, H.; Zhu, L.; Cui, D. A generative adversarial network based learning approach to the autonomous decision making of high-speed trains. IEEE Trans. Veh. Technol. 2022, 71, 2399–2412. [Google Scholar] [CrossRef]
- Liu, W.; Su, S.; Tang, T.; Cao, Y. Study on longitudinal dynamics of heavy haul trains running on long and steep downhills. Veh. Syst. Dyn. 2022, 60, 4079–4097. [Google Scholar] [CrossRef]
Purpose | Input | |
---|---|---|
Machine Learning | Find the function f. | Training data |
Meta Learning | Find the function F. F can output a function f that can be used for a new task. | Training tasks and their corresponding data |
Time Unit | Distance (km) | Speed (km/h) | Cylinder Pressure | Speed Limit (km/h) | Motor Speed | Curvature | Gradient | Weight | Up/ Down |
---|---|---|---|---|---|---|---|---|---|
0 | 0 | 7 | 600 | 45 | 500 | 0 | 1.5 | 11,600 | 1 |
1 | 0.094 | 7 | 600 | 45 | 500 | 0 | 1.5 | 11,600 | 1 |
2 | 0.136 | 7 | 600 | 45 | 500 | 0 | 1.5 | 11,600 | 1 |
259 | 151.32 | 60 | 600 | 45 | −420 | 0 | −5 | 11,600 | 1 |
260 | 151.48 | 60 | 600 | 45 | −420 | 0 | −5 | 11,600 | 1 |
261 | 157.85 | 60 | 600 | 45 | −420 | 800 | −5 | 11,600 | 1 |
933 | 408.273 | 2 | 550 | 800 | −8.9 | 70 | −40 | 11,600 | 1 |
3934 | 408.274 | 2 | 550 | 800 | −8.9 | 70 | 0 | 11,600 | 1 |
3935 | 408.276 | 0 | 550 | 800 | −8.9 | 70 | 0 | 11,600 | 1 |
Depth | MAE | RMSE | |
---|---|---|---|
One-layer | 0.747 ± 0.0231 | 0.959 ± 0.0173 | 0.779 ± 0.0843 |
Two-layer | 0.683 ± 0.0018 | 0.947 ± 0.0002 | 0.847 ± 0.0701 |
Three-layer | 0.695 ± 0.0513 | 0.975 ± 0.0407 | 0.831 ± 0.0731 |
Four-layer | 0.704 ± 0.1052 | 1.017 ± 0.0579 | 0.822 ± 0.0937 |
Step Size | MAE | RMSE | |
---|---|---|---|
22 | 0.702 ± 0.1137 | 0.910 ± 0.1028 | 0.854 ± 0.0873 |
20 | 0.701 ± 0.1241 | 0.901 ± 0.1485 | 0.833 ± 0.0240 |
18 | 0.695 ± 0.1129 | 0.924 ± 0.1174 | 0.798 ± 0.0507 |
16 | 0.681 ± 0.1322 | 0.914 ± 0.1478 | 0.785 ± 0.0699 |
14 | 0.929 ± 0.1247 | 1.217 ± 0.1317 | 0.831 ± 0.0398 |
12 | 0.615 ± 0.0821 | 0.874 ± 0.0907 | 0.865 ± 0.0122 |
10 | 0.741 ± 0.1425 | 0.955 ± 0.1604 | 0.849 ± 0.0398 |
8 | 1.154 ± 0.1333 | 1.352 ± 0.1542 | 0.841 ± 0.0529 |
6 | 0.739 ± 0.1268 | 0.935 ± 0.1209 | 0.827 ± 0.0155 |
4 | 1.476 ± 0.1221 | 1.643 ± 0.1325 | 0.795 ± 0.0347 |
Model | Numerical Data | MAE | RMSE | |
---|---|---|---|---|
Model 1 | RNN(128,32) | 1.902 ± 0.1329 | 2.203 ± 0.1497 | 0.718 ± 0.0449 |
Model 2 | RNN(128,32) + AM | 1.870 ± 0.1024 | 2.050 ± 0.1218 | 0.823 ± 0.0781 |
Model 3 | LSTM(128,32) | 1.871 ± 0.1157 | 2.173 ± 0.1409 | 0.727 ± 0.0643 |
Model 4 | LSTM(128,32) + AM | 0.622 ± 0.0947 | 0.901 ± 0.0898 | 0.831 ± 0.0732 |
Model 5 | GRU(128,32) | 1.964 ± 0.1047 | 2.131 ± 0.1421 | 0.743 ± 0.0296 |
Model 6 | GRU(128,32) + AM | 0.615 ± 0.0983 | 0.874 ± 0.0769 | 0.865 ± 0.0107 |
Model 7 | Model 6 + MAML | 0.523 ± 0.0591 | 0.759 ± 0.0694 | 0.913 ± 0.0057 |
Model 8 | Classical dynamics | 3.432 ± 0.1277 | 4.0131 ± 0.2964 | 0.634 ± 0.2071 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Wang, X.; Zhu, L.; Wang, H.; Wang, X. A Meta-Learning-Based Train Dynamic Modeling Method for Accurately Predicting Speed and Position. Sustainability 2023, 15, 8731. https://doi.org/10.3390/su15118731
Cao Y, Wang X, Zhu L, Wang H, Wang X. A Meta-Learning-Based Train Dynamic Modeling Method for Accurately Predicting Speed and Position. Sustainability. 2023; 15(11):8731. https://doi.org/10.3390/su15118731
Chicago/Turabian StyleCao, Ying, Xi Wang, Li Zhu, Hongwei Wang, and Xiaoning Wang. 2023. "A Meta-Learning-Based Train Dynamic Modeling Method for Accurately Predicting Speed and Position" Sustainability 15, no. 11: 8731. https://doi.org/10.3390/su15118731
APA StyleCao, Y., Wang, X., Zhu, L., Wang, H., & Wang, X. (2023). A Meta-Learning-Based Train Dynamic Modeling Method for Accurately Predicting Speed and Position. Sustainability, 15(11), 8731. https://doi.org/10.3390/su15118731