Sustainable Power Grid Expansion: Life Cycle Assessment, Modeling Approaches, Challenges, and Opportunities
Abstract
:1. Introduction
2. Modeling Sustainability through LCA
3. LCA for Power Systems
3.1. Case Studies
3.1.1. Impacts of Power Generation Technologies
3.1.2. Temporal Variations of the Generation Mix
3.1.3. Spatial Distribution of the Generation Mix
3.1.4. Electricity Import and Export
3.1.5. Material Consumption
3.1.6. Power Losses
3.1.7. Power Distribution Systems
3.2. General Findings
3.3. Challenges and Limitations
4. Sustainable Power Grids: Capacity Expansion Models
5. Discussion
5.1. Shortcomings of Existing Grid Expansion Planning Models
5.2. Shortcomings of LCA
5.3. Future Research Opportunities
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- U.S. Energy Information Administration. International Energy Outlook. 2021. Available online: https://www.eia.gov/outlooks/ieo/pdf/IEO2021_Narrative.pdf (accessed on 29 April 2023).
- International Energy Agency. The Future of Cooling–Opportunities for Energy-Efficient Air Conditioning. May 2018. Available online: https://www.iea.org/reports/the-future-of-cooling (accessed on 29 April 2023).
- International Energy Agency. Global EV Outlook 2020. 2020. Available online: https://www.iea.org/reports/global-ev-outlook-2020 (accessed on 1 May 2023).
- Meza, J.L.C.; Yildirim, M.B.; Masud, A.S.M. A Model for the Multiperiod Multiobjective Power Generation Expansion Problem. IEEE Trans. Power Syst. 2007, 22, 871–878. [Google Scholar] [CrossRef]
- Arabali, A.; Ghofrani, M.; Etezadi-Amoli, M.; Fadali, M.S.; Moeini-Aghtaie, M. A Multi-Objective Transmission Expansion Planning Framework in Deregulated Power Systems With Wind Generation. IEEE Trans. Power Syst. 2014, 29, 3003–3011. [Google Scholar] [CrossRef]
- Sepasian, M.S.; Seifi, H.; Foroud, A.A.; Hatami, A.R. A Multiyear Security Constrained Hybrid Generation-Transmission Expansion Planning Algorithm Including Fuel Supply Costs. IEEE Trans. Power Syst. 2009, 24, 1609–1618. [Google Scholar] [CrossRef]
- Baringo, L.; Baringo, A. A Stochastic Adaptive Robust Optimization Approach for the Generation and Transmission Expansion Planning. IEEE Trans. Power Syst. 2018, 33, 792–802. [Google Scholar] [CrossRef]
- Pozo, D.; Sauma, E.E.; Contreras, J. A Three-Level Static MILP Model for Generation and Transmission Expansion Planning. IEEE Trans. Power Syst. 2012, 28, 202–210. [Google Scholar] [CrossRef]
- Yao, F.; Chau, T.K.; Zhang, X.; Iu, H.H.-C.; Fernando, T. An Integrated Transmission Expansion and Sectionalizing-Based Black Start Allocation of BESS Planning Strategy for Enhanced Power Grid Resilience. IEEE Access 2020, 8, 148968–148979. [Google Scholar] [CrossRef]
- Gu, Y.; McCalley, J.D.; Ni, M. Coordinating Large-Scale Wind Integration and Transmission Planning. IEEE Trans. Sustain. Energy 2012, 3, 652–659. [Google Scholar] [CrossRef]
- Khodaei, A.; Shahidehpour, M.; Wu, L.; Li, Z. Coordination of Short-Term Operation Constraints in Multi-Area Expansion Planning. IEEE Trans. Power Syst. 2012, 27, 2242–2250. [Google Scholar] [CrossRef]
- Aghaei, J.; Amjady, N.; Baharvandi, A.; Akbari, M.-A. Generation and Transmission Expansion Planning: MILP–Based Probabilistic Model. IEEE Trans. Power Syst. 2014, 29, 1592–1601. [Google Scholar] [CrossRef]
- Yin, S.; Wang, J. Generation and Transmission Expansion Planning Towards a 100% Renewable Future. IEEE Trans. Power Syst. 2020, 37, 3274–3285. [Google Scholar] [CrossRef]
- López, J.Á.; Ponnambalam, K.; Quintana, V.H. Generation and Transmission Expansion Under Risk Using Stochastic Programming. IEEE Trans. Power Syst. 2007, 22, 1369–1378. [Google Scholar] [CrossRef]
- Munoz-Delgado, G.; Contreras, J.; Arroyo, J.M.; de la Nieta, A.S.; Gibescu, M. Integrated Transmission and Distribution System Expansion Planning Under Uncertainty. IEEE Trans. Smart Grid 2021, 12, 4113–4125. [Google Scholar] [CrossRef]
- Mavalizadeh, H.; Ahmadi, A.; Gandoman, F.H.; Siano, P.; Shayanfar, H.A. Multiobjective Robust Power System Expansion Planning Considering Generation Units Retirement. IEEE Syst. J. 2017, 12, 2664–2675. [Google Scholar] [CrossRef]
- Moreira, A.; Pozo, D.; Street, A.; Sauma, E. Reliable Renewable Generation and Transmission Expansion Planning: Co-Optimizing System’s Resources for Meeting Renewable Targets. IEEE Trans. Power Syst. 2016, 32, 3246–3257. [Google Scholar] [CrossRef]
- Hong, S.; Cheng, H.; Zeng, P. N-K Constrained Composite Generation and Transmission Expansion Planning With Interval Load. IEEE Access 2017, 5, 2779–2789. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Liu, F.; Ye, H.; Zhang, X.; Mei, S.; Chang, N. Robust Coordinated Transmission and Generation Expansion Planning Considering Ramping Requirements and Construction Periods. IEEE Trans. Power Syst. 2017, 33, 268–280. [Google Scholar] [CrossRef]
- Shu, J.; Wu, L.; Zhang, L.; Han, B. Spatial Power Network Expansion Planning Considering Generation Expansion. IEEE Trans. Power Syst. 2014, 30, 1815–1824. [Google Scholar] [CrossRef]
- Romero, N.R.; Nozick, L.K.; Dobson, I.D.; Xu, N.; Jones, D.A. Transmission and Generation Expansion to Mitigate Seismic Risk. IEEE Trans. Power Syst. 2013, 28, 3692–3701. [Google Scholar] [CrossRef]
- The 17 Sustainable Development Goals. United Nations. Available online: https://sdgs.un.org/goals (accessed on 19 March 2023).
- Finkbeiner, M.; Inaba, A.; Tan, R.; Christiansen, K.; Klüppel, H.-J. The New International Standards for Life Cycle Assessment: ISO 14040 and ISO 14044. Int. J. Life Cycle Assess. 2006, 11, 80–85. [Google Scholar] [CrossRef]
- Simonen, K. Life Cycle Assessment; Routledge: New York, NY, USA, 2014. [Google Scholar]
- Available online: https://www.openlca.org/wp-content/uploads/2016/08/LCIA-METHODS-v.1.5.5.pdf (accessed on 1 May 2023).
- Available online: https://eplca.jrc.ec.europa.eu/permalink/TR_SupportingCF_FINAL.pdf (accessed on 1 May 2023).
- Available online: https://ecoinvent.org/the-ecoinvent-database/impact-assessment/#1661420407082-d772df7f-246716614291937081661429832917 (accessed on 1 May 2023).
- Available online: https://quantis.com/pdf/IMPACT2002_UserGuide_for_vQ2.21.pdf (accessed on 1 May 2023).
- Available online: https://www.impactworldplus.org/en/methodology.php (accessed on 1 May 2023).
- Available online: https://pre-sustainability.com/articles/recipe/ (accessed on 1 May 2023).
- Available online: https://www.epa.gov/chemical-research/tool-reduction-and-assessment-chemicals-and-other-environmental-impacts-traci (accessed on 1 May 2023).
- Available online: https://usetox.org/ (accessed on 1 May 2023).
- Garcia, R.; Marques, P.; Freire, F. Life-cycle assessment of electricity in Portugal. Appl. Energy 2014, 134, 563–572. [Google Scholar] [CrossRef]
- Navarro-Pineda, F.S.; Handler, R.; Sacramento-Rivero, J.C. Potential effects of the Mexican energy reform on life cycle impacts of electricity generation in Mexico and the Yucatan region. J. Clean. Prod. 2017, 164, 1016–1025. [Google Scholar] [CrossRef]
- Ding, N.; Liu, J.; Yang, J.; Yang, D. Comparative life cycle assessment of regional electricity supplies in China. Resour. Conserv. Recycl. 2017, 119, 47–59. [Google Scholar] [CrossRef]
- Nugroho, R.; Hanafi, J.; Shobatake, K.; Chun, Y.-Y.; Tahara, K.; Purwanto, W.W. Life cycle inventories and life cycle assessment for an electricity grid network: Case study of the Jamali grid, Indonesia. Int. J. Life Cycle Assess. 2022, 27, 1081–1091. [Google Scholar] [CrossRef]
- Lee, K.-M.; Lee, S.-Y.; Hur, T. Life cycle inventory analysis for electricity in Korea. Energy 2004, 29, 87–101. [Google Scholar] [CrossRef]
- Messagie, M.; Mertens, J.; Oliveira, L.; Rangaraju, S.; Sanfelix, J.; Coosemans, T.; Van Mierlo, J.; Macharis, C. The hourly life cycle carbon footprint of electricity generation in Belgium, bringing a temporal resolution in life cycle assessment. Appl. Energy. 2014, 134, 469–476. [Google Scholar] [CrossRef]
- García-Gusano, D.; Garraín, D.; Dufour, J. Prospective life cycle assessment of the Spanish electricity production. Renew. Sustain. Energy Rev. 2016, 75, 21–34. [Google Scholar] [CrossRef]
- Raugei, M.; Kamran, M.; Hutchinson, A. A Prospective Net Energy and Environmental Life-Cycle Assessment of the UK Electricity Grid. Energies 2020, 13, 2207. [Google Scholar] [CrossRef]
- Buyle, M.; Anthonissen, J.; Van den Bergh, W.; Braet, J.; Audenaert, A. Analysis of the Belgian electricity mix used in environmental life cycle assessment studies: How reliable is the ecoinvent 3.1 mix? Energy Effic. 2019, 12, 1105–1121. [Google Scholar] [CrossRef]
- Marriott, J.; Matthews, H.S.; Hendrickson, C. Impact of Power Generation Mix on Life Cycle Assessment and Carbon Footprint Greenhouse Gas Results. J. Ind. Ecol. 2010, 14, 919–928. [Google Scholar] [CrossRef]
- Lund, H.; Mathiesen, B.V.; Christensen, P.; Schmidt, J.H. Energy system analysis of marginal electricity supply in consequential LCA. Int. J. Life Cycle Assess. 2010, 15, 260–271. [Google Scholar] [CrossRef]
- Walzberg, J.; Dandres, T.; Merveille, N.; Cheriet, M.; Samson, R. Accounting for fluctuating demand in the life cycle assess-ments of residential electricity consumption and demand-side management strategies. J. Clean. Prod. 2019, 240, 118251. [Google Scholar] [CrossRef]
- Ben Amor, M.; Gaudreault, C.; Pineau, P.-O.; Samson, R. Implications of integrating electricity supply dynamics into life cycle assessment: A case study of renewable distributed generation. Renew. Energy 2014, 69, 410–419. [Google Scholar] [CrossRef]
- Spork, C.C.; Chavez, A.; Durany, X.G.; Patel, M.K.; Méndez, G.V. Increasing Precision in Greenhouse Gas Accounting Using Real-Time Emission Factors. J. Ind. Ecol. 2014, 19, 380–390. [Google Scholar] [CrossRef]
- Vuarnoz, D.; Jusselme, T. Temporal variations in the primary energy use and greenhouse gas emissions of electricity provided by the Swiss grid. Energy 2018, 161, 573–582. [Google Scholar] [CrossRef]
- Kiss, B.; Kácsor, E.; Szalay, Z. Environmental assessment of future electricity mix–Linking an hourly economic model with LCA. J. Clean. Prod. 2020, 264, 121536. [Google Scholar] [CrossRef]
- Elzein, H.; Dandres, T.; Levasseur, A.; Samson, R. How can an optimized life cycle assessment method help evaluate the use phase of energy storage systems? J. Clean. Prod. 2019, 209, 1624–1636. [Google Scholar] [CrossRef]
- Colett, J.S.; Kelly, J.C.; Keoleian, G.A. Using Nested Average Electricity Allocation Protocols to Characterize Electrical Grids in Life Cycle Assessment. J. Ind. Ecol. 2015, 20, 29–41. [Google Scholar] [CrossRef]
- Deetman, S.; de Boer, H.S.; Van Engelenburg, M.; van der Voet, E.; van Vuuren, D.P. Projected material requirements for the global electricity infrastructure generation, transmission and storage. Resour. Conserv. Recycl. 2021, 164, 1052000. [Google Scholar] [CrossRef]
- Arvesen, A.; Nes, R.N.; Huertas-Hernando, D.; Hertwich, E.G. Life cycle assessment of an offshore grid interconnecting wind farms and customers across the North Sea. Int. J. Life Cycle Assess. 2014, 19, 826–837. [Google Scholar] [CrossRef]
- Jorge, R.S.; Hertwich, E.G. Grid infrastructure for renewable power in Europe: The environmental cost. Energy 2014, 69, 760–768. [Google Scholar] [CrossRef]
- Harrison, G.P.; Maclean, E.J.; Karamanlis, S.; Ochoa, L.F. Life cycle assessment of the transmission network in Great Britain. Energy Policy 2010, 38, 3622–3631. [Google Scholar] [CrossRef]
- Arvesen, A.; Hauan, I.B.; Bolsøy, B.M.; Hertwich, E.G. Life cycle assessment of transport of electricity via different voltage levels: A case study for Nord-Trøndelag county in Norway. Appl. Energy 2015, 157, 144–151. [Google Scholar] [CrossRef]
- Jorge, R.S.; Hawkins, T.R.; Hertwich, E. Life cycle assessment of electricity transmission and distribution—Part 1: Power lines and cables. Int. J. Life Cycle Assess. 2011, 17, 9–15. [Google Scholar] [CrossRef]
- Jorge, R.S.; Hertwich, E. Environmental evaluation of power transmission in Norway. Appl. Energy 2013, 101, 513–520. [Google Scholar] [CrossRef]
- Kim, H.; Holme, P. Network Theory Integrated Life Cycle Assessment for an Electric Power System. Sustainability 2015, 7, 10961–10975. [Google Scholar] [CrossRef]
- Jones, C.; Gilbert, P.; Raugei, M.; Mander, S.; Leccisi, E. An approach to prospective consequential life cycle assessment and net energy analysis of distributed electricity generation. Energy Policy 2017, 100, 350–358. [Google Scholar] [CrossRef]
- Bumby, S.; Druzhinina, E.; Feraldi, R.; Werthmann, D.; Geyer, R.; Sahl, J. Life Cycle Assessment of Overhead and Underground Primary Power Distribution. Environ. Sci. Technol. 2010, 44, 5587–5593. [Google Scholar] [CrossRef]
- Turconi, R.; Simonsen, C.G.; Byriel, I.P.; Astrup, T. Life cycle assessment of the Danish electricity distribution network. Int. J. Life Cycle Assess. 2013, 19, 100–108. [Google Scholar] [CrossRef]
- Jorge, R.S.; Hawkins, T.R.; Hertwich, E.G. Life cycle assessment of electricity transmission and distribution—Part 2: Trans-formers and substation equipment. Int. J. Life Cycle Assess. 2012, 17, 184–191. [Google Scholar] [CrossRef]
- Tumiran; Sarjiya; Putranto, L.M.; Putra, E.N.; Budi, R.F.S.; Nugraha, C.F. Generation and Transmission Expansion Planning in Remote Areas by considering Renewable Energy Policy and Local Energy Resources: The Case Study of Jayapura Power System. In Proceedings of the 2021 3rd International Conference on High Voltage Engineering and Power Systems (ICHVEPS), Bandung, Indonesia, 5–6 October 2021; pp. 143–148. [Google Scholar] [CrossRef]
- Soimakallio, S.; Kiviluoma, J.; Saikku, L. The complexity and challenges of determining GHG (greenhouse gas) emissions from grid electricity consumption and conservation in LCA (life cycle assessment)–A methodological review. Energy 2011, 36, 6705–6713. [Google Scholar] [CrossRef]
- Munné-Collado, I.; Aprà, F.M.; Olivella-Rosell, P.; Villafáfila-Robles, R. The Potential Role of Flexibility During Peak Hours on Greenhouse Gas Emissions: A Life Cycle Assessment of Five Targeted National Electricity Grid Mixes. Energies 2019, 12, 4443. [Google Scholar] [CrossRef]
- Masanet, E.; Chang, Y.; Gopal, A.R.; Larsen, P.; Morrow, W.R.; Sathre, R.; Shehabi, A.; Zhai, P. Life-Cycle Assessment of Electric Power Systems. Annu. Rev. Environ. Resour. 2013, 38, 107–136. [Google Scholar] [CrossRef]
- Garvin Heath. Life Cycle Assessment Harmonization. Energy Analysis. 2013. Available online: https://www.nrel.gov/analysis/life-cycle-assessment.html (accessed on 1 May 2023).
- Frischknecht, R.; Stucki, M. Scope-dependent modelling of electricity supply in life cycle assessments. Int. J. Life Cycle Assess. 2010, 15, 806–816. [Google Scholar] [CrossRef]
- Weber, C.L.; Jaramillo, P.; Marriott, J.; Samaras, C. Uncertainty and variability in accounting for grid electricity in life cycle assessment. In Proceedings of the 2009 IEEE International Symposium on Sustainable Systems and Technology, Tempe, AZ, USA, 18–20 May 2009; pp. 1–8. [Google Scholar] [CrossRef]
- Turconi, R.; Tonini, D.; Nielsen, C.F.; Simonsen, C.G.; Astrup, T. Environmental impacts of future low-carbon electricity systems: Detailed life cycle assessment of a Danish case study. Appl. Energy 2014, 132, 66–73. [Google Scholar] [CrossRef]
- Louis, J.-N.; Allard, S.; Debusschere, V.; Mima, S.; Tran-Quoc, T.; Hadjsaid, N. Environmental impact indicators for the electricity mix and network development planning towards 2050–A POLES and EUTGRID model. Energy 2018, 163, 618–628. [Google Scholar] [CrossRef]
- Ding, N.; Pan, J.; Liu, J.; Yang, J. An optimization method for energy structures based on life cycle assessment and its ap-plication to the power grid in China. J. Environ. Manag. 2019, 238, 18–24. [Google Scholar] [CrossRef]
- Obushevs, A.; Oleinikova, I. Transmission expansion planning considering wholesale electricity market and integration of renewable generation. In Proceedings of the 11th International Conference on the European Energy Market (EEM14), Krakow, Poland, 28–30 May 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, Y.; Xiao, Y.; Xie, H. Coordinated Planning of Renewable Energy and Grid Expansion Based on Scenario Trees. In Proceedings of the 2020 IEEE Sustainable Power and Energy Conference (iSPEC), Chengdu, China, 23–25 November 2020; pp. 485–490. [Google Scholar] [CrossRef]
- Papaemmanouil, A.; Andersson, G. Coordinated expansion planning based on a cost benefit analysis. In Proceedings of the 2009 6th International Conference on the European Energy Market, Leuven, Belgium, 27–29 May 2009; pp. 1–6. [Google Scholar] [CrossRef]
- Bent, R.; Toole, G.L. Grid expansion planning for carbon emissions reduction. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–8. [Google Scholar] [CrossRef]
- Lei, J.; Xin, H.; Xie, J.; Gan, D. Optimization of distributed energy systems taking into account energy saving and emission reduction. In Proceedings of the 2009 International Conference on Sustainable Power Generation and Supply, Nanjing, China, 6–7 April 2009; pp. 1–6. [Google Scholar] [CrossRef]
- Parizy, E.S.; Choi, S.; Bahrami, H.R. Grid-Specific Co-Optimization of Incentive for Generation Planning in Power Systems With Renewable Energy Sources. IEEE Trans. Sustain. Energy 2019, 11, 947–957. [Google Scholar] [CrossRef]
- Özalay, B.; Müller, C.; Raths, S.; Schettler, A. Analysis of Future Power Generation Structures with a Multi-Period, Multi-Objective Expansion Model. In Proceedings of the 2014 49th International Universities Power Engineering Conference (UPEC), Cluj-Napoca, Romania, 2–5 September 2014. [Google Scholar]
- Akbarzade, H.; Amraee, T. A Model for Generation Expansion Planning in Power Systems Considering Emission Costs. In Proceedings of the 2018 Smart Grid Conference (SGC), Sanandaj, Iran, 28–29 November 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Saboori, H.; Hemmati, R. Considering Carbon Capture and Storage in Electricity Generation Expansion Planning. IEEE Trans. Sustain. Energy 2016, 7, 1371–1378. [Google Scholar] [CrossRef]
- Das, I.; Bhattacharya, K.; Canizares, C. Optimal Incentive Design for Targeted Penetration of Renewable Energy Sources. IEEE Trans. Sustain. Energy 2014, 5, 1213–1225. [Google Scholar] [CrossRef]
- Nagothu, K.S.; Arroju, M.; Maheswarapu, S. A novel approach to sustainable Power System Expansion planning with inclusion of Renewable Energy. In Proceedings of the 2013 IEEE 7th International Power Engineering and Optimization Conference (PEOCO), Langkawi, Malaysia, 3–4 June 2013; pp. 535–539. [Google Scholar] [CrossRef]
- Muthahhari, A.A.; Putranto, L.M.; Sarjiya; Tumiran; Anugerah, F.S.; Priyanto, A.; Isnandar, S.; Savitri, I. Environmental Considerations in Long-Term Generation Expansion Planning with Emission Limitations: An Analysis of the Sulawesi Power System in Indonesia. In Proceedings of the 2020 FORTEI-International Conference on Electrical Engineering (FORTEI-ICEE), Bandung, Indonesia, 23–24 September 2020; pp. 29–34. [Google Scholar] [CrossRef]
- Junne, T.; Cao, K.-K.; Miskiw, K.K.; Hottenroth, H.; Naegler, T. Considering Life Cycle Greenhouse Gas Emissions in Power System Expansion Planning for Europe and North Africa Using Multi-Objective Optimization. Energies 2021, 14, 1301. [Google Scholar] [CrossRef]
- Rauner, S.; Budzinski, M. Holistic energy system modeling combining multi-objective optimization and life cycle assessment. Environ. Res. Lett. 2017, 12, 124005. [Google Scholar] [CrossRef]
- Yuan, B.; Wu, S.; Zong, J. Multi-area generation expansion planning model of high variable generation penetration. In Proceedings of the 2017 2nd International Conference on Power and Renewable Energy (ICPRE), Chengdu, China, 20–23 September 2017; pp. 645–648. [Google Scholar] [CrossRef]
- Babatunde, O.; Munda, J.; Hamam, Y. Renewable Energy Technologies for Generation Expansion Planning: A fuzzy modified similarity-based approach. In Proceedings of the 2019 IEEE 2nd International Conference on Renewable Energy and Power Engineering (REPE), Toronto, ON, Canada, 2–4 November 2019; pp. 216–220. [Google Scholar] [CrossRef]
- Contreras-Ocana, J.E.; Chen, Y.; Siddiqi, U.; Zhang, B. Non-Wire Alternatives: An Additional Value Stream for Distributed Energy Resources. IEEE Trans. Sustain. Energy 2019, 11, 1287–1299. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, A.; Liu, L.; Cheng, H.; Liu, D.; Zhang, L.; Xu, T. Transmission Expansion Planning Coordinated with Distribution Networks Considering High Renewable Energy Penetration. In Proceedings of the 2020 IEEE Sustainable Power and Energy Conference (iSPEC), Chengdu, China, 23–25 November 2020; pp. 415–422. [Google Scholar] [CrossRef]
- Gargiulo, A.; Girardi, P.; Temporelli, A. LCA of Electricity Networks: A Review. Int. J. Life Cycle Assess. 2017, 22, 1502–1513. [Google Scholar] [CrossRef]
- Jordaan, S.M.; Combs, C.; Guenther, E. Life cycle assessment of electricity generation: A systematic review of spatio-temporal methods. Adv. Appl. Energy 2021, 3, 100058. [Google Scholar] [CrossRef]
- Dugan, J.; Byles, D.; Mohagheghi, S. Social vulnerability to long-duration power outages. Int. J. Disaster Risk Reduct. 2023, 85, 103501. [Google Scholar] [CrossRef]
Methodology | Midpoint Impact Indicators Used | Features | Reference |
---|---|---|---|
CED | direct and indirect energy usage throughout the entire life cycle of a system in megajoules (MJ) broken into renewable and non-renewable resources | Considers many types of energy sources. | [25] |
CML | AC, ET, FAE, FSE, GW, HT, IR, LU, MA, MAE, MSE, OD, PO, RES, TE | Developed based on European conditions and systems. | [25] |
Eco-indicator 99 | ACE, CR, EC, FR, GW, IR, LU, OD, RE, RESM | Has the same endpoint categories as ReCiPe and various perspectives. | [25] |
Ecological Scarcity Method 2006 | EA, EGW, ES, ESW, WST, RESE, RESM | All impact categories fall under one impact category group of depletion of abiotic resources. | [25] |
EF | AC, ET, GW, HTC, HTNC, IR, OD, PM, PO, ETF, ETL, ETM, FAE, LU, WU, RESE, RESM | Derived from ILCD. | [26] |
EPS (Environmental Priority Strategies) 2000 | AS, EA, ES, EW, LO | Assesses the economic damage related to emissions and use of energy, materials, and land. | [27] |
ILCD 2001 | AB, AC, EC, ET, GW, HT, IR, LU, OD, PM, PO | Has three areas of protection: Human health, resource depletion, and ecosystems. | [25] |
Impact 2002+ | AC, AEC, ET, GW, HT, IR, LU, MEX, NRE, OD, PO, RE, TE, TAN, WT, WU, WW | Takes each midpoint impact indicator to an endpoint category, which includes human health, ecosystem quality, climate change, and resources. | [28] |
Impact World + | AC, EQ, FAE, FET, HH, HTC, HTNC, IRE, IRH, LT, LU, MET, OD, PM, PO, TA, WA, WTP | Long term considerations with a variety of granular resolutions. | [29] |
IPCC | GW | Considers only GHG emissions. | [27] |
ReCiPe | FET, FEW, FR, GW, HTC, HTNC, LUT, ME, MET, MR, OD, PM, TA, TE, TOF, WU | Utilizes three different perspectives that represent different timescales. Has been iteratively developed with CML and Eco-indicator as its predecessors. Considers worldwide impacts. Does not include potential impacts for future extraction. | [30] |
Traci | EC, ET, FD, HH, OD, SF | Developed based on the United States regions. | [31] |
USEtox | Various exposure and effect parameters | Specifically designed for chemicals. | [32] |
Ref. | Country | System | Impact Categories Considered | Boundary | Approach | Data Sources | Modeling Assumptions |
---|---|---|---|---|---|---|---|
[33] | Portugal | G, T&D with power losses | AC, AD, ET, GW, NRE, OD, PO | Cradle-to-Gate | ALCA | Reports from Energy Services Regulatory Authority | Grid was built at one time and has a lifespan of 40 years. |
[34] | Mexico | G | AC, AD, ET, GW, OC, OD, HT, FAE, MAE, TE | Cradle-to-Gate | N/A | Ecoinvent database | Wind generation, oil transport, and refinery, efficiency for combined cycle with carbon capture, and captured CO2 |
[35] | China | G | GW | Cardle-to-Gate | Comparative Analysis | Published data used in LCI and SimaPRo 7.3 LCA | N/A |
[36] | Indonesia | G, T losses | AC, AD, ET, GW, PO, ADP, WD | Cradle-to-Gate | ALCA | Primary and secondary data | N/A |
[37] | South Korea | G, T&D losses | GW, PM, PO, RM, SW, WT | Cradle-to-Grave | ALCA | National average data from public databases and the literature | N/A |
[38] | Belgium | Hourly G in 2011 | GW | Different processes for each fuel | ALCA | Electrabel–GDF SUEZ, Ecoinvent, and national statistics | N/A |
[39] | Spain | G | AC, ET, FAE, GW, OD, PO, RD | Cradle-to-Grave | CLCA | Ecoinvent database | Various assumptions |
[40] | UK | G | AC, AD, GW, HT, NRE | Cradle-to-Gate | CLCA | Ecoinvent database | N/A |
[41] | Belgium | Low voltage G | AC, AG, GW, ET, FD, HT, MD, OD, PM, PO, WD | various geographical boundaries | ALCA and CLCA | Data available from European system operators | N/A |
[47] | Switzerland | G | FD, GW | Cradle-to-Grave | ALCA | Central Europe Energy Exchange database | Some uncertainties introduced associated with countries neighboring Switzerland |
[54] | Great Britain | T | CO2, Energy sources used | Gate-to-Gate | ALCA | Variety of databases, mostly from National Grid and Scottish Power | N/A |
[57] | Norway | T | AG, ET, GW, HT, MD, OD, PO, WD | Cradle-to-Grave | N/A | Variety of primary and secondary sources | N/A |
[61] | Denmark | D | AC, FD, GW, HT, MD, TE | Gate-to-Gate | N/A | GaBi 4.4 | Assumes all technologies are current with a lifetime of 40 years. |
[63] | Poland | G | GW, NRE, RE, TE | Cradle-to-Gate | N/A | The Central Statistical Office of Poland | Some assumptions pertaining to data |
Ref. | Limit Generation Options to Renewable Technologies | Adjust Marginal Generation Costs Due to Environmental and Societal Damages | COSTS of Emissions as an Objective Function | Carbon Tax as an Objective Function | Cost/Revenue of Carbon Capture as an Objective Function | Incentive Revenue Due to Deploying Renewables as an Objective Function | Hard Constraints on Emissions | Targets for Renewable Generation | LCA Impact Categories as an Objective Function | Constraints for Technology Suitability |
---|---|---|---|---|---|---|---|---|---|---|
[71] | × | |||||||||
[72] | × | |||||||||
[63] | × | |||||||||
[73] | × | |||||||||
[74] | × | |||||||||
[10] | × | × | ||||||||
[75] | × | |||||||||
[76] | × | |||||||||
[77] | × | |||||||||
[78] | × | × | ||||||||
[79] | × | × | × | × | ||||||
[80] | × | |||||||||
[81] | × | |||||||||
[82] | × | |||||||||
[83] | × | |||||||||
[84] | × | |||||||||
[85] | × | × | ||||||||
[86] | × | |||||||||
[88] | × |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byles, D.; Mohagheghi, S. Sustainable Power Grid Expansion: Life Cycle Assessment, Modeling Approaches, Challenges, and Opportunities. Sustainability 2023, 15, 8788. https://doi.org/10.3390/su15118788
Byles D, Mohagheghi S. Sustainable Power Grid Expansion: Life Cycle Assessment, Modeling Approaches, Challenges, and Opportunities. Sustainability. 2023; 15(11):8788. https://doi.org/10.3390/su15118788
Chicago/Turabian StyleByles, Dahlia, and Salman Mohagheghi. 2023. "Sustainable Power Grid Expansion: Life Cycle Assessment, Modeling Approaches, Challenges, and Opportunities" Sustainability 15, no. 11: 8788. https://doi.org/10.3390/su15118788
APA StyleByles, D., & Mohagheghi, S. (2023). Sustainable Power Grid Expansion: Life Cycle Assessment, Modeling Approaches, Challenges, and Opportunities. Sustainability, 15(11), 8788. https://doi.org/10.3390/su15118788