Analysis of CO2 Migration in Horizontal Saline Aquifers during Carbon Capture and Storage Process
Abstract
:1. Introduction
1.1. Carbon Capture
- Pre-combustion;
- Oxyfuel combustion; and
- Post-combustion technologies.
1.2. Carbon Storage
1.3. Carbon Escape from Structural Storage
1.4. Research Goal
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Vujic, B.; Pekez, J.; Mihajlovic, V.; Radovanovic, L.; Marceta, U.; Palinkas, I. Public Perception and Awareness on Climate Changes and the Importance of Renewable Energy Sources. Appl. Eng. Lett. 2020, 5, 68–74. [Google Scholar] [CrossRef]
- Metz, B.; Davidson, O.; de Coninck, H.C.; Loos, M.; Meyer, L.A. (Eds.) IPCC Special Report on CO2 Capture and Storage; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2010; p. 442. Available online: https://www.ipcc.ch (accessed on 10 February 2010).
- NASA Climate. Vital Signs: Carbon Dioxide. April 2022. Available online: https://climate.nasa.gov/vital-signs/carbon-dioxide/ (accessed on 24 January 2023).
- Zhang, Y.G.; Pagani, M.; Liu, Z.; Bohaty, S.M.; DeConto, R. A 40-million-year history of atmospheric CO2. Philos. Trans. R. Soc. A 2001, 371, 20130096. [Google Scholar] [CrossRef]
- Le Quéré, C.; Moriarty, R.; Andrew, R.M.; Peters, G.P.; Ciais, P.; Friedlingstein, P.; Jones, S.D. Global carbon budget 2014. Earth Syst. Sci. Data 2015, 7, 47–85. [Google Scholar] [CrossRef]
- Feely, A.R.; Sabine, C.L.; Lee, K.; Berelson, W.; Kleypas, J.; Fabry, J.W.; Millero, J.F. Impact of Anthropogenic CO2 on the CaCO3 System in the Oceans. Science 2004, 305, 362–366. [Google Scholar] [CrossRef]
- Zhang, S.; Zhuang, Y.; Liu, L.; Zhang, L.; Du, J. Risk management optimization framework for the optimal deployment of carbon capture and storage system under uncertainty. Renew. Sustain. Energy Rev. 2019, 113, 109280. [Google Scholar] [CrossRef]
- McGrail, B.P.; Schaef, H.T.; Ho, A.M.; Chien, Y.-J.; Dooley, J.J.; Davidson, C.L. Potential for carbon dioxide sequestration in flood basalts. J. Geophys. Res. 2006, 111, B12201. [Google Scholar] [CrossRef]
- Marchetti, C. On geoengineering and the CO2 problem. Clim. Chang. Open Access 1977, 1, 59–68. [Google Scholar] [CrossRef]
- Fanchi, J.R.; Fanchi, C.J. Energy in the 21st Century; World Scientific Publishing Co Inc.: Singapore, 2016; p. 350. [Google Scholar]
- Mishra, S.; Singh, S.P. Carbon management framework for sustainable manufacturing using life cycle assessment, IoT and carbon sequestration. Benchmarking Int. J. 2021, 28, 1396–1409. [Google Scholar] [CrossRef]
- Osman, A.I.; Hefny, M.; Maksoud, A.; Elgarahy, A.M.; Rooney, D.W. Recent advances in carbon capture storage and utilization technologies: A review. Environ. Chem. Lett. 2021, 19, 797–849. [Google Scholar] [CrossRef]
- Jansen, D.; Gazzani, M.; Manzolini, G.; van Dijk, E.; Carbo, M. Precombustion CO2 capture. Int. J. Greenh. Gas Control 2015, 40, 167–187. [Google Scholar] [CrossRef]
- Cao, M.; Zhao, L.; Xu, D.; Ciora, R.; Liu, P.K.T.; Manousiouthakis, V.I.; Tsotsis, T.T. A carbon molecular sieve membrane-based reactive separation process for pre-combustion CO2 capture. J. Membr. Sci. 2020, 605, 118028. [Google Scholar] [CrossRef]
- Kumar, P.; Faujdar, E.; Singh, R.K.; Paul, S.; Kukrety, A.; Chhibber, V.K.; Ray, S.S. High CO2 absorption of o-carboxymethylchitosan synthesised from chitosan. Environ. Chem. Lett. 2018, 16, 1025–1031. [Google Scholar] [CrossRef]
- Lee, D.J.; Jeong, K.H.; Lee, D.H.; Lee, S.H.; Jung, M.W.; Jang, Y.N.; Jo, G.G.; Kwag, J.H.; Yi, H.; Park, Y.K.; et al. Catalytic pyrolysis of swine manure using CO2 and steel slag. Environ. Int. 2019, 133, 105204. [Google Scholar] [CrossRef]
- Portillo, E.; Alonso-Farinas, B.; Vega, F.; Cano, M.; Navarrete, B. Alternatives for oxygen-selective membrane systems and their integration into the oxy-fuel combustion process: A review. Sep. Purif. Technol. 2019, 229, 115708. [Google Scholar] [CrossRef]
- Chen, S.; Ran Yu Soomro, A.; Xiang, W. Thermodynamic assessment and optimization of a pressurized fluidized bed oxy-fuel combustion power plant with CO2 capture. Energy 2019, 175, 445–455. [Google Scholar] [CrossRef]
- Zhang, N.; Pan, Z.; Zhang, Z.; Zhang, W.; Zhang, L.; Baena-Moreno, L.M.; Lichtfouse, E. CO2 capture from coalbed methane using membranes: A review. Environ. Chem. Lett. 2020, 18, 79–96. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, T.; Blunt, M.J.; Anthony, E.J.; Park, A.H.A.; Hughes, R.W.; Webley, P.A.; Yan, J. Advances in carbon capture, utilization and storage. Appl. Energy 2020, 278, 115627. [Google Scholar] [CrossRef]
- Wu, X.; Wang, M.; Liao, P.; Shen, J.; Li, Y. Solvent-based postcombustion CO2 capture for power plants: A critical review and perspective on dynamic modelling, system identification, process control and flexible operation. Appl. Energy 2020, 257, 113941. [Google Scholar] [CrossRef]
- Wienchol, P.; Szlȩk, A.; Ditaranto, M. Waste-to-energy technology integrated with carbon capture—Challenges and opportunities. Energy 2020, 198, 117352. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Zhou, Y. Carbon dioxide capture under ambient conditions using 2-chloroethylamine. Environ. Chem. Lett. 2011, 9, 535–537. [Google Scholar] [CrossRef]
- Liu, B.; Yang, X.; Wang, T.; Zhang, M.; Chiang, P.C. CO2 Separation by Using a Three-stage Membrane Process. Aerosol Air Qual. Res. 2019, 19, 2917–2928. [Google Scholar] [CrossRef]
- Jiang, X. A review of physical modelling and numerical simulation of long-term geological storage of CO2. Appl. Energy 2011, 88, 3557–3566. [Google Scholar] [CrossRef]
- Zhang, D.; Song, J. Mechanisms for Geological Carbon Sequestration. Procedia IUTAM 2014, 10, 319–327. [Google Scholar] [CrossRef]
- Chen, B.; Pawar, R.J. Characterization of CO2 storage and enhanced oil recovery in residual oil zones. Energy 2019, 183, 291–304. [Google Scholar] [CrossRef]
- Chen, B.; Pawar, R.J. Capacity assessment and co-optimization of CO2 storage and enhanced oil recovery in residual oil zones. J. Pet. Sci. Eng. 2019, 182, 106342. [Google Scholar] [CrossRef]
- Godec, M.L.; Kuuskraa, V.A.; Dipietro, P. Opportunities for using anthropogenic CO2 for enhanced oil recovery and CO2 storage. In Energy and Fuels; American Chemical Society: Washington, DC, USA, 2013; Volume 27, pp. 4183–4189. [Google Scholar]
- Meer, B.V. Carbon dioxide storage in natural gas reservoirs. Oil Gas Sci. Technol.-Rev. IFP 2005, 60, 527–536. [Google Scholar] [CrossRef]
- Bachu, S. Geological sequestration of anthropogenic carbon dioxide: Applicability and current issues. In Geological Perspectives of Global Climate Change; Gerhard, L.C., Harrison, W.E., Hanson, B.M., Eds.; American Association of Petroleum Geologists: Tulsa, OK, USA, 2001; pp. 285–303. [Google Scholar]
- Holloway, S. Storage of fossil fuel-derived carbon dioxide beneath the surface of the earth. Annu. Rev. Energy Environ. 2001, 26, 145–166. [Google Scholar] [CrossRef]
- Klara, S.M.; Srivastava, R.D.; McIlvried, H.G. Integrated collaborative technology development program for CO2 sequestration in geologic formations—United States Department of Energy R&D. Energy Convers. Manag. 2003, 44, 2699–2712. [Google Scholar]
- Celia, M.A.; Bachu, S.; Nordbotten, J.M.; Bandilla, K.W. Status of CO2 storage in deep saline aquifers with emphasis on modeling approaches and practical simulations. Water Resour. Res. 2015, 51, 6846–6892. [Google Scholar] [CrossRef]
- Ghanbari, S.; Al-Zaabi, Y.; Pickup, G.E.; Mackay, E.; Gozalpour, F.; Todd, A.C. Simulation of CO2 Storage in Saline Aquifers. Chem. Eng. Res. Des. 2006, 84, 764–775. [Google Scholar] [CrossRef]
- Bradshaw, J.; Bachu, S.; Bonijoly, D.; Burruss, R.; Holloway, S.; Christensen, N.P.; Mathiassen, O.M. CO2 storage capacity estimation: Issues and development of standards. Int. J. Greenh. Gas Control 2007, 1, 62–68. [Google Scholar] [CrossRef]
- Michael, K.; Golab, A.; Shulakova, V.; Ennis-King, J.; Allinson, G.; Sharma, S.; Aiken, T. Geological storage of CO2 in saline aquifers—A review of the experience from existing storage operations. Int. J. Greenh. Gas Control 2010, 4, 659–667. [Google Scholar] [CrossRef]
- Bentham, M.; Kirby, G. CO2 Storage in Saline Aquifers. Oil Gas Sci. Technol.-Rev. IFP 2005, 60, 559–567. [Google Scholar] [CrossRef]
- Benson, S.M.; Cole, D.R. CO2 sequestration in deep sedimentary formations. Elements 2008, 4, 325–331. [Google Scholar] [CrossRef]
- IEAGHG. Caprock Systems for CO2 Geological Storage; IEA Environmental Projects Ltd.: Paris, France, 2011. [Google Scholar]
- Song, J.; Zhang, D. Comprehensive review of caprock-sealing mechanisms for geologic carbon sequestration. Environ. Sci. Technol. 2012, 47, 9–22. [Google Scholar] [CrossRef]
- Espinoza, D.N.; Santamarina, J.C. Clay interaction with liquid and supercritical CO2: The relevance of electrical and capillary forces. Int. J. Greenh. Gas Control 2013, 10, 351–362. [Google Scholar] [CrossRef]
- Noiriel, C.; Made, B.; Gouze, P. Impact of coating development on the hydraulic and transport properties of argillaceous limestone fractures. Water Resour. Res. 2007, 43, W09406. [Google Scholar] [CrossRef]
- Angeli, M.; Soldal, M.; Skurtveit, E.; Eyvind Aker, E. Experimental percolation of supercritical CO2 through a caprock. Energy Procedia 2013, 1, 3351–3358. [Google Scholar] [CrossRef]
- Olabode, A.; Radonjic, M. Shale caprock/acidic brine interaction in underground CO2 storage. J. Energy Resour. Technol. 2014, 136, 042901-1–042901-6. [Google Scholar] [CrossRef]
- Paterson, L.; Lu, M.; Connell, L.D.; Ennis-King, J. Numerical modeling of pressure and temperature profiles including phase transitions in carbon dioxide wells. In Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 21–24 September 2008. [Google Scholar]
- Vilarrasa, V.; Olivella, S.; Carrera, J.; Rutqvist, J. Long term impacts of cold CO2 injection on the caprock integrity. Int. J. Greenh. Gas Control 2014, 24, 1–13. [Google Scholar] [CrossRef]
- Garapati, N.; Randolph, J.B.; Saar, M.O. Brine displacement by CO2, energy extraction rates, and lifespan of a CO2-limited CO2-Plume Geothermal (CPG) system with a horizontal production well. Geothermics 2015, 55, 182–194. [Google Scholar] [CrossRef]
- Gasda, S.E.; Bachu, S.; Celia, M.A. Spatial Characterization of Existing Well Locations in a Mature Sedimentary Basin. Environ. Geol. 2004, 46, 707–720. [Google Scholar] [CrossRef]
- Bachu, S.; Gunter, W.D.; Perkins, E.H. Aquifer disposal of CO2: Hydrodynamic and mineral trapping. Energy Convers. Manag. 1994, 35, 269–279. [Google Scholar] [CrossRef]
- Flett, M.; Gurton, R.; Taggart, I. The function of gas-water relative permeability hysteresis in the sequestration of carbon dioxide in saline formations. In Proceedings of the SPE Asia Pacific Oil and Gas Conference and Exhibition, Perth, Australia, 18–20 October 2004. [Google Scholar]
- Juanes, R.; Spiteri, E.J.; Orr, F.M., Jr.; Blunt, M.J. Impact of relative permeability hysteresis on geological CO2 storage. Water Resour. Res. 2006, 42, W12418. [Google Scholar] [CrossRef]
- Makhnenko, R.Y.; Vilarrasa, V.; Mylnikov, D.; Laloui, L. Hydromechanical aspects of CO2 breakthrough into clay-rich caprock. In Energy Procedia; Elsevier: Amsterdam, The Netherlands, 2017; Volume 114, pp. 3219–3228. [Google Scholar]
- Nordbotten, J.M.; Celia, M.A.; Bachu, S. Analytical solutions for leakage rates through abandoned wells. Water Resour. Res. 2004, 40, W04204. [Google Scholar] [CrossRef]
- Gass, T.E.; Lehr, J.H.; Heiss, H.W. Impact of Abandoned Wells on Groundwater; United States Environmental Protection Agency: Washington, DC, USA, 1977.
- Moghaddam, R.N.; Rostami, B.; Pourafshary, P.; Fallahzadeh, Y. Quantification of Density-Driven Natural Convection for Dissolution Mechanism in CO2 Sequestration. Transp. Porous Med. 2012, 92, 439–456. [Google Scholar] [CrossRef]
- Meybodi, E.H.; Hassanzadeh, H.; Green, C.P.; Ennis-King, J. Convective dissolution of CO2 in saline aquifers: Progress in modeling and experiments. Int. J. Greenh. Gas Control 2015, 40, 238–266. [Google Scholar] [CrossRef]
- Yang, C.; Gu, Y. Accelerated Mass Transfer of CO2 in Reservoir Brine Due to Density-Driven Natural Convection at High Pressures and Elevated Temperatures. Ind. Eng. Chem. Res. 2006, 45, 2430–2436. [Google Scholar] [CrossRef]
- MacMinn, C.W.; Szulczewski, M.L.; Juanes, R. CO2 migration in saline aquifers: Regimes in migration with dissolution. Energy Procedia 2011, 4, 3904–3910. [Google Scholar] [CrossRef]
- Pruess, K.; Xu, T.; Apps, J.; Garcia, J. Numerical modeling of aquifer disposal of CO2. SPE J. 2003, 8, 49–60. [Google Scholar] [CrossRef]
- Xu, T.; Apps, J.A.; Pruess, K. Reactive geochemical transport simulation to study mineral trapping for CO2 disposal in deep arenaceous formations. J. Geophys. Res. 2003, 108, 2071. [Google Scholar]
- Nghiem, L.; Shrivastava, V.; Kohse, B.; Sammon, P. Simulation of CO2 EOR and sequestration processes with a geochemical EOS compositional simulator. In Proceedings of the Canadian International Petroleum Conference, Calgary, AB, Canada, 8–10 June 2004. [Google Scholar]
- Hongjun, Z.; Xinwei, L.; Yanfang, C.; Xiaoliang, Z. Sensitivity analysis of CO2 sequestration in saline aquifers. Pet. Sci. 2010, 7, 372–378. [Google Scholar]
- Akai, T.; Kuriyama, T.; Kato, S.; Okabe, H. Numerical modelling of long-term CO2 storage mechanisms in saline aquifers using the Sleipner benchmark dataset. Int. J. Greenh. Gas Control 2021, 110, 103405. [Google Scholar] [CrossRef]
- Ranganathan, P.; Hemert, P.; Rudolph, J.S.; Zitha, P. Numerical Modeling of CO2 Mineralisation during Storage in Deep Saline Aquifers. Energy Procedia 2011, 4, 4538–4545. [Google Scholar] [CrossRef]
- Shu, L.; Ruina, X.; Peixue, J. Effect of reactive surface area of minerals on mineralization trapping of CO2 in saline aquifers. Pet. Sci. 2012, 9, 400–407. [Google Scholar]
- Azin, R.; Mahmoudy, M.; Raad, S.M.J.; Osfouri, S. Measurement and modeling of CO2 diffusion coefficient in Saline Aquifer at reservoir conditions. Cent. Eur. J. Eng. 2013, 3, 585–594. [Google Scholar] [CrossRef]
- Hassanzadeh, H.; Pooladi-Darvish, M.; Elsharkawy, A.M.; Keith, D.W. Predicting PVT data for CO2-brine mixtures for black-oil simulation of CO2 geological storage. Int. J. Greenh. Gas Control 2008, 2, 65–77. [Google Scholar] [CrossRef]
- Bachu, S. Screening and ranking of sedimentary basins for sequestration of CO2 in geological media. Environ. Geol. 2003, 44, 277–289. [Google Scholar] [CrossRef]
- Birkholzer, J.T.; Oldenburg, C.M.; Zhou, Q. CO2 migration and pressure evolution in deep saline aquifers. Int. J. Greenh. Gas Control 2015, 40, 203–220. [Google Scholar] [CrossRef]
- Urych, T.; Smolinski, A. Numerical Modeling of CO2 Migration in Saline Aquifers of Selected Areas in the Upper Silesian Coal Basin in Poland. Energies 2019, 12, 3093. [Google Scholar] [CrossRef]
- Mkemai, R.M.; Bin, G. A modeling and numerical simulation study of enhanced CO2 sequestration into deep saline formation: A strategy towards climate change mitigation. Mitig. Adapt. Strat. Glob. Chang. 2020, 25, 901–927. [Google Scholar] [CrossRef]
- Ren, J.; Wang, Y.; Feng, D.; Gong, J. CO2 migration and distribution in multiscale-heterogeneous deep saline aquifers. Adv. Geo-Energy Res. 2021, 5, 333–346. [Google Scholar]
- Song, Z.; Song, H.; Cao, Y.; Killough, J.; Leung, J.; Huang, G.; Gao, S. Numerical research on CO2 storage efficiency in saline aquifer with low-velocity non-Darcy flow. J. Nat. Gas Sci. Eng. 2015, 23, 338–345. [Google Scholar]
- Lyu, X.; Voskov, D.; Rossen, W.R. Numerical investigations of foam-assisted CO2 storage in saline aquifers. Int. J. Greenh. Gas Control 2021, 108, 103314. [Google Scholar] [CrossRef]
- Spycher, N.; Pruess, K.; Ennis-King, J. CO2-H2O mixtures in the geological sequestration of CO2 I. Assessment and calculation of mutual solubilities from 12 to 100 C and up to 600 bar. Geochim. Cosmochim. Acta 2003, 67, 3015–3031. [Google Scholar] [CrossRef]
- Tatomir, A.; Dimache, A.N.; Iulian, I.; Sauter, M. Modelling of CO2 storage in geological formations with DuMux, a free-open-source numerical framework. A possible tool to assess geological storage of carbon dioxide in Romania. E3S Web Conf. 2019, 85, 07002. [Google Scholar] [CrossRef]
- Nordbotten, J.M.; Celia, M.A.; Bachu, S. Injection and Storage of CO2 in Deep Saline Aquifers: Analytical Solution for CO2 Plume Evolution During Injection. Transp. Porous Med. 2005, 58, 339–360. [Google Scholar] [CrossRef]
- Nordbotten, J.M.; Celia, M.A. Similarity solutions for fluid injection into confined aquifers. J. Fluid Mech. 2006, 561, 307–327. [Google Scholar] [CrossRef]
- Sarris, E.; Gravanis, E.; Papaloizou, L. Pressure build-up analysis in the flow regimes of the CO2 sequestration problem. In Proceedings of the 2nd International Conference on Energy Geotechnics (ICEGT 2020), Jolla, CA, USA, 10–13 April 2020; Volume 205. [Google Scholar]
- Lindeberg, E. Escape of CO2 from aquifers. Energy Convers. Manag. 1997, 38, S235–S240. [Google Scholar] [CrossRef]
- Birkholzer, J.T.; Zhou, Q.; Tsang, C.-F. Large-scale impact of CO2 storage in deep saline aquifers: A sensitivity study on pressure response in stratified systems. Int. J. Greenh. Gas Control 2009, 3, 181–194. [Google Scholar] [CrossRef]
- Lindeberg, E.; Wessel-Berg, D. Vertical convection in an aquifer column under a CO2 gas cap. Energy Convers. Manag. 1997, 38, S229–S234. [Google Scholar] [CrossRef]
- Ahmmed, B.; Appold, M.S.; Fan, T.; McPherson, B.J.; Grigg, R.B.; White, M.D. Chemical effects of carbon dioxide sequestration in the Upper Morrow Sandstone in the Farnsworth, Texas, hydrocarbon unit. Environ. Geosci. 2016, 23, 81–93. [Google Scholar] [CrossRef]
- Duguid, A.; Radonjic, M.; Scherer, G.W. Degradation of cement at thereservoir/cement interface from exposure to carbonated brine. Int. J. Greenh. Gas Control 2011, 5, 1413–1428. [Google Scholar] [CrossRef]
- Caoa, P.; Karpyna, Z.T.; Lia, L. The role of host rock properties in determining potential CO2 migration pathways. Int. J. Greenh. Gas Control 2016, 45, 18–26. [Google Scholar] [CrossRef]
- Avci, C.B. Flow occurrence between confined aquifers through improperly plugged boreholes. J. Hydrol. 1992, 39, 97–114. [Google Scholar] [CrossRef]
- Heidari, P.; Hassanzadeh, H. Modeling of Carbon Dioxide Leakage from Storage Aquifers. Fluids 2018, 3, 80. [Google Scholar] [CrossRef]
- Markovic, V.M.; Nikezic, D.; Stevanovic, N. 222Rn and 220Rn diffusion in two mediums. Nucl. Instrum. Methods Phys. Res. A 2017, 857, 16–23. [Google Scholar] [CrossRef]
- Pruess, K.; García, J.; Kovscek, T.; Oldenburg, C.; Rutqvist, J.; Steefel, C.T. Intercomparison of numerical simulation codes for geologic disposal of CO2. In Lawrence Berkeley National Laboratory Report; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2002. [Google Scholar]
- Khanal, A.; Shahriar, M.F. Physics-Based Proxy Modeling of CO2 Sequestration in Deep Saline Aquifers. Energies 2022, 15, 4350. [Google Scholar] [CrossRef]
- Andersen, O.; Gasda, S.E.; Nilsen, H.M. Vertically Averaged Equations with Variable Density for CO2 Flow in Porous Media. Transp. Porous Med. 2015, 107, 95–127. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fominykh, S.; Stankovski, S.; Markovic, V.M.; Petrovic, D.; Osmanović, S. Analysis of CO2 Migration in Horizontal Saline Aquifers during Carbon Capture and Storage Process. Sustainability 2023, 15, 8912. https://doi.org/10.3390/su15118912
Fominykh S, Stankovski S, Markovic VM, Petrovic D, Osmanović S. Analysis of CO2 Migration in Horizontal Saline Aquifers during Carbon Capture and Storage Process. Sustainability. 2023; 15(11):8912. https://doi.org/10.3390/su15118912
Chicago/Turabian StyleFominykh, Sergey, Stevan Stankovski, Vladimir M. Markovic, Dusko Petrovic, and Sead Osmanović. 2023. "Analysis of CO2 Migration in Horizontal Saline Aquifers during Carbon Capture and Storage Process" Sustainability 15, no. 11: 8912. https://doi.org/10.3390/su15118912
APA StyleFominykh, S., Stankovski, S., Markovic, V. M., Petrovic, D., & Osmanović, S. (2023). Analysis of CO2 Migration in Horizontal Saline Aquifers during Carbon Capture and Storage Process. Sustainability, 15(11), 8912. https://doi.org/10.3390/su15118912